I. Linear and absolute value functions

Constant functions: f(x) = c

Graph: horizontal line at height <i>c</i>	
Symmetry: even	
	Graph: horizontal line at height <i>c</i> Symmetry: even

Linear functions: f(x) = mx + b (where $m \neq 0$)

Absolute value function: f(x) = |x|

II. Polynomials

Quadratic functions: $f(x) = ax^2 + bx + c$ (where $a \neq 0$)

Even power functions: $f(x) = x^n$ (where $n \ge 2$ is an even whole number)

Odd power functions: $f(x) = x^n$ (where $n \ge 3$ is an odd whole number)

General polynomials: $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ (with $a_n \neq 0$)

Degree: *n* (the highest power of *x* that occurs) **Leading coefficient (LC):** a_n (the number on the highest power of *x*) **Graph:** continuous, smooth curve with tails pointing upward/downward **Domain:** all real numbers **Tail behavior:** • if degree is even and LC is positive, both tails point up • if degree is even and LC is negative, both tails point down • if degree is odd and LC is positive, right tail points up and left tail points down • if degree is odd and LC is negative, right tail points down and left tail points up **Asymptotes:** none **x-ints:** set f(x) = 0 and factor; when graphing, take multiplicity into account at each *x*-int

III. Rational functions

Reciprocal function: $f(x) = \frac{1}{x} = x^{-1}$

Rational functions: $f(x) = \frac{\text{polynomial}}{\text{polynomial}}$

IV. Exponential and logarithmic functions

Exponential functions: $f(x) = b^x$ (especially $f(x) = e^x$)

Logarithmic functions: $f(x) = \log_b x$ (especially $f(x) = \ln x$)

V. Trigonometric and inverse trigonometric functions

Sine function: $f(x) = \sin x$

Cosine function: $f(x) = \cos x$

Graph: wave passing through (0, 1)**Domain:** all real numbers **Range:** [-1, 1]**Asymptotes:** none **Period:** 2π **Symmetry:** even **one-to-one?** No

Tangent function: $f(x) = \tan x$

Graph: repeated shapes that look like the graph of x^3 , one of which passes through (0,0)**Domain:** all real numbers except odd multiples of $\frac{\pi}{2}$ **Range:** all real numbers **VA:** all odd multiples of $\frac{\pi}{2}$ **HA:** none **Period:** π **Symmetry:** odd **one-to-one?** No **Partial inverse:** $\arctan x$

Cotangent function: $f(x) = \cot x$

Secant function: $f(x) = \sec x$

Cosecant function: $f(x) = \csc x$

Arcsine (a.k.a. inverse sine function): $f(x) = \arcsin x$ (a.k.a. $f(x) = \sin^{-1} x$)

Arctangent (a.k.a. inverse tangent function): $f(x) = \arctan x$ (a.k.a. $f(x) = \tan^{-1} x$)

VI. Root functions

Even Root functions: $f(x) = \sqrt[n]{x} = x^{1/n}$ (where $n \ge 2$ is an even number)

Odd Root functions: $f(x) = \sqrt[n]{x} = x^{1/n}$ (where $n \ge 3$ is an odd number)

