NOTES ON COMPLEX NUMBERS

DAVID M. MCCLENDON

ABSTRACT. Some notes on complex numbers for Math 53, a course in dynam-
ical systems given at Swarthmore College during Spring 2011.

1. HISTORY AND MOTIVATION

1.1. Natural numbers. Numbers are invented to quantify things. The most prim-
itive set of numbers is the set of natural numbers, denoted N = {0,1,2,...}. (Some
people start the natural numbers with 1, so for them N is {1,2,3,...}.) What works
well about the natural numbers is that they count whole numbers of objects, and
that we can talk about adding and multiplying two natural numbers. What doesn’t
work well is that we can’t always talk about subtracting two natural numbers, e.g.
there is no natural number which is equal to 3 — 7. Restated, you cannot solve the
equation z 4+ 7 = 3 if your universe of discourse is the natural numbers.

1.2. Integers. To fix the subtraction problem, the integers are invented (or dis-
covered, depending on your philosophical perspective). This set is denoted Z and
is the set {...,—2,—1,0,1,2,...}. The integers do all the things the natural numbers
do, and you can also subtract any two integers and get an integer as your answer.
Unfortunately division doesn’t work well with integers, e.g. there is no integer x
which solves the equation 2z = 3.

1.3. Rational numbers. To fix this, we consider the rational numbers, denoted Q
and described as the set of all fractions £ where p and ¢ are integers with no com-
mon divisors, and ¢ # 0. What is great about the rational numbers is that you get
all the pros of the integers and you can also divide one rational number by another
(as long as the divisor is not zero) and get a rational number as your answer. What
is not great about the rational numbers is that they are incomplete. Essentially this
means that sequences of rational numbers that converge don’t necessarily converge
to rational numbers. For example, the sequence 3,3.1,3.14,3.1415, ... is a sequence
of rational numbers that converges to m, which is irrational. More formally, the
Monotone Convergence Theorem for sequences (which says that a bounded, mono-
tone sequence of numbers must converge) is invalid if your universe of discourse is
the rational numbers.

1.4. Real numbers. To fix this, we take the real numbers, denoted R and de-
scribed as the set of all limits of bounded, convergent sequences of rational numbers
(this sentence is actually a bit of a lie, but it’s okay if you believe it). This set R is
complete (in that the Monotone Convergence Theorem holds) and the arithmetic
operations of addition, subtraction, multiplication and division work well. How-
ever, the real numbers are unsatisfactory because polynomial equations with real
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coefficients can’t always be solved; e.g. the equation 22 + 1 = 0 has no solution if
your universe of discourse is R.

1.5. Complex numbers. To solve the polynomial equation above, we invent a
solution to z? + 1 = 0 called i and create the complex numbers, denoted C. As a
set, we have

C={z+iy:z,yeR}

and so formally, the complex numbers are a vector space of dimension 2 over the
reals with basis {1,:}. However, the complex numbers are more than just vectors,
because we define multiplication of complex numbers by setting i2 = —1 (see the
next section). The complex numbers are great: they have addition, subtraction,
multiplication, division (even by zero, as we’ll see later), they are complete, and all
polynomials with coefficients that are complex numbers have solutions which are
complex numbers (this fact is called the Fundamental Theorem of Algebra). The
only drawback of complex numbers is that they are not ordered (i.e. you can’t say
one complex number is less than or greater than another one). But this turns out
not to be too much of a problem.

Historically speaking, complex numbers were first invented by Cardano in the
1500s as a “trick” to find real solutions to cubic equations with real coefficients.
Basically, square roots of negative numbers pop up in Cardano’s method but even-
tually drop out to give real answers. Cardano called these square roots of negative
numbers “imaginary”. The name stuck, but in fact complex numbers are no more
imaginary than the numbers 1 or 2. We now know that complex numbers are
essential in electrical engineering and for the theoretical formulation of quantum
mechanics and special relativity.

Notice that N ¢ Z ¢ Q ¢ R ¢ C. It is natural to wonder if there is an even
bigger set than C that is even better than C. The answer is no; problems arise if
you try this (in particular multiplication stops being commutative, so division is a
big problem).

2. ARITHMETIC OF COMPLEX NUMBERS

Definition 2.1. The set of complex numbers C is defined by
C={z=z+iy:z,y e R}

Given a complex number z = x + iy, the real part of z, denoted R(z), is x, and the
imaginary part of z, denoted (z), is y. Note that for z € C, R(2) and 3(z) are
real numbers.

For example, (1 — 2:¢) is —2, not —2i. Usually a complex number is denoted by
z,w, or a Greek letter like ¢ (zeta) or £ (xi) or w (omega). The letters s, ¢, u,v,x
and y should not be used to denote complex numbers; they connote real numbers.
In particular it is always understood with complex numbers that “z” means the
complex number z = x +iy. Although many proofs and definitions in this handout
involve writing complex numbers like z as = + iy, in general you want to avoid
immediately thinking of a complex number as x + iy. Just think of it as z.

Definition 2.2. The complex conjugate of z =z +iy € C is Z = x — iy.
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Addition and subtraction in C are defined in the “obvious way” by combining
like terms. For example,

(2-3i)4+ (1449 =3—-2i and (=3+1i)— (2+7i)=—5—6i.

Multiplication is defined by distributing terms, together with the law that 2 = —1.
For example:

(24 5i)(—=1 —2i) = -2 — 5i — 4i — 10i*> = =2 — 9 + 10 = 8 — 9i.

Division is trickier; to divide one complex number by a nonzero complex number,
what you do is multiply through the numerator and denominator of the fraction by
the conjugate of the denominator. An example:

. _ 1474 (1+49)B+4) —-1+7 -1 7.
A+ =64 = = 5B+ 4) 25 25 25’

The operations thus defined satisfy all the elementary arithmetic properties: addi-
tion and multiplication are commutative and associative, addition and multiplica-
tion have identity elements (0 = 0+ 0i and 1 = 1 4 0: respectively); every element
has an additive inverse; every nonzero element has a reciprocal; the distributive
property holds. Moreover, we see the following;:

Proposition 2.3. Let z € C. Then R(z) = 252 and 3(z) = 5.

Proof. Every complex number z can be written as z = x + iy. For the first state-

ment,
dtz_ Gt t—iy) 20 _ g0
2 2 2

The other statement is similar. O

Proposition 2.4. Let z1,290 € C. Then z1 + 20 = 21 + 25 and Z1z3 = 21 Z».

Proof. Write z = z+1iy. If you worked out both sides of the equations in terms of
and y, you would see the left- and right- hand sides of the equations are equal. [

3. GEOMETRIC INTERPRETATION OF C

We think of the complex number z = x + iy as the vector (z,y) in a plane. Thus
the complex numbers form a plane (in the same way that the real numbers form a
line). The “x—axis” of this plane is called the real azis and the “y—axis” of this
plane is called the imaginary axis. Thinking of complex numbers as vectors, addi-
tion of complex numbers corresponds to “head-to-tail” or “parallelogram” addition
of vectors, i.e.

(2-3)+(1+i)=3-2

is essentially the same as

(2,-3)+(1,1) = (3,-2).
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The main goal of this section is to explain the geometric interpretation of multi-
plication. We consider two examples. For the first example, suppose z = z+iy € C.
Then 2z = 2(x 4 iy) = 2z + i(2y) and it should be clear that 2z, thought of as a
vector, points in the same direction as z but is twice as long. Similarly, 5z points in
the same direction as z but is 5 times as long as z and —%z points in the opposite
direction as z and is 2/3 as long as z.

For the second example, suppose again that z = x 41y € C. Multiply this z by ¢
to get iz = i(x+iy) = ix—y = —y+iz. In vector language, multiplication by i takes
the vector (z,y) and sends it to (—y, x). In linear algebra terms, this corresponds to

. C . -1
taking the vector (x,y) and multiplying it (on the left) by the matrix ( (1) 0
Either by recognizing this matrix as the matrix of a linear transformation which
rotates the plane, or by looking at the picture below, we see that multiplication by
i rotates points in C by 7/2 counterclockwise.

We see from these two examples that multiplication in C is related to stretching
and/or rotation of vectors. These ideas are best expressed using polar coordinates,
so we now discuss how to represent complex numbers with polar coordinates.

3.1. Polar coordinates.

Definition 3.1. The absolute value a.k.a. norm a.k.a. modulus of a complex
number z = x + iy s |z| = /2% + y2. (Observe the norm of any complex number
is a nonnegative real number, and that if |z| =0, then z =0).

Definition 3.2. The (Euclidean) distance between two complex numbers z1 and zo
is |21 — 22].

This notion of distance coincides with the usual notion of distance on the plane.
The norm of a complex number is its distance from zero, so this generalizes the
notion of absolute value of a real number.

Observe that if we think of z as a vector, then Z is the vector obtained by

reflecting z through the real axis. In particular, this means (z) = z and |z| = |z|.
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This notion of distance can be used to describe circles in the complex plane. The
set {z : |z — 29| = r} is a circle centered at the complex number zy with radius r;
the set {z : |z — 20| < r} is the set of points inside (but not on) this circle; the set
{z ]z — 20| > r} is the set of points outside (but not on) this circle. In particular
the set {|z| = r} is a circle of radius r centered at 0.

Proposition 3.3. Let 21,22 € C. Then |z122] = |z1]|22].

Proof. Write z; = x1 +14y; (same for z2), if you work out both sides in terms of the

xs and ys you would see that they are equal. O
As a special case of this, let zo = —1 to obtain | — z| = | — 1||z| = 1|z| = |z|. So
|21 — 22| = |22 — #1], i.e. the distance between two complex numbers doesn’t depend

on the order in which you subtract them.
Proposition 3.4 (Triangle Inequality). Let 21,22 € C. Then |z1 + 22| < |21] 4 |22].

Proof. Write z; = x1+1iy; (same for 25), work out both sides, do a lot of complicated
algebra, you end up with an inequality that is always true (it is something like a? > 0
where a is some quantity that must be real). O

Theorem 3.5. Let z € C. Then zz = |z|? (and therefore |z| = /2z). (In
particular this means zZ is real and nonnegative for any z € C.)

Proof. Write z = x + iy, work out both sides and show they are equal. O

This theorem allows us to restate division in C as follows: given z1, 25 € C, we

have B B
. 21 2122 2122
2] VR = — = —— = PR

2z iy |2

As a special case of this, we have a formula for reciprocals. If z # 0, then
1 _ _
2,’71 = — = é = i
z 2z |z]?
1

In particular, if |z| = 1, then 271 = Z.

Definition 3.6. Let z = x + iy € C. The argument of z, denoted arg(z), is any
angle 0 (in radians) such that © = |z| cos€ and y = |z|sin.
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Given z, you can solve for § = arg z by setting 6 = arctan(y/x) if x # 0; if x =0
then § = n/2 if y > 0 and § = —7/2 if y < 0. Notice that arguments are only
defined up to multiples of 27.

Definition 3.7. The polar coordinates of a complexr number z are (r,0) where
r=|z| and 0 = arg 2.

If z has polar coordinates (r,0), then z = r cos @ + irsin @ = r(cos + isin 0); we
shorthand this expression and write z = r cis 6 (although there is a better way to
write this coming later).

Theorem 3.8. Suppose z1 = 11 cis 01 and zo = ro cis Oy (this meansry = |z1|,72 =
|22|). Then z12z9 = 1179 cis (61 + 62).

Proof. Coming in Section 5. O

This theorem tells us how to interpret multiplication geometrically in C. Given
two complex numbers, if those numbers are multiplied, then the “moduli multi-
ply” (since |z12a| = |21]|22|) and the “arguments add” (since this theorem implies
arg(z122) = arg z; + arg za).
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4. TorPoLOGY OF C

Recall that the distance between two complex numbers z; and z3 is d(z1,22) =
|21 — 22|. From this notion of distance we can describe open and closed sets as we
have done for the real numbers and sequence spaces.

Definition 4.1. Given z € C and € > 0, the neighborhood of z with radius e,
denoted N.(z), is the set N (z) ={w € C: d(w,z) <e} ={w e C:|w—z| <€}

A subset U C C is called open if every point in U has a neighborhood of some
positive radius contained entirely in U. (Essentially this means U does not contain
any of its boundary.) A subset V' C C is called closed if the complement of V'
is open. (Essentially this means V' contains its boundary.) The closure of a set
W C C, denoted W, is the smallest closed subset of C containing W. A subset of
C is called bounded if it is contained in some neighborhood (perhaps of very large,
but finite radius) of 0.

4.1. The Riemann sphere. An amazing thing about C is that it can be thought
of as not only a plane but a sphere. To do this, take the complex plane and imagine
that it is lying horizontally (like on a table or desk). Mark the origin and the real
and imaginary axes on this plane; then imagine a sphere of radius 1/2 tangent to
this plane at the origin, sitting on top of the plane. Imagine that this sphere is
translucent. Define a map from the complex numbers to the sphere by the following
procedure: given z € C, go to the point z on the plane and shoot a laser beam from
z to the point at the top of the sphere (call the top of the sphere (0,0, 1) for now).
It will necessarily be the case that the laser beam strikes the sphere somewhere
between z and (0,0, 1); call this point z*. The map from C to the sphere takes each
z to the corresponding z* and is called stereographic projection. (See the picture
on the next page.)
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Here is a picture describing the stereographic projection. In fact this map is a
homeomorphism between C and the set of points on the sphere other than the north
pole (0,0,1) (that is, it is 1 — 1, onto, continuous, and has continuous inverse):

We think of the complex number z in the plane as being no different than the
complex number z* on the sphere (in fact, we drop the * notation and think of
the point on the sphere as just z). Furthermore, suppose you start at 0 and draw
any ray emanating from 0 in your plane. This corresponds on the sphere to a
semicircle starting at the bottom of the sphere, wrapping around to the top. Also,
the stereographic projection preserves lines and circles in the following sense: if you
draw any line on your plane, that line corresponds to a circle on the sphere passing
through (0,0, 1). If you draw any circle on your plane, that circle corresponds to a
circle on the sphere. In particular this makes the following identifications:

PLANE SPHERE
0

real axis

bottom of sphere
“left and right side” great circle of sphere
imaginary axis “front and back” great circle of sphere

complex numbers of modulus 1 “equator” of sphere

rr e

0 top of sphere

Amazingly, what this means is that if we take the spherical model for the complex
numbers, we can treat co as a number! (We cannot do this for real numbers, ever.)

Definition 4.2. The Riemann sphere, denoted ((Aj, is the set CU {0}, viewed as a
sphere where the north pole of the sphere is co and the rest of the sphere corresponds

to the set of complex numbers as described above.

On the Riemann sphere, there is a natural notion of distance:
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Definition 4.3. Given z,w € C (including z or w = o0), define the (chordal)
distance between z and w, denoted d(z,w) to be the Euclidean distance (in 3-D
space) of the chord connecting the points z and w.

Note that the maximum chordal distance between any two points is 1 (the diam-
eter of the sphere). From this notion of distance we can define neighborhoods and
open and closed subsets of the sphere, in the same way we described these objects
in R, {0,1}" and the planar model of C:

Definition 4.4. Given z € C and € > 0, the neighborhood of z with radius €,
denoted N.(z), is the set

N(z) ={w e C: d(w,2) < e}.

A neighborhood of z on the sphere looks like a contact lens-shaped region cen-
tered at z:

A subset U C C is called open if every point in U has a neighborhood of some
positive radius contained entirely in U. (Essentially this means U does not contain
any of its boundary.) A subset V C C is called closed if the complement of V
is open. (Essentially this means V' contains its boundary.) The closure of a set
W C (ﬁ, denoted W, is the smallest closed subset of C containing W.

Open (resp. closed) , bounded subsets of C correspond to open (resp. closed)
subsets of C not containing the north pole co. Open (resp. closed), unbounded
subsets of C correspond to open (resp. closed) subsets of C containing the north
pole co. Lines in C correspond to circles in C passing through the north pole; circles
in C correspond to circles in C which do not pass through the north pole.

4.2. Arithmetic with co. As mentioned earlier, co can be treated as a number if
we work with the Riemann sphere rather than the complex numbers. Arithmetic
operations that are consistently defined with oo are:

e 0o £ (any finite complex number) = co

e 0o - (any nonzero finite complex number) = co
® 0000 =00

e (any nonzero finite complex number) +0 = co
e (any nonzero finite complex number) oo =0

The following expressions are indeterminate; if you encounter them in a limit
you would need to use L’Hopital’s rule or the equivalent to evaluate them:



10 D. MCCLENDON

00 0
— 00 o+ cow—00 -—
00 0

An important thing to keep in mind about complex infinity is that there is no
distinction between 400 or —oco or ioo, etc. When we say z — 0o, we mean
|z| — oo, that is, that on the sphere, we are letting points get closer and closer to
the north pole from an arbitrary direction along the sphere.

5. FuncTioNs ON C AND C

We can define basic functions on C using arithmetic operations, e.g. f(z) = 22

and f(z) = fz;tlz make sense. To define non-arithmetic functions like exponentials
and trig functions, we use power series (because power series are made up only
of addition, subtraction, multiplication and division, and all these operations are
already defined for complex numbers). In particular, it is a fact that any power
series that converges for all real numbers also converges for all complex numbers.
So we define, for all complex numbers z:
e* = Z )
n=0

oo

(_1)nz2n

COSz = E v re—
|
= (2n)!

oo (_l)nz2n+1

sinz = Z @n+ 1)

n=0
From this, you can show that all the usual trigonometric and exponential identities
that hold for real numbers also hold for complex numbers. More importantly, we
have:

Theorem 5.1 (Euler’s Identity). For any z € C, e** = cos z + isin z.
Proof. Write the power series for both sides of this equation; they are identical. [J

As an important consequence, we see that if z has polar coordinates (r, 6), then

z=rcosf 4 irsinf = r(cos + isinh) = re.

Now Theorem 3.8 follows immediately because if z; = r1e1 and 2y = roe'®2, then
by elementary properties of exponentials, z; 25 = r172€*(?1702) In particular, if we
write z = re? where r > 0 and 6 € R, this means (r,0) are the polar coordinates
of z,sor = |z| and 0 = arg z.

Definition 5.2. A function f: C — C is called differentiable at zy € C if

lim f(zo+h) = f(20)
h—0 h

exists, in which we call the limit f'(z0), the derivative of f at zg. A function which
is differentiable at every complex number is called analytic on C.

A word of caution: in the above limit, h is a complex number, i.e. is a vector
(z,y) so complex limits (and complex derivatives) are more like multivariable limits
than they are limits of one variable. In particular, in order for a derivative to exist
the above limit has to give the same value if h approaches 0 from any direction.
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In fact, the theory of derivatives of complex functions is deep and very interesting
(but beyond the scope of these notes).

That said, all the usual rules of differentiation still hold (power rule, product
rule, chain rule, trig rules, etc.) As with functions of real numbers, differentiable
functions are necessarily continuous.

5.1. Functions on the Riemann sphere. Given a function defined on C, we
set f(o0) = lim, o f(2) if this limit exists. If we can do this, then f becomes a
function from C to itself, i.e. f has been “extended” to a function of the Riemann
sphere. For example, the function f(z) = 1/z is extended to the sphere by setting
f(0) = oo and f(oc0) = 0.

There is also a method of determining whether f is differentiable at co (not the
usual definition of derivative). This is beyond the scope of these notes. If a function
f: C — C has a derivative at every complex number and is differentiable at oo,
we call f an meromorphic function, or a function analytic on C. It turns out that
there aren’t that many meromorphic functions; here is a fact typically discussed in
a complex analysis course:

Theorem 5.3. Fvery meromorphic function f : C — C is a rational function, i.e.
flz) = 58 where P and Q are polynomials with no common factors.

Therefore the functions we are most interested in studying (that is, differentiable
functions from the Riemann sphere to itself) are rational functions.

Definition 5.4. Given a rational function f(z) = ggg, we define the degree of f

to be the maximum of the degrees of P and Q.

Furthermore, for a rational function f(z) = ggg, (00) = lim, 00 % which

is an easy limit to evaluate using pre-calculus and calculus rules (it is zero if the
degree of P is less than the degree of @, etc.).
Finally for a rational function f, we can set f’(c0) = lim._,o f'(2). (This makes

sense because z approaching 0 is equivalent to 1/z approaching cc.) It turns out
f(2)

-

that for a rational function f, f'(co) is always equal to lim,
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