Here are the 19 theorems of Math 25:

- **Domination Law (aka Monotonicity Law)** If f and g are integrable functions on [a, b] such that $f(x) \leq g(x)$ for all $x \in [a, b]$, then $\int_a^b f(x) dx \leq \int_a^b g(x) dx$.
- **Positivity Law** If f is a nonnegative, integrable function on [a, b], then $\int_a^b f(x) dx \ge 0$. Also, if f(x) is a nonnegative, continuous function on [a, b] and $\int_a^b f(x) dx = 0$, then f(x) = 0 for all $x \in [a, b]$.

Max-Min Inequality If f(x) is an integrable function on [a, b], then

$$(\text{min value of } f(x) \text{ on } [a,b]) \cdot (b-a) \leq \int_{a}^{b} f(x) \, dx \leq (\text{max value of } f(x) \text{ on } [a,b]) \cdot (b-a).$$

Triangle Inequality (for Integrals) Let $f : [a, b] \to \mathbb{R}$ be integrable. Then

$$\left| \int_{a}^{b} f(x) \, dx \right| \leq \int_{a}^{b} \left| f(x) \right| \, dx.$$

Mean Value Theorem for Integrals Let $f : \mathbb{R} \to \mathbb{R}$ be continuous on [a, b]. Then there exists a number $c \in (a, b)$ such that

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx.$$

- Fundamental Theorem of Calculus (one part) Let $f : [a,b] \rightarrow \mathbb{R}$ be continuous and define F : $[a,b] \to \mathbb{R}$ by $F(x) = \int_a^x f(t) dt$. Then F is differentiable (hence continuous) on [a,b] and F'(x) = f(x).
- **Fundamental Theorem of Calculus (other part)** Let $f : [a, b] \to \mathbb{R}$ be continuous and let F be any antiderivative of f on [a, b]. Then

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a).$$

- **Comparison Test (for Improper Integrals)** Let f and g be two continuous functions on $[a, \infty)$. If $f(x) \leq g(x)$ for all $x \in [a, \infty)$, then:

 - 1. If $\int_{a}^{\infty} f(x) dx$ diverges, so does $\int_{a}^{\infty} g(x) dx$. 2. If $\int_{a}^{\infty} g(x) dx$ converges, so does $\int_{a}^{\infty} f(x) dx$.
- n^{th} -Term Test Let $\sum a_n$ be an infinite series. If $\lim_{n\to\infty} a_n \neq 0$ (or if this limit fails to exist), then the series diverges.
- **Integral Test** Let $f : \mathbb{R} \to \mathbb{R}$ be a nonnegative, decreasing function such that $f(n) = a_n$ for all $n = 1, 2, 3, \dots$ Then $\int_1^{\infty} f(x) dx$ and $\sum_{n=1}^{\infty} a_n$ either both converge or both diverge.
- *p*-series Test Let *p* be a constant. Then the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if $p \ge 1$.

Comparison Test (for Series) Suppose $0 \le a_n \le b_n$ for all n. Then:

- 1. If $\sum_{n=1}^{\infty} a_n$ diverges, so does $\sum_{n=1}^{\infty} b_n$. 2. If $\sum_{n=1}^{\infty} b_n$ converges, so does $\sum_{n=1}^{\infty} a_n$.
- Alternating Series Test Let $\sum_{n=1}^{\infty} a_n$ be an alternating series such that $|a_n| \ge |a_{n+1}|$ for all n, and $\lim_{n\to\infty} a_n = 0$. Then $\sum_{n=1}^{\infty} a_n$ converges.

Triangle Inequality (for Series) If an infinite series $\sum a_n$ converges absolutely, then it also converges.

Rearrangement Theorem The terms of an absolutely convergent series can be regrouped or reordered without affecting the sum of the series.

Ratio Test Let $\sum_{n=1}^{\infty} a_n$ be an infinite series and define $\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$. Then:

- 1. If $\rho > 1$, then $\sum a_n$ diverges. 2. If $\rho < 1$, then $\sum a_n$ converges absolutely.
- 3. If $\rho = 1$ or if the limit which defines ρ fails to exist, then the test is inconclusive.

Cauchy-Hadamard Theorem Let $\sum_{n=0}^{\infty} a_n (x-a)^n$ be a power series. Then there is a number $R \ge 0$ $(R = \infty \text{ is allowed})$ such that:

- 1. If R = 0, then the power series converges when x = a and diverges otherwise.
- 2. If $R = \infty$, then the power series converges absolutely for all x.
- 3. If $R \in (0,\infty)$ then the series converges absolutely for $x \in (a-R, a+R)$; the series diverges for $x \in (-\infty, a - R) \cup (a + R, \infty)$; the behavior of the series when x = a - R or x = a + Ris unknown.
- **Uniqueness of Power Series** Suppose f(x) is represented by two power series, each with positive radius of convergence, and each centered at the same point a, i.e.

$$f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n = \sum_{n=0}^{\infty} b_n (x-a)^n.$$

Then all the coefficients of these power series must match, i.e. $a_n = b_n$ for all n, because $a_n = b_n = \frac{f^n(a)}{n!}.$

Taylor's Theorem Let f(x) be an infinitely differentiable function; let $P_n(x)$ be its n^{th} Taylor polynomial centered at a and let $R_n(x) = f(x) - P_n(x)$ be the n^{th} remainder. Then for each x, there is some number z between a and x such that

$$R_n(x) = \frac{f^{n+1}(z)}{(n+1)!}(x-a)^{n+1}$$

Here is a list of the terms which were defined in Math 25:

- Terminology related to integrals Riemann sum, definite integral, average value, antiderivative, indefinite integral
- Terminology related to infinite series partial sum, converges, diverges, converges absolutely, converges conditionally, geometric series, p-series
- **Terminology related to power series** power series, radius of convergence, Taylor series, n^{th} Taylor polynomial, n^{th} remainder