D. MCCLENDON

	EXPRESSION	MATHEMATICA SYNTAX
DERIVATIVES AND GRADIENTS	Partial derivatives of $f : \mathbb{R}^n \to \mathbb{R}$ $f_x = \frac{\partial f}{\partial x}$	D[f[x,y], x] or D[f[x,y,z], x], etc.
	$f_y = \frac{\partial f}{\partial y}$	D[f[x,y], y] or D[f[x,y,z], y], etc.
	Partial derivatives of $\overline{f}: \mathbb{R}^n \to \mathbb{R}^{\overline{m}}$ $\frac{\partial f_1}{\partial x}$	D[f[x,y][[1]],x] or D[f[x,y,z][[1]], x], etc.
	$rac{\partial f_2}{\partial x}$	D[f[x,y][[2]],x] or D[f[x,y,z][[2]], x], etc. (alternatively, compute total derivative using the command given below, and read off the answer)
	Higher-order partial derivatives of $f : \mathbb{R}^n \to \mathbb{R}$	<u> </u>
	$f_{xx} = \frac{\partial^2 f}{\partial x^2}$	D[f[x,y], x,x] or D[f[x,y], {x,2}]
	$f_{yyyyyy} = \frac{\partial^5 f}{\partial y^5}$ $f_{xy} = \frac{\partial^2 f}{\partial x \partial y}$	$D[f[x,y,z], \{y,5\}]$
	$f_{xy} = \frac{\partial^2 f}{\partial x \partial y}$	D[f[x,y], x,y]
	$\frac{\partial^{10}f}{\partial x^3 \partial y^2 \partial z^5}$	$D[f[x,y,z], \{x,3\},\{y,2\},\{z,5\}]$
	Total derivative of $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^{\bar{m}}$	D[f[x,y], x,y]
		or D[f[x,y,z], {{x,y,z}}], etc. (to get the answer as matrix, click MatrixForm)
	Total derivative of $\mathbf{f}: \mathbb{R} \to \mathbb{R}^{\overline{m}}$	f'[x] or f'[t], etc.
	Iotal derivative of $\Gamma:\mathbb{R}\to\mathbb{R}$	(f" [x] and f" [x]do the obvious things)
	Gradient ∇f	Grad[f[x,y], {x,y}]
		or Grad[f[x,y,z], {x,y,z}], etc.
	Directional derivative $D_{\mathbf{u}} \overline{f}(\mathbf{x})$	(or use total derivative command given above) Grad[f[x,y], {x,y}].Normalize[u]
	Directional derivative $D_{uj}(x)$	or Grad[f[x,y,z], {x,y,z}].Normalize[u]
	$\overline{\text{Hessian}}\overline{H}\overline{f}$	$D[f[x,y], \{\{x,y\},2\}]$
	$\overline{J}acobian \ \overline{J}(\overline{f}) = \overline{\det} \ \overline{D}\overline{f}$	or D[f[x,y,z], { $\{x,y,z\}$ },2], etc.
	$Jacobian J(\mathbf{I}) = \det D\mathbf{I}$	$\begin{bmatrix} \overline{Det}[D[f[x,y], \{\{x,y\}\}]] \\ or Det[D[f[x,y,z], \{\{x,y,z\}\}]], etc. \end{bmatrix}$
		$\bigcup \bigcup $

To substitute numerical values for x, y and z, do one of two things:

- 1. Define the derivative as a function of *x*, *y* and *z*, then ask *Mathematica* to plug in the values of *x*, *y* and *z* to your newly-defined function:
 - **Example:** Suppose you wanted to compute $f_{xy}(3, 2, -5)$. You could execute these commands, one at a time:

$$\begin{split} h[x_{-},y_{-},z_{-}] &= D[f[x,y,z],\,x,\,y] \\ h[3,2,-5] \end{split}$$

2. Follow any of the commands above with some syntax that causes *Mathematica* to substitute in numbers for the variables:

Example: Suppose you wanted to compute $f_{xy}(3, 2, -5)$. You could execute this single command: D[f[x,y,z], x, y] /.x->3 /.y->2 /.z->-5

In general, you follow the command with a series of */.var->number* commands; this plugs in *number* to variable *var* in the preceding expression.