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1 Complex numbers

Definition 1.1 A field F is a set of at least two objects together with two binary operations,
+ and ·, such that (1)-(5) below hold:

1. The field is closed under both operations, i.e. whenever x and y are in F , x+ y and
xy are in F.

2. Both operations are associative and commutative, i.e. for every x, y, z ∈ F , x + y =
y + x; xy = yx; (x+ y) + z = x+ (y + z); and x(yz) = (xy)z.

3. There exist identity elements for both operations, i.e. there is a 0 ∈ F such that
x+ 0 = x for all x ∈ F and there is a 1 ∈ F such that 1x = x for all x ∈ F .

4. Every element x ∈ F has an additive inverse −x ∈ F such that x + (−x) = 0 and
every nonzero element x ∈ F has a reciprocal x−1 ∈ F such that x · x−1 = 1.

5. The distributive property holds: x(y + z) = xy + xz for all x, y, z ∈ F .

The real numbers form a field under the usual operations; the rational numbers form a
field under the usual operations. There are other fields as well, including finite fields. The
integers do not form a field because nonzero elements do not have reciprocals in general.

Definition 1.2 The set of complex numbers is defined to be C = {a+ ib : a, b ∈ R}. Given
a complex number z = a + ib, the real part of z is <(z) = a and the imaginary part of z
is =(z) = b. The complex conjugate of z = a + ib is z = a − ib. The absolute value or
modulus of a complex number z = a+ ib is |z| =

√
a2 + b2.

We define addition and subtraction in C by adding and subtracting like terms; and
multiplication is defined by setting i2 = −1. These operations make C into a field; in
particular the reciprocal of a nonzero complex number z = a + ib is z−1 = a

a2+b2
+ i −b

a2+b2
.

We define the distance between complex numbers z and w to be |z−w|. A complex number
x = a+ ib is said to be real if b = 0.

Proposition 1.3 Let z, w ∈ C. Then:
1. <(z) = z+z

2 and =(z) = z−z
2i ;

2. z + w = z + w and zw = z w;
3. <(z) ≤ |<(z)| ≤ |z| and =(z) ≤ |=(z)| ≤ |z|;
4. |zw| = |z| · |w|;
5. |z + w| ≤ |z|+ |w|;
6. z · z = |z|2, so if z 6= 0, then z−1 = z

|z|2 and w
z = wz̄

|z|2 ;

7. z = z if and only if z is real.

Definition 1.4 The polar representation of a complex number z = a+ib is z = reiθ, where
(r, θ) are the polar coordinates of the point (a, b). θ ∈ R is called the argument of z and is
denoted arg(z) (the argument of a complex number is not unique).

Suppose f : R→ R is a function which can be written as a power series which converges
for all real numbers. Then the same power series converges for all complex numbers. This
allows us to define trigonometric functions:

Definition 1.5 Given z ∈ C,
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• ez =
∑∞

n=0
zn

n! .

• cos z =
∑∞

n=0
(−1)nz2n

(2n)! .

• sin z =
∑∞

n=0
(−1)nz2n+1

(2n+1)! .

Theorem 1.6 (Euler’s Formula) For all θ ∈ R, eiθ = cos θ + i sin θ.

By Euler’s Formula, we see that if z = a+ ib = reiθ, then a = r cos θ, b = r sin θ, r = |z|
and θ = tan−1(b/a).

Corollary 1.7 Let z ∈ C. Then |z| = 1 if and only if z = eit for some t ∈ R. For all
z ∈ C, cos z = 1

2(eiz + e−iz). For all z ∈ C, sin z = 1
2i(e

iz − e−iz).

Theorem 1.8 Let z, w ∈ C have polar representations z = reiθ and w = seiφ. Then
1. zw = rsei(θ+φ).
2. If w 6= 0, then z

w = r
se
i(θ−φ).

Theorem 1.9 (DeMoivre’s Theorem) For all n ∈ N and all θ ∈ R, (cos θ + i sin θ)n =
cos(nθ) + i sin(nθ).

2 Vector spaces

A vector space is the most abstract setting in which “linear” objects can be defined.

Definition 2.1 Given a field F , a vector space V over F is a set of objects called vectors
together with two operations (under which V is closed), namely
Addition + : V × V → V , and
Scalar Multiplication · : F × V → V
such that:

1. Addition is associative and commutative, i.e. v + (w + x) = (v + w) + x and v + w =
w + v for all v,w,x ∈ V .

2. Scalar multiplication is associative, i.e. (rs)v = r(sv) for all r, s ∈ F and all v ∈ V .
3. There exists an identity element for addition, i.e. ∃0 ∈ V such that v + 0 = v for all

v ∈ V .
4. Every vector v ∈ V has an additive inverse −v ∈ V such that v + (−v) = 0.
5. Distributive properties hold, i.e. (r + s)v = rv + sv and r(v + w) = rv + rw for all

r, s ∈ F and all v,w ∈ V .
6. If 1 is the multiplicative identity element of F , then 1v = v for all v ∈ V .

The field F is called the underlying field of the vector space.
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Many other basic arithmetic properties of vector spaces can be derived from these laws
(for example, the uniqueness of the additive identity and additive inverses, the Cancellation
Law, the fact that 0v = 0 for any v ∈ V , etc.)

Given any field F , Fn, the set of ordered n−tuples of elements of F , is a vector space
under the usual (component-wise) addition and scalar multiplication. Every field is a vector
space over itself (with the usual addition and multiplication). The set {0} is a vector space
over any field, called the zero space. The set of infinite sequences of elements of a field forms
a vector space over that field. The set of functions from any set X to a field F forms a
vector space over that field. The complex numbers are a vector space over the real numbers.
C is also a vector space over itself (but that is a different vector space than C over R since
the scalars differ).

2.1 Subspaces

Definition 2.2 Given vector space V over field F , a subset W ⊆ V is a subspace of V if:
1. W is nonempty.
2. W is closed under addition, i.e. given w1 ∈W and w2 ∈W , it must be that w1+w2 ∈

W .
3. W is closed under scalar multiplication, i.e. for any w ∈W and any r ∈ F , rw ∈W .

Equivalently, this means W is itself a vector space under the operations it inherits from V .

Proposition 2.3 Let V be a vector space over field F . If W ⊆ V is a subspace of V , then
0 ∈W .

The zero subspace {0} is a subspace of every vector space, and every vector space is a
subspace of itself. The intersection of any collection of subspaces (of the same vector space)
is a subspace; however, the union of two subspaces need not be a subspace.

Definition 2.4 Let A,B ⊆ V where V is a vector space over F . Define A + B, the sum
of A and B, to be the subset of V defined by

A+B = {a + b : a ∈ A,b ∈ B}.

The sum of any two (or any finite number of) subspaces is itself a subspace.

Definition 2.5 Given a vector space V over a field F , let {v1, ...,vn} be any finite list of
vectors. The span of these vectors is the set of linear combinations of the vj, i.e.

Span(v1, ...,vn) =


n∑
j=1

cjvj : cj ∈ F

 .

Given a vector space (or a subspace of another vector space) W , a set of vectors {v1, ...,vn}
is said to span W (or is a spanning set for W ) if W = Span(v1, ...,vn).

Equivalently, the span of a set of vectors is the smallest vector space containing all the given
vectors.



Honors Linear Algebra Course Summary Page 6

Proposition 2.6 Given any vector space V over F , the span of any finite collection of
vectors is a subspace of V .

Proposition 2.7 Given a vector space V over a field F , let {v1, ...,vn} be any finite list
of vectors. Suppose w =

∑n
j=1 cjvj for scalars c1, ..., cn. Then

Span(v1, ...,vn) = Span(v1, ...,vn−1,w).

Proposition 2.8 Let V be a vector space and suppose W1 = Span(v1, ...,vm) and W2 =
Span(w1, ...,wn). Then Span(v1, ...,vm,w1, ...wn) is the subspace W1 +W2.

2.2 Affine subspaces

Definition 2.9 Given a vector space V over F , an affine subspace A is a subset of V of
the form

A = p +W = {p + w : w ∈W}

where W is a subspace of V and p ∈ V .

We remark that all subspaces are affine subspaces, but not all affine subspaces are
subspaces. In particular “affine” is not an adjective that describes “subspaces”.

Theorem 2.10 A subset A of a vector space V (over R) is an affine subspace if and only
if for every v,w ∈ A and every t ∈ R, (tv + (1− t)w) is also in A.

The previous result implies that a subset A of a vector space is an affine subspace if and
only if for any two vectors in A, the line containing those two vectors lies entirely within A.

Proposition 2.11 If A is an affine subspace of a vector space V , then for any v ∈ A,
A− v is a subspace of V (and is the same subspace no matter what the choice of v is).

Proposition 2.12 An affine subspace A of a vector space V is a subspace if and only if it
contains 0.

Proposition 2.13 If two affine subspaces have nonempty intersection, then their intersec-
tion is an affine subspace.

Definition 2.14 Given a vector space V over F , a line in V is an affine subspace A =
p +W where W = Span(v) for some nonzero v ∈ V . Equivalently, a line in V is any set
of the form

l = {p + tv : t ∈ F}

for given vectors p and v. The vector v is called a direction vector for the line.

Neither the direction vector nor the vector p are unique for a particular line. Given two
distinct vectors v and w, the line containing those two vectors l can be described as the set
of vectors x satisfying

x = tv + (1− t)w for some t ∈ F.
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Definition 2.15 Given a vector space V over F , a plane in V is an affine subspace A =
p+W where W = Span(v,w) for some nonparallel vectors v,w ∈ V . Equivalently, a plane
in V is any set of the form

P = {p + sv + tw : s, t ∈ F}

for given vectors p, v and w.

Every line in Fn can be specified by writing parametric equations for the line. Every
plane in Fn can be specified by writing parametric equations for the plane.

Theorem 2.16 A subset of R3 is a plane if and only if it is a set of the form

{(x, y, z) : ax+ by + cz = d}

for some real numbers a, b, c, d.

3 Linear independence, basis and dimension

3.1 Linear independence

Definition 3.1 Given a vector space V over a field F , two vectors v and w in V are called
parallel if there is a scalar r ∈ F such that v = rw or w = rv.

Definition 3.2 Given a vector space V over R or C, we say two vectors v and w in V are
in the same direction if there is a scalar r ≥ 0 (in particular, r must be real, even if F = C)
such that v = rw or w = rv.

Definition 3.3 Given a vector space V over a field F , a set of vectors {v1, ...,vn} is called
linearly dependent if one of the following equivalent conditions holds:

1. There is a nontrivial linear dependence relation among the vectors, i.e.

c1v1 + ...+ cnvn = 0

for scalars c1, ..., cn ∈ F with at least one cj 6= 0.

2. There is a k ≤ n such that vk =
∑k−1

j=1 djvj for scalars d1, ..., dk−1 ∈ F (we describe
this by saying that vk depends on v1, ...,vk−1).

3. There is a k ≤ n such that vk ∈ Span(v1, ...,vk−1).

Given a set of vectors {v1, ...,vn}, if any of those vectors is 0, then the list is linearly
dependent. A set of two vectors is linearly dependent if and only if the two vectors are
parallel. More generally, if any two of the vectors in the list are parallel, then the list is
linearly dependent. Given any list of linearly dependent vectors, if you add more vectors to
the list, the list remains linearly dependent.
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Theorem 3.4 Let {v1, ...,vn} be a set of linearly dependent vectors with vk =
∑k−1

j=1 djvj.
Then

Span(v1, ...,vn) = Span(v1, ...,vk−1,vk+1, ...,vn),

i.e. vectors which are dependent on the previous vectors in the list can be deleted from the
list without changing the span of the list.

Definition 3.5 Given a vector space V over a field F , a set of vectors {v1, ...,vn} is called
linearly independent if they are not linearly dependent, i.e. whenever

c1v1 + ...+ cnvn = 0

for scalars c1, ..., cn ∈ F , it must be that cj = 0 for all j.

Equivalently, this means that there is no k ≤ n such that vk ∈ Span(v1, ...,vk−1). Roughly
speaking, a list of linearly independent vectors does not “repeat” the same direction(s)
unnecessarily. Any one nonzero vector forms a linearly independent set by itself; any two
nonparallel vectors form a linearly independent set. Given any list of linearly indepen-
dent vectors, if you remove any number of vectors from the list, the list remains linearly
independent.

Proposition 3.6 Suppose {v1, ...,vn} be a set of linearly dependent vectors. Let c1, ..., cn ∈
F with cn 6= 0. Then if we let w =

∑n
j=1 cjvj, the set {v1, ...,vn−1,w} is linearly indepen-

dent.

3.2 Basis and dimension

Definition 3.7 Given a vector space V (or if V is a subspace of some other vector space),
a set of vectors B = {v1, ...,vn} is called a basis of V if

1. {v1, ...,vn} is a linearly independent set, and
2. {v1, ...,vn} spans V .

The most often used basis of Fn is the standard basis {e1, ..., en}, where ek = (0, 0, ..., 0, 1, 0, ..., 0) ∈
Fn has a 1 in the kth position and zeros elsewhere.

Theorem 3.8 (Unique Representation Theorem) Given a basis B = {v1, ...,vn}, ev-
ery v ∈ V can be written

v =

n∑
j=1

cjvj

where cj ∈ F are uniquely chosen.

We remark that if the set {v1, ...,vn} is assumed only to be linearly independent (but
not necessarily a spanning set), then every vector can be written as a linear combination
of the vj in at most one way; if the set {v1, ...,vn} is assumed to be a spanning set (but
possibly linearly dependent), then every vector can be written as a linear combination of
the vj in at least one way.
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Theorem 3.9 (Exchange Lemma) Suppose V is a vector space such that a finite list of
vectors spans V . Then the length of any linearly independent list of vectors is less than or
equal to the length of any spanning set of vectors.

Theorem 3.10 (Dimension Theorem) If B = {v1, ...,vn} is a basis of V , then any
other basis of B must also consist of n vectors.

Definition 3.11 If V is spanned by a finite set of vectors, we say V is finite dimensional
and write dimV < ∞. In this case, the dimension of V is the number of elements in any
basis of V . (We define dim{0} = 0 even though {0} does not have a basis.) If V is not
spanned by any finite set of vectors, we say V is infinite dimensional and write dimV =∞.

Definition 3.12 Let A be an affine subspace of V . We define the dimension of A to be the
dimension of the subspace A− v, where v ∈ A.

Using this, we can characterize points, lines and planes: a point is an affine subspace
of dimension zero, a line is an affine subspace of dimension one, and a plane is an affine
subspace of dimension two.

Theorem 3.13 (Spanning Set Theorem) If V = Span(v1, ...,vn), then dimV ≤ n
(since some subset of {v1, ...,vn} forms a basis of V ).

Theorem 3.14 (Linearly Independent Set Theorem) If {v1, ...,vn} is a linearly in-
dependent set of vectors in V , then n ≤ dimV .

Theorem 3.15 (Basis Extension Theorem) If dimV < ∞ and {v1, ...,vn} is a lin-
early independent set of vectors in V , then there is a basis of V of the form

{v1, ...,vn,w1, ...,wm}.

Theorem 3.16 (Basis Theorem) Suppose n = dimV <∞. Then:
1. V has a basis (so long as V 6= {0}).
2. Any set of n linearly independent vectors in V form a basis of V .
3. Any set of n vectors which span V form a basis of V .

Theorem 3.17 If W is a subspace of V , then dimW ≤ dimV . If W is a subspace of V
and dimW = dimV <∞, then W = V .

Subspaces of Fn can therefore be classified by their dimension. In particular:

Proposition 3.18 The only subspaces of R2 are {0} (dimension zero), lines passing through
the origin (dimension one), and all of R2 (dimension two).

Corollary 3.19 The only affine subspaces of R2 are points, lines, and all of R2.

Proposition 3.20 The only subspaces of R3 are {0} (dimension zero), lines passing through
the origin (dimension one), planes passing through the origin (dimension two), and all of
R3 (dimension three).
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Corollary 3.21 The only affine subspaces of R3 are points, lines, planes, and all of R3.

Theorem 3.22 Let W1 and W2 be finite-dimensional subspaces of a vector space V . Then
dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1

⋂
W2).

4 Matrix theory

4.1 Matrix vocabulary

Definition 4.1 Given a field F , a matrix A with entries in F is an array of numbers ajk
where 1 ≤ j ≤ m and 1 ≤ k ≤ n (the entry ajk is in the jth row and the kth column of A).
We say that the size or order of A is m × n where m is the number of rows and n is the
number of columns of A. The set of m× n matrices with entries in F is denoted Mmn(F ).

We think of a vector x = (x1, ..., xn) ∈ Fn as the n× 1 matrix x =

 x1
...
xn

.

If a matrix has the same number of rows as columns, the matrix is called square. The
set of square n × n matrices with entries in F is denoted Mn(F ). The diagonal entries of
a square matrix A are the numbers a11, a22, ..., ann. A matrix is called diagonal if all its
non-diagonal entries are zero. The n × n identity matrix, denoted I or In, is the square
matrix with diagonal entries equal to 1 and non-diagonal entries equal to 0. The trace of a
matrix A, denoted tr(A), is the sum of the diagonal entries in A.

We define addition and scalar multiplication on Mmn(F ) entry-wise; these operations
make Mmn(F ) into a vector space over F of dimension mn. A commonly used basis of
Mmn(F ) is {∆11,∆12, ...,∆mn} where ∆jk has its j, k−entry equal to 1 and all its other
entries equal to 0. The additive identity for this vector space is called the zero matrix (all
the entries of this matrix are zero).

Definition 4.2 Given A ∈Mmn(F ), the transpose of A, denoted AT , is the n×m matrix
defined by (aT )jk = akj. If F = R or C, the conjugate of A ∈Mmn(F ) is the m×n matrix

A defined by (a)jk = (ajk), and the Hermitian of A ∈ Mmn(F ) is the n × m matrix AH

defined by AH = A
T

= AT .

Definition 4.3 Let F be a field. Given A ∈ Mmn(F ) and B ∈ Mpq(F ), if n = p then the
product AB ∈Mmq(F ) is defined by

(ab)jk =

n∑
k=1

aikbkj .
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In general, AB 6= BA even if both products are defined and the same size. If it so
happens that AB = BA, we say A and B commute.

Definition 4.4 Let F be a field. A square matrix A ∈ Mn(F ) is called invertible if there
is another matrix A−1 ∈Mn(F ) such that AA−1 = I and A−1A = I.

Theorem 4.5 A 2 × 2 matrix A =

(
a b
c d

)
is invertible if and only if ad − bc 6= 0, in

which case A−1 = 1
ad−bc

(
d −b
−c a

)
.

Proposition 4.6 (Properties of Matrix Operations) Let all matrices in this proposi-
tion have entries in the same field F . Then, so long as everything is defined, the following
statements always hold:

1. A(BC) = (AB)C;
2. A(B + C) = AB +AC;
3. r(AB) = (rA)B = A(rB) for any scalar r ∈ F ;
4. IA = A and AI = A;
5. (AT )T = A; (AH)H = A; (AT )H = (AH)T = A;
6. tr(AT ) = tr(A); tr(A) = tr(AH) = tr(A);
7. tr(A+B) = tr(A) + tr(B); tr(AB) = tr(BA);
8. (rA)T = r(AT ) and (rA)H = r(AH) for any r ∈ F ;
9. (A1A2 · · ·An)T = ATnA

T
n−1 · · ·AT1 ;

10. (A1A2 · · ·An)H = AHn A
H
n−1 · · ·AH1

11. A1A2 · · ·An = A1 A2 · · · An
12. (A1 + · · ·+An)T = AT1 + · · ·+ATn ;
13. A1 +A2 + · · ·+An = A1 +A2 + · · ·+An
14. (A1 + · · ·+An)H = AH1 + · · ·+AHn ;
15. If A is invertible, then AB = AC implies B = C (this does not hold in general if A

is not invertible);
16. AB = 0 does not generally imply A = 0 or B = 0;
17. An invertible matrix has only one inverse;
18. If A is invertible, then A−1 is invertible and (A−1)−1 = A;
19. If A1, ..., An are invertible, then A1A2 · · ·An is invertible and (A1 · · ·An)−1 = A−1

n A−1
n−1 · · ·A

−1
1 ;

20. If A is invertible, then AT , A and AH are invertible; in this case (AT )−1 = (A−1)T ,
(A)−1 = A−1 and (AH)−1 = (A−1)H .

4.2 Special matrices

4.2.1 Triangular and diagonal matrices

Definition 4.7 Given a matrix A, an entry ajk of A is said to be below the diagonal if
j > k, and is said to be above the diagonal if j < k. A matrix is called upper triangular
if all its entries below the diagonal are zero; a matrix is called lower triangular if all its
entries above the diagonal are zero. A matrix is called triangular if it is lower triangular
or upper triangular.
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Note that a matrix is diagonal if and only if it is both upper triangular and lower
triangular.

Theorem 4.8 The set of diagonal n× n matrices is a subspace of Mn(F ) of dimension n.
The set of upper triangular n × n matrices and the set of lower triangular n × n matrices
are both subspaces of Mn(F ), each of dimension 1

2(n)(n+ 1).

Proposition 4.9 Any two diagonal matrices of the same size commute.

4.2.2 Symmetric, skew-symmetric and Hermitian matrices

Definition 4.10 A matrix A ∈ Mn(F ) is called symmetric if A = AT . A matrix A ∈
Mn(F ) is called skew-symmetric if AT = −A. A matrix A ∈Mn(C) is called Hermitian if
A = AH .

Theorem 4.11 The set Symn(F ) of symmetric n × n matrices is a subspace of Mn(F )

of dimension n2+n
2 . The set Skewn(F ) of skew-symmetric n × n matrices is a subspace of

Mn(F ) of dimension n2−n
2 .

The set of Hermitian matrices do not form a subspace of Mn(C) (taken as a vector space
over C) because the diagonal entries of a Hermitian matrix must be real, but they do form
a subspace of Mn(C) (taken as a vector space over R).

Theorem 4.12 Given any A ∈ Mmn(F ), both ATA and AAT are symmetric matrices.
Given any square matrix A, A + AT is symmetric and A − AT is skew-symmetric. If A
is skew-symmetric, then A2 is symmetric. The only matrix which is both symmetric and
skew-symmetric is the zero matrix.

Theorem 4.13 Every n×n matrix A can be written (uniquely) as the sum of a symmetric

matrix and a skew-symmetric matrix (this can be done by writing A = A+AT

2 + A−AT

2 ; the
first matrix in the sum is symmetric and the second matrix is skew-symmetric).

Theorem 4.14 Given any A ∈ Mmn(C), AHA and AAH are both Hermitian matrices.
Given any square matrix A, A+AH is Hermitian and A−AH is skew-Hermitian (a matrix
B is skew-Hermitian if BH = −B).

4.2.3 Positive definite matrices

Definition 4.15 A square matrix A ∈ Mn(C) is called positive if vHAv ≥ 0 for every
v ∈ Cn. A square matrix A ∈ Mn(C) is called positive definite if it is positive and if the
only vector v ∈ Cn satisfying vHAv = 0 is the zero vector.

Usually, one uses the adjectives “postive” and “positive definite” only to describe sym-
metric or Hermitian matrices. Indeed, the main applications of positive definite matrices
involve only those which are symmetric or Hermitian.
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4.2.4 Orthogonal and unitary matrices

Definition 4.16 A matrix Q ∈ Mn(R) is called orthogonal if Q is invertible and Q−1 =
QT . The set of all n× n orthogonal matrices is called On.

Proposition 4.17 If Q is orthogonal, then so are QT and Q−1. The product of any number
of orthogonal matrices is an orthogonal matrix.

Definition 4.18 A matrix U ∈Mn(C) is called unitary if U is invertible and U−1 = UH .
The set of all n× n unitary matrices is called Un.

Proposition 4.19 If U is unitary, then so are UT , UH , U and U−1. The product of any
number of unitary matrices is a unitary matrix.

4.3 Fundamental subspaces of a matrix

Definition 4.20 Let A ∈Mmn(F ). Define the following subspaces associated to A:
1. The column space of A, denoted C(A), is the span of the columns of A. This is a

subspace of Fm.
2. The row space of A, denoted R(A), is the span of the rows of A; this is a subspace of

Fn.
3. The null space of A, denoted N(A), is the set of vectors x such that Ax = 0. This is

a subspace of Fn.
4. The left nullspace of A, denoted N(AH), is the set of vectors y such that AHy = 0.

This is a subspace of Fm.

Theorem 4.21 A vector z ∈ Fm is in the column space of A if and only if z = Ax for
some x ∈ Fn.

5 Inner products and geometry

5.1 Inner products

Definition 5.1 Let F = R or C, and let V be a vector space over F . An inner product on
V is a function <,>: V × V → F satisfying:
Conjugate symmetry < v,w >= < w,v > for all v,w ∈ V .
Linearity in first coordinate < rv,w >= r < v,w > and < v1 + v2,w >=< v1,w >

+ < v2,w > for all v,v1,v2,w ∈ V and all r ∈ F .
Positive definiteness < v,v >≥ 0 for all v ∈ V , and < v,v >= 0 only when v = 0.
An inner product space is a vector space V together with an inner product <,>.
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Any inner product is also automatically antilinear in the second coordinate, i.e.

< v, rw >= r < v,w > and < v,w1 + w2 >=< v,w1 > + < v,w2 >

for all v,v1,v2,w ∈ V and all r ∈ F . More generally:

Theorem 5.2 Let V be an inner product space. Then for any c1, ..., cm, d1, ..., dn ∈ F and
any v1, ...,vm,w1, ...,wn ∈ V , we have〈

m∑
j=1

cjvj ,
n∑
k=1

dkwk

〉
=

m∑
j=1

n∑
k=1

cjdk < vj ,wk > .

There are two important examples of inner products:

Example 5.3 V = Rn; define for v = (v1, ..., vn) and w = (w1, ..., wn) the dot product of
v and w to be

v ·w =< v,w >= vTw =
n∑
j=1

vjwj .

Euclidean n−dimensional space is the vector space Rn endowed with the dot product.

Example 5.4 V = Cn; define for v = (v1, ..., vn) and w = (w1, ..., wn) the Hermitian inner
product of v and w to be

< v,w >= vTw = wHv =
n∑
j=1

vjwj .

Hermitian n−dimensional space is the vector space Cn endowed with the Hermitian inner
product.

In fact, every inner product on Rn is related to dot product, and every inner product
on Cn is related to Hermitian inner product in the following sense:

Theorem 5.5 (Classification of inner products on Rn) . Let <,> be an inner prod-
uct on Rn. Then there is a symmetric, positive definite matrix A ∈Mn(R) such that

< v,w >= wTAv

for all v,w ∈ Rn. (This matrix is obtained by setting aij =< ej , ei >.) Conversely, given
any symmetric, positive definite matrix A ∈Mn(R), the formula

< v,w >= wTAv

defines an inner product on Rn.
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Theorem 5.6 (Classification of inner products on Cn) . Let <,> be an inner prod-
uct on Cn. Then there is a Hermitian, positive definite matrix A ∈Mn(C) such that

< v,w >= wHAv

for all v,w ∈ Cn. (This matrix is obtained by setting aij =< ej , ei >.) Conversely, given
any Hermitian, positive definite matrix A ∈Mn(C), the formula

< v,w >= wHAv

defines an inner product on Cn.

The standard inner products correspond to choosing A = I in the above two theorems.

Theorem 5.7 (Dual relations) Let F = R or C and let <,> be the standard (dot or
Hermitian) inner product. Then, for any x ∈ Fn, any y ∈ Fm and any A ∈ Mmn(F ), we
have

< Ax,y >=< x, AHy >

(similarly, for any B ∈Mnm(F ), we have < x, By >=< BHx,y >).

5.2 Norms and distances

Definition 5.8 Given an inner product space V , we define the length a.k.a. norm a.k.a.
absolute value a.k.a. magnitude of a vector v (associated to the inner product) to be

||v|| =
√
< v,v >.

The distance between two vectors v and w is dist(v,w) = ||v − w||. A vector is called a
unit vector if it has norm 1.

Proposition 5.9 Let V be an inner product space with associated norm || · ||. Then:
1. ||v|| ≥ 0 for all v ∈ V .
2. ||v|| = 0 only when v = 0.
3. ||kv|| = |r| ||v|| for all k ∈ F .
4. Given any nonzero vector v ∈ V , there is a unit vector in the same direction as v

(namely, 1
||v||v) called a normalized version of v.

Proposition 5.10 Let V be an inner product space with associated distance function dist.
Then for all u, v and w ∈ V :

1. dist(v,w) ≥ 0
2. dist(v,w) = 0 only when v = w
3. dist(v,w) = dist(w,v)
4. dist(u,w) ≤ dist(u,v) + dist(v,w)
5. dist(ru, rv) = |r| dist(u,v)

We see that given any inner product, one obtains a natural notion of length (norm) and
distance on the inner product space. In fact, given any natural notion of distance (one that
satisfies (1) to (5) in the preceding proposition), one can obtain a norm by setting the norm
of a vector equal to its distance from zero. Further still, given a norm, one can show that
there is an inner product that generates the norm by applying the following result:
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Theorem 5.11 (Polarization Identities) Let V be an inner product space with associ-
ated norm || · ||. Then for all v,w ∈ V :

1. <(< v,w >) = 1
4

(
||v + w||2 − ||v −w||2

)
.

2. =(< v,w >) = 1
4

(
||v + iw||2 − ||v − iw||2

)
.

Restated, given a norm || · || on V , the norm is associated to the inner product defined by

< v,w >=
||v + w||2 − ||v −w||2

4
+ i

(
||v + iw||2 − ||v − iw||2

4

)
.

Proposition 5.12 Let A ∈Mn(C) and let <,> be any inner product on Cn. If < Ax,x >=
0 for every x ∈ Cn, then A = 0.

Theorem 5.13 (Parallelogram Law) Let V be an inner product space with associated
norm || · ||. Then for all v,w ∈ V , ||v + w||2 + ||v −w||2 = 2

(
||v||2 + ||w||2

)
.

5.3 Orthogonality

Definition 5.14 Let V be an inner product space. We say two vectors v,w ∈ V are
orthogonal (and write v ⊥ w) if < v,w >= 0.

The zero vector is orthogonal to every vector in a vector space; it is the only vector
orthogonal to every vector in a vector space. The zero vector is the only vector orthogonal
to itself.

Theorem 5.15 (Pythagorean Theorem) Let V be an inner product space and suppose
v ⊥ w. Then ||v + w||2 = ||v||2 + ||w||2.

The converse of the Pythagorean theorem holds if V is a vector space over R, but not
in general if V is a complex inner product space.

5.4 Orthogonal complements and projections

Definition 5.16 Let V be an inner product space. Given a subspace W ⊆ V , define W⊥,
the orthogonal complement of W to be the set of vectors orthogonal to every w ∈W .

If V is an inner product space, then V ⊥ = {0} and {0}⊥ = V .

Theorem 5.17 Let V be an inner product space. For any subspace W ⊆ V , W⊥ is also a
subspace of V .

As a special case of the preceding theorem, we see that if v ⊥ w, then rv ⊥ w for all
r ∈ F and that if v ⊥ w and x ⊥ w, then (v + x) ⊥ w.

Proposition 5.18 Let V be an inner product space and let W be a subspace of V defined
by W = Span(w1, ...,wn). A vector v is in W⊥ if and only if < v,wj >= 0 for all j.
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Theorem 5.19 Let V be a finite-dimensional inner product space and let W be a subspace
of V . Then W

⋂
W⊥ = {0}.

Theorem 5.20 Let V be a finite-dimensional inner product space and let W be a subspace
of V . Then (W⊥)⊥ = W .

If V is infinite-dimensional, we know only that W ⊆ (W⊥)⊥.

Theorem 5.21 Let V be a finite-dimensional inner product space. Given any basis B of
W and any basis B⊥ of W⊥, B ∪ B⊥ is a basis of W .

Theorem 5.22 Let V be a finite-dimensional inner product space and let W be a subspace
of V . Then

dim(V ) = dim(W ) + dim(W⊥).

Theorem 5.23 (Orthogonal Decomposition Theorem (dimension 1)) Let V be an
inner product space and let W = Span(w) for some nonzero w ∈ V . Then every vector v
can be written uniquely as v = vW + v⊥ where vW ||w and v⊥ ⊥ w.

In particular, the vW in the above theorem is the projection of v onto w (see below).

Theorem 5.24 (Orthogonal Decomposition Theorem (general case)) Let V be an
inner product space and let W be a subspace of V with dimW < ∞. Then every vector v
can be written uniquely as v = vW + v⊥ where vW ∈W and v⊥ ∈W⊥.

We call the vector vW in the above theorem the projection of v onto W and the vector
v⊥ the component of v orthogonal to W .

Definition 5.25 Let V be an inner product space and let W ⊆ V be a subspace. Given any
v ∈ V , we let the distance from v to W , denoted by dist(v,W ), be the minimum distance
from v to any vector in W .

Theorem 5.26 Let V be an inner product space and let W be a finite-dimensional subspace.
Then dist(v,W ) = dist(v,vW ) = ||v⊥||.

Definition 5.27 Let a = (a1, a2, a3) and b = (b1, b2, b3) be two vectors in R3, endowed
with the usual inner product. Define the cross product of a and b, denoted a× b, to be

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

In particular, the cross product of two vectors in R3 is itself a vector in R3.

Theorem 5.28 (Properties of cross product) Let a,b, c ∈ R3. Then
1. a||b if and only if a× b = 0;
2. (a× b) ⊥ a and (a× b) ⊥ b;
3. a× b = −(b× a);
4. (a + b)× c = (a× c) + (b× c) and a× (b + c) = (a× b) + (a× c);
5. ra× b = r(a× b) = a× rb for any r ∈ R;
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6. If a and b are not parallel, then (Span(a,b))⊥ = Span(a× b);
7. ||a × b|| = ||a|| ||b|| sin θ where θ is the angle between a and b (see subsection 4.3

below for a definition of angle).

Definition 5.29 Let V be an inner product space and let w ∈ V be a nonzero vector. Given
any v ∈ V , define the projection of v onto w to be

projwv =
< v,w >

< w,w >
w.

Proposition 5.30 Let V be an inner product space with associated norm ||·|| and let w ∈ V
be a nonzero vector. Denote by u the normalized version of w (i.e. a unit vector in the
direction of w). Then for any v ∈ V ,

1. projwv = <v,w>
||w||2 w = <v,w>

||w|| u =< v,u > u.

2. v ⊥ w if and only if projwv = 0.
3. v ||w if and only if projwv = v.
4. projwv ⊥ (v − projwv).

5.5 Orthonormal bases and the Gram-Schmidt procedure

Definition 5.31 Let V be an inner product space. A set {v1, ...,vn} of vectors in V is
called (pairwise) orthogonal if vi ⊥ vj for all i 6= j. The set is called orthonormal if it is
orthogonal and ||vj || = 1 for all j.

Theorem 5.32 (Gram-Schmidt) Given a basis {v1, ...,vn} of inner product space V ,
there is a basis {x1, ...,xn} of V such that:

1. {x1, ...,xn} is an orthonormal basis, and
2. Span(v1, ...,xk) = Span(v1, ...,vk) for all k ≤ n.

The procedure to produce the x’s from the v’s goes in two steps. First, define

w1 = x1

w2 = x2 − projw1x2

w3 = x3 − projw1x3 − projw2x3

...
...

to obtain an orthogonal basis {w1, ...,wn}; then set xj =
wj

||wj || for each j to obtain the

orthonormal basis.

Corollary 5.33 Every finite-dimensional inner product space has an orthonormal basis.

Theorem 5.34 Let {x1, ...,xn} be an orthonormal basis of inner product space V . Then
for every v ∈ V , we have

v =

n∑
j=1

< v,xj > xj .
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Theorem 5.35 Let V be an inner product space and let {x1, ...,xn} be an orthonormal
basis of a finite-dimensional subspace W ⊆ V . Then, for every v ∈ V , the projection of v
onto W is

vW =
n∑
j=1

< v,xj > xj .

5.6 Angles

Theorem 5.36 (Cauchy-Schwarz Inequality) Let V be an inner product space with as-
sociated norm || · ||. Then for all v,w ∈ V ,

| < v,w > | ≤ ||v|| ||w||.

(Equality in the above expression holds only when v ||w.)

Theorem 5.37 (Triangle Inequality) Let V be an inner product space with associated
norm || · ||. Then for all v,w ∈ V , ||v + w|| ≤ ||v||+ ||w||.

Corollary 5.38 (Generalized Triangle Inequality) Let V be an inner product space
with associated norm || · ||. Then for all v1, ...,vn ∈ V , ||v1 + ...+ vn|| ≤ ||v1||+ ...+ ||vn||.

Definition 5.39 Let V be an inner product space over R. Then for all nonzero v,w ∈ V ,
the angle between v and w is

θ = cos−1

(
< v,w >

||v|| ||w||

)
.

Rewritten, this definition says that < v,w >= ||v|| ||w|| cos θ.

By definition we decree the angle between two vectors to be at least 0 and at most π.
The angle between parallel vectors is zero (if they are in the same direction) or π (if they
are in opposite directions).

Theorem 5.40 (Law of Cosines) Let V be an inner product space over R and let v,w ∈
V . Then

||v −w||2 = ||v||2 + ||w||2 − 2||v|| ||w|| cos θ

where θ is the angle between v and w.
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5.7 Hyperplanes

Definition 5.41 Given a finite-dimensional vector space V , a hyperplane W is an affine
subspace of V satisfying dimW = dimV − 1.

If V = F , taken as a vector space over itself, hyperplanes in V are points. When
dimV = 2, hyperplanes in V are lines. When dimV = 3, hyperplanes in V are planes.

Theorem 5.42 Let V be a finite-dimensional inner product space. Then given any hyper-
plane W , there is a vector n ∈ V , called a normal vector to the hyperplane, and a scalar d
such that

x ∈W ⇔ < n,x >= d.

The equation < n,x >= d is called the normal equation of the hyperplane.

As described earlier, every plane in R3 has a normal equation ax + by + cz = d for
constants a, b, c and d; the normal vector n = (a, b, c) can be found by taking the cross
product of any two nonzero vectors in the plane.

Proposition 5.43 The distance from a point v to a hyperplane passing through 0 with
normal vector n is |<n,v>|

||n|| .

5.8 More on orthogonal and unitary matrices

Theorem 5.44 (Characterization of orthogonal matrices) Let Q ∈ Mn(R) and let
<,> be the standard inner product on Rn. The following are equivalent:

1. Q is orthogonal;
2. the columns of Q form an orthonormal basis of Rn;
3. the rows of Q form an orthonormal basis of Rn;
4. Q “preserves dot product”, i.e. < Qx, Qy >=< x,y > for all x,y ∈ Rn;
5. Q “preserves Euclidean angles”, i.e. for every x,y ∈ Rn, the angle between x and y

is the same as the angle between Qx and Qy;
6. Q “preserves Euclidean norms”, i.e. for every x ∈ Rn, ||Qx|| = ||x||;
7. Q “preserves Euclidean distances”, i.e. for every x,y ∈ Rn, the distance between x

and y is the same as the distance between Qx and Qy;
8. for any orthonormal set {x1, ...,xk} of vectors in Rn, the set {Qx1, ..., Qxk} is also

orthonormal;
9. for any orthonormal basis {x1, ...,xn} of Rn, the set {Qx1, ..., Qxn} is also an or-

thonormal basis.

Theorem 5.45 (Classification of 2× 2 orthogonal matrices) Q ∈ O2 if and only if
Q has one of the following two forms:(

cos θ − sin θ
sin θ cos θ

)
or

(
cos θ sin θ
sin θ − cos θ

)
.
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Matrices in the first class are counterclockwise rotations by θ; matrices in the second
class are reflections through a line passing through the origin which sits at an angle θ/2 to
the x−axis. n× n orthogonal matrices can be thought of as “n−dimensional rotations and
reflections” although they are actually more complicated; they can be used to describe a
notion of congruence of arbitrary Euclidean objects as follows:

Definition 5.46 Two subsets A and B of Rn are congruent if there is an orthogonal matrix
Q ∈ On and a vector v ∈ Rn such that QA+ v = B.

Theorem 5.47 (Characterization of unitary matrices) Let U ∈ Mn(C) and let <,>
be the standard Hermitian inner product on Cn. The following are equivalent:

1. U is unitary;
2. the columns of U form an orthonormal basis of Cn;
3. the rows of U form an orthonormal basis of Cn;
4. U “preserves Hermitian inner product”, i.e. < Ux, Uy >=< x,y > for all x,y ∈ Cn;
5. U “preserves norms”, i.e. for every x ∈ Cn, ||Ux|| = ||x||;
6. U “preserves distances”, i.e. for every x,y ∈ Cn, the distance between x and y is the

same as the distance between Ux and Uy;
7. for any orthonormal set {x1, ...,xk} of vectors in Cn, the set {Ux1, ..., Uxk} is also

orthonormal;
8. for any orthonormal basis {x1, ...,xn} of Cn, the set {Ux1, ..., Uxn} is also an or-

thonormal basis.

6 Systems of linear equations

Definition 6.1 Let F be a field. A linear equation in n variables is any equation of the
form

a1x1 + a2x2 + ...+ anxn = b

for constants a1, .., an, b ∈ F .

Definition 6.2 A system of m linear equations in n variables is any system which can be
expressed in the following three equivalent forms:
Equation form As a list of m linear equations, i.e.

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

... + · · · . . .
...

...
am1x1 + am2x2 + · · · + amnxn = bm
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Matrix form As a matrix equation Ax = b where the matrix A = (aij) is called the
coefficient matrix of the system.

Vector form As a vector equation, i.e. x1a1 + x2a2 + · · ·+ xnan = b where aj is the jth

column of A.
A vector x ∈ Fn is called a solution of the system if Ax = b. A system is called consistent
if it has at least one solution and inconsistent otherwise; the solution set of the system is
the set of all solutions of the system. Two systems are called equivalent if they have the
same solution set.

Theorem 6.3 Given any consistent system of linear equations, the solution set forms an
affine subspace of Fn.

Systems of linear equations are solved in practice by performing row operations on the
augmented matrix (A |b) of the system. The allowable row operations are:

1. Switching two rows of the matrix;
2. Multiplying a row by a nonzero scalar;
3. Adding a nonzero multiple of one row to another.

Each of these operations corresponds to multiplying the matrix by an “elementary matrix”;
since all elementary matrices are invertible, all row operations are reversible. In particular:
• if B is obtained by switching rows i and j of A, then B = Ei↔jA where Ei↔j =

i j

i

j



1
. . .

1
0 1

1
. . .

1
1 0

1
. . .

1
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• if B is obtained by multiplying row j by the scalar r, then B = Ej;rA where Ej;r =

j



1
. . .

1
r

1
. . .

1



• if B is obtained by adding r times row i to row j of A, then B = Ei,j;rA where Ei,j;r =

i

j



1
. . .

1
1

1
. . .

1
r 1

1
. . .

1


• the inverses of each of these classes of matrices are: E−1

i↔j = Ei↔j ; E
−1
j;r = Ej;r−1 ;

E−1
i,j;r = Ei,j;−r.

Definition 6.4 Two matrices A and B are called row equivalent if one matrix can be
transformed into the other by a sequence of row operations.

Theorem 6.5 If two systems of equations have row equivalent augmented matrices, then
the systems are equivalent.

Proposition 6.6 The following are equivalent:
1. Matrices A and B are row equivalent;
2. There is a list E1, E2, ..., Ek of elementary matrices such that EkEk−1E2 · · ·E1A = B;
3. There is an invertible matrix E such that EA = B.
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Theorem 6.7 A square matrix A is invertible if and only if A is row equivalent to the
identity matrix.

In this case, the same sequence of row operations which transform A into I transform I
into A−1 (this method of finding A−1 is called the Gauss-Jordan method).

Definition 6.8 A matrix is in (row-echelon form if:
1. All rows of zeros are at the bottom of the matrix.
2. Defining the leading entry or pivot of a row to be the first nonzero entry of that row,

the leading entry of any row is to the right of the leading entry of any above row.
A matrix is in reduced row-echelon form if it is in row-echelon form, all pivots are 1, and
each pivot is the only nonzero entry in its column.

Every matrix is row equivalent to one and only one reduced row-echelon form.

Definition 6.9 Given a matrix A, the pivot columns of A are the columns which have a
leading entry in any row-echelon form of A. The free columns are the columns which are
not pivot columns.

Theorem 6.10 (Rank Theorem) Let A ∈ Mmn(F ). Then the following quantities are
all equal to the same number, called the rank of A and denoted r(A):

1. dimC(A)
2. dimR(A)
3. The number of pivot columns of A
4. The number of nonzero rows in any row-echelon form of A.

Proposition 6.11 Let A ∈Mmn(F ). Then r(A) = r(AT ) and if F = C, r(AH) = r(A) =
r(A).

In particular, r(A) ≤ m and r(A) ≤ n if A is m × n. r(A) = m if and only if A has a
pivot in every row, and r(A) = n if and only if A has a pivot in every column.

Theorem 6.12 Let A ∈ Mmn(F ). Then a basis for C(A) consists of the pivot columns of
A, and a basis for R(A) consists of the nonzero rows of any echelon form of A.

Theorem 6.13 (Rank-Nullty Theorem) Let A ∈Mmn(F ). Then:
1. dimC(A) + dimN(AH) = m and
2. dimR(A) + dimN(A) = n.

In other words, if A has rank r = r(A), then the null space of A has dimension n− r and
the left nullspace of A has dimension m− r.

Theorem 6.14 (Fundamental Theorem of Linear Algebra) Let A ∈Mmn(F ), where
F = R or C. Then (with respect to the usual inner product):

[C(A)]⊥ = N(AH) and [R(A)]⊥ = N(A).

Theorem 6.15 (Summary of Theory of Systems of Linear Equations) Let A ∈Mmn(F )
have rank r. Then:
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1. The system Ax = 0 always has at least one solution (namely x = 0). There are two
possible situations, (a) or (b):
(a) Ax = 0 has more than one solution. This is equivalent to all of the following:

• N(A) 6= {0}
• dimN(A) ≥ 1
• r < n.

In this case, for any b ∈ Fn:
• Ax = b has no solution if and only if b /∈ C(A);
• Ax = b has infinitely many solutions if and only if b ∈ C(A) (in this case

the solution set of Ax = b is xp +N(A) where xp is any particular solution
of the system) (this case is assured if r = m < n);
• Ax = b never has exactly one solution.

(b) Ax = 0 has exactly one solution (only x = 0). This is equivalent to all of the
following:
• N(A) = {0}
• dimN(A) = 0
• r = n.

In this case, for any b ∈ Fn:
• Ax = b has no solution if and only if b /∈ C(A);
• Ax = b has exactly one solution if and only if b ∈ C(A) (this is assured if
r = m = n; see below);
• Ax = b never has infinitely many solutions.

Notice that if m < n (that is, there are fewer variables than equations), case (b)
above is impossible because r ≤ m (so r cannot be equal to n).

2. In the special case where r = m = n (i.e. A is square and has full rank), then
C(A) = R(A) = Fn and N(A) = N(AH) = {0}. Furthermore, A is invertible and for
every b ∈ Fn, the system Ax = b has exactly one solution, namely x = A−1b.

3. The system Ax = b has no solution if and only if b /∈ C(A) if and only if an echelon
form of the augmented matrix (A |b) contains a false row of the form (0 0 · · · 0 z)
where z 6= 0.

Theorem 6.16 Let A ∈ Mmn(F ) and B ∈ Mnp(F ). Then the rank of AB is at most the
rank of B, and the rank of AB is at most the rank of A.

Theorem 6.17 Let A ∈Mmn(F ). If E is any n×n invertible matrix, then r(AE) = r(A).
If E is any m×m invertible matrix, then r(EA) = r(A).
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7 Linear transformations

Definition 7.1 Given vector spaces V1 and V2 over the same field F , a function T : V1 → V2

is called a linear transformation if for all r ∈ F and all v,w ∈ V1, T (rv) = rT (v) and
T (v+w) = T (v)+T (w). The set of linear transformations from V1 to V2 is called L(V1, V2)
or Hom(V1, V2).

To describe a linear transformation, it is sufficient to give its values on a basis of V1. This
is because given any basis {v1, ...,vn} of V1, we can write any vector x ∈ V1 as x =

∑
j cjvj

by the Unique Representation Theorem. Then T (x) =
∑

j cjT (vj).

Definition 7.2 Given vector spaces V1 and V2 over the same field F , a function A : V1 →
V2 is called an affine transformation if A(v) = T (v) + b for some T ∈ L(V1, V2) and some
b ∈ V2.

Classical examples of linear transformations include reflections, rotations, projection,
differentiation, integration, evaluation of functions, taking the inner product with a fixed
vector in the second input, and taking the transpose of a matrix. The most important
example is multiplication by a matrix: every A ∈ Mmn(F ) defines a linear transformation
T : Fn → Fm by T (x) = Ax.

Theorem 7.3 If T ∈ L(V1, V2), then T (0) = 0.

Theorem 7.4 T : V1 → V2 is linear if and only if T (rv + w) = rT (v) + T (w) for every
r ∈ F and every v,w ∈ V1.

Theorem 7.5 Let V1 and V2 be vector spaces over the same field F . The set L(V1, V2) is
itself a vector space over F , with addition and scalar multiplication defined by (S+T )(x) =
S(x) + T (x) and (rT )(x) = r T (x).

In particular, the additive identity element of L(V1, V2) is the constant function T (x) =
0. If dimV1 = m and dimV2 = n, then dimL(V1, V2) = mn.

Theorem 7.6 Let F be a field and let V1, V2 and V3 be vector spaces over F . If T1 ∈
L(V1, V2) and T2 ∈ L(V2, V3), then the composition (a.k.a. product) of the two transforma-
tions, denoted T2 ◦ T1 = T2T1 : V1 → V3, is linear.

Definition 7.7 Given T ∈ L(V1, V2), the kernel of T , denoted ker(T ), is the set of vectors
x ∈ V1 such that T (x) = 0. The image of T , denoted im(T ) or T (V1), is the set of vectors
y ∈ V2 such that y = T (x) for some x ∈ V1.

Proposition 7.8 Given a linear transformation T : V1 → V2, ker(T ) is a subspace of V1

and im(T ) is a subspace of V2.
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7.1 Injectivity and surjectivity

Definition 7.9 Let X and Y be any two sets. A function f : X → Y is called injective
or 1-1 if whenever f(x) = f(x′), it must be that x = x′. A function f : X → Y is called
surjective or onto if for every y ∈ Y , there is an x ∈ X such that f(x) = y. A function is
called bijective if it is both injective and surjective.

Theorem 7.10 Let T ∈ L(V1, V2). Then:
1. If W is a subspace of V1, then T (W ) is a subspace of V2 and dimT (W ) ≤ dimW .
2. T can be injective only if dimV1 ≤ dimV2.
3. T can be surjective only if dimV1 ≥ dimV2.
4. T can be bijective only when dimV1 = dimV2.

Theorem 7.11 Let T ∈ L(V1, V2). Then the following are equivalent:
1. T is surjective;
2. im(T ) = V2;
3. T maps spanning sets to spanning sets, i.e. if the set {v1, ...,vn} spans V1, then
{T (v1), ..., T (vn)} spans V2.

Theorem 7.12 Let T ∈ L(V1, V2). Then the following are equivalent:
1. T is injective;
2. ker(T ) = {0};
3. T maps linearly independent sets to linearly independent sets, i.e. if the set {v1, ...,vk}

is linearly independent in V1, then {T (v1), ..., T (vk)} is a linearly independent set in
V2.

4. T preserves dimension, i.e. if W is any subspace of V1, then dimT (W ) = dimW .

Proposition 7.13 Let T1 ∈ L(V1, V2) and T2 ∈ L(V2, V3). Then:
1. if T1 and T2 are both injective, then so is T2T1;
2. if T1 and T2 are both surjective, then so is T2T1;
3. if T2T1 is injective, so is T1 (but T2 need not be injective);
4. if T2T1 is surjective, so is T2 (but T1 need not be surjective).

7.2 Vector space isomorphisms

Definition 7.14 A function f : X → Y is called invertible if there is another function
f−1 : Y → X such that f ◦ f−1(y) = y for all y ∈ Y and f−1 ◦ f(x) = x for all x ∈ X. f−1

is called the inverse of f .

Theorem 7.15 A function is invertible if and only if it is bijective.

Theorem 7.16 The inverse of an invertible linear transformation is itself a linear trans-
formation.
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Definition 7.17 Let V1 and V2 be vector spaces over the same field F . An invertible linear
transformation T : V1 → V2 is called an isomorphism between V1 and V2. We say V1 and V2

are isomorphic vector spaces and write V1
∼= V2 if there exists an isomorphism T : V1 → V2.

Two isomorphic vector spaces have the same vector space operations up to a “change
in language”.

Theorem 7.18 Let V1, V2 and V3 be vector spaces over the same field F . Then
1. V1

∼= V1.
2. If V1

∼= V2 then V2
∼= V1.

3. If V1
∼= V2 and V2

∼= V3 then V1
∼= V3.

Theorem 7.19 Let V1 and V2 be vector spaces over the same field F .
1. If T ∈ L(V1, V2) is invertible, then dimV1 = dimV2.
2. If V1

∼= V2, then dimV1 = dimV2.
3. If dimV1 = dimV2 <∞, then V1

∼= V2.
4. If dimV1 = n <∞, then V1

∼= Fn.

Furthermore, if V is a vector space of dimension n over F , then every isomorphism
V → Fn is a coordinate mapping (see the next section).

Theorem 7.20 Let V1 and V2 be two vector spaces over the same field with dimV1 =
dimV2 <∞. Let T ∈ L(V1, V2). Then the following are equivalent:

1. T is injective.
2. T is surjective.
3. T is an isomorphism.
4. If the set {v1, ...,vk} is linearly independent in V1, then {T (v1), ..., T (vk)} is a linearly

independent set in V2.
5. If the set {v1, ...,vn} spans V1, then {T (v1), ..., T (vn)} spans V2.
6. There is a basis B = {v1, ...,vn} of V1 such that T (B) = {T (v1), ..., T (vn)} is a basis

of V2.
7. For all bases B of V1, T (B) is a basis of V2.

7.3 Standard matrices of linear transformations F n → Fm

Theorem 7.21 Let F be a field. Given any linear transformation T : Fn → Fm, there is a
matrix A ∈ Mmn(F ) called the standard matrix of T such that T (x) = Ax for all x ∈ Fn.
In particular, the standard matrix is defined by

A = (T (e1) T (e2) · · · T (en)) .

In particular, we see that the map L(Fn, Fn)→ Mn(F ), which takes a linear transfor-
mation to its standard matrix, is an isomorphism of vector spaces.

Proposition 7.22 Let F be a field and let T : Fn → Fm be a linear transformation with
standard matrix A. Then:
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1. ker(T ) = N(A).
2. im(T ) = C(A).
3. T is injective if and only if N(A) = {0} if and only if A has as many pivots as

columns.
4. T is surjective if and only if C(A) = Fm if and only if A has as many pivots as rows.

Theorem 7.23 Let F be a field and suppose T1 : Fn → Fm and T2 : Fm → F p are linear
transformations with standard matrices A1 and A2, respectively. Then the composition
T2T1 : Fn → F p has standard matrix A2A1.

The preceding theorem justifies why matrix multiplication is defined the way that it is.

Theorem 7.24 (Equivalent characterizations of invertibility) Let F be a field and
let T : Fn → Fn (same n) be linear with standard matrix A ∈Mn(F ). Then, the following
are equivalent:

1. T is an isomorphism (this is equivalent to many other properties of T by Theorem
7.20).

2. A is invertible.
3. A is row equivalent to I, i.e. rref(A) = I.
4. A has n pivots, i.e. A has rank n.
5. The columns of A are linearly independent.
6. The columns of A span Fn, i.e. C(A) = Fn.
7. The columns of A form a basis of Fn;
8. The rows of A are linearly independent.
9. The rows of A span Fn, i.e. R(A) = Fn.

10. The rows of A form a basis of Fn.
11. N(A) = {0}, i.e. Ax = 0 has only one solution, namely x = 0.
12. There is a single b ∈ Fn such that Ax = b has only one solution.
13. Ax = b has only one solution for any b ∈ Fn (namely x = A−1b).
14. AT is invertible (and A and AH are invertible if F = C).
15. The corresponding statements (2)-(14) hold if A is replaced with AT (or A or AH if

F = C).
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8 Coordinate systems and changes of basis

8.1 Coordinate mappings

Definition 8.1 Let V be a finite dimensional vector space over F and let B = {b1, ...,bn}
be a basis of V . By the Unique Representation Theorem, for any x ∈ V , we can write

x =
n∑
j=1

cjbj

where the cj are uniquely chosen scalars. These cj are called the B−coordinates of x or the
coordinates of x relative to the basis B. The vector [x]B = (c1, ..., cn) is called the coordinate
vector of x relative to B or the B−coordinate vector of x. The function φB : V → Fn defined
by φB(x) = [x]B is called the B−coordinate mapping or coordinate mapping determined by
B.

Theorem 8.2 (Classification of isomorphisms V → Fn) Let V is a vector space over
F of dimension n <∞. Then:

1. given any basis B of V , the B−coordinate mapping φB : V → Fn is an isomorphism;
and

2. given any isomorphism T : V → Fn, there is a basis B of V such that T = φB.

Definition 8.3 Given any basis B = {b1, ...,bn} of Fn, the matrix PS←B ∈Mn(F ) defined
by

PS←B = (b1 · · · bn)

is called the change of coordinates matrix for B into the standard matrix {e1, ..., en}.

By Theorem 8.2, every such matrix PS←B is invertible; denote by PB←S the matrix
PB←S = (PS←B)−1.

Proposition 8.4 Given any basis B of Fn, then for all x ∈ Fn,

x = PS←B[x]B and [x]B = (PS←B)−1x = PB←Sx.

Definition 8.5 Let V be a vector space of dimension n < ∞ over a field F . Let B =
{b1, ..., bn} and B′ be bases of V . Define PB′←B ∈Mn(F ), the change of basis matrix from
B to B′, to be

PB′←B = ([b1]B′ · · · [bn]B′) .

Theorem 8.6 Let V be a vector space of dimension n <∞ over a field F . Let B, B′ and
B′′ be bases of V . Then:

1. For all x ∈ V , [x]B′ = PB′←B[x]B.
2. PB′←B is invertible and has inverse (PB′←B)−1 = PB←B′.
3. PB←B = I.
4. PB′′←B = PB′′←B′PB′←B.
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8.2 Matrices of linear transformations

Definition 8.7 Let V and W be finite dimensional vector spaces over the same field F with
dimV = n and dimW = m. Let T ∈ L(V,W ) and let B = {b1, ...,bn} and C = {c1, ..., cm}
be bases of V and W respectively. The matrix of T relative to B and C is the matrix
A ∈Mmn(F ) defined by

A = ([T (b1)]C · · · [T (bn)]C) .

Fix bases B of V and C of W . Then, the map taking T to its matrix A with respect to
B and C is an isomorphism between the vector spaces L(V,W ) and Mmn(F ) (thus L(V,W )
has dimension mn).

Theorem 8.8 Let V and W be finite dimensional vector spaces over the same field F with
dimV = n and dimW = m. Let T ∈ L(V,W ) have matrix A relative to bases B of V and
C of W . Then for all x ∈ V ,

[T (x)]C = A [x]B.

Theorem 8.9 Let V be a vector space over F with dimV = n <∞; let B and B′ be bases
of V . Let W be a vector space over F with dimW = m < ∞ and let C and C′ be bases of
W . Let T ∈ L(V,W ) have matrix A relative to B and C and matrix A′ relative to B′ and
C′. Then:

A′ = PC′←C APB←B′ .

Corollary 8.10 Let V be a vector space over F with dimV = n < ∞; let W be a vector
space over F with dimW = m < ∞; let T ∈ L(V,W ). If A and A′ are both matrices for
the transformation T , relative to different bases of the domain and range of T , then:

1. there exist invertible matrices P ∈Mn(F ) and Q ∈Mm(F ) such that A′ = Q−1AP ;
2. A and A′ have the same rank.

Corollary 8.11 Let V and W be finite-dimensional vector spaces over F with dimV = n
and dimW = m; let T ∈ L(V,W ). Then the following are equivalent:

1. T is injective.
2. Every matrix A of T (no matter what bases are chosen) satisfies N(A) = {0}.
3. A single matrix A of T (relative to one particular choice of basis for V and W ) satisfies

N(A) = {0}.

Corollary 8.12 Let V and W be finite-dimensional vector spaces over F with dimV = n
and dimW = m; let T ∈ L(V,W ). Then the following are equivalent:

1. T is surjective.
2. Every matrix A of T (no matter what bases are chosen) satisfies C(A) = Fm.
3. A single matrix A of T (relative to one particular choice of basis for V and W ) satisfies

C(A) = Fm.

In the situation where the domain and codomain of T are the same vector space, the
above results can be specialized by asking the same basis to be used for the domain and
codomain. In this situation, we have:
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Definition 8.13 Let V be a finite dimensional vector space over field F with dimV = n.
Let T ∈ L(V, V ) and let B = {b1, ...,bn} be a basis of V . The matrix of T relative to B is
the matrix A ∈Mmn(F ) defined by

A = ([T (b1)]B · · · [T (bn)]B) .

Theorem 8.14 Let V be a finite dimensional vector space over field F with dimV = n.
Let T ∈ L(V, V ) have matrix A relative to basis B of V . Then for all x ∈ V ,

[T (x)]B = A [x]B.

Theorem 8.15 Let V be a vector space over F with dimV = n <∞; let B and B′ be bases
of V . Let T ∈ L(V, V ) have matrix A relative to B and matrix A′ relative to B′. Then:

A′ = PB′←B APB←B′ .

Corollary 8.16 Let V be a vector space over F with dimV = n <∞; let T ∈ L(V, V ). If
A and A′ are both matrices for the transformation T , relative to different bases of V (where
the same basis is chosen for both the domain and codomain), then:

1. There exists an invertible matrix P ∈Mn(F ) such that A′ = P−1AP .
2. A and A′ have the same rank.

Corollary 8.17 Let V and W be vector spaces over F with dimV = dimW = n <∞; let
T ∈ L(V, V ). Then the following are equivalent:

1. T is invertible;
2. Every matrix of T (no matter what bases are chosen) is invertible.
3. The matrix of T relative to any one choice of basis of V and W is invertible.

Corollary 8.18 Let V be a vector space over F with dimV = n < ∞; let T ∈ L(V,W ).
Then the following are equivalent:

1. T is invertible;
2. Every matrix of T (no matter what basis is chosen) is invertible.
3. The matrix of T relative to any one choice of basis of V (chosen as the basis for both

the domain and codomain) is invertible.

9 Determinants

9.1 The symmetric group

Definition 9.1 Let [n] = {1, ..., n}. Denote by Sn the set of bijections σ : [n]→ [n]; the set
Sn is called the symmetric group on n letters and elements of Sn are called permutations.
A permutation that exchanges two elements of [n] but keeps all other elements of [n] is called
a transposition.
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We define a “multiplication” on Sn by composition: if σ ∈ Sn and τ ∈ Sn, then στ ∈ Sn
is defined by στ = σ ◦ τ : [n] → [n]. Every permutation can be written as a product of
transpositions. In particular, a cycle of odd length can only be written as a product of an
even number of transpositions, and a cycle of even length can only be written as a product
of an odd number of transpositions.

Definition 9.2 Suppose σ ∈ Sn is the product of k transpositions. Define the sign or
signature of σ to be sgn(σ) = (−1)k.

This is well-defined because a permutation cannot be written as both a product of an even
number of transpositions and an odd number of transpositions. Permutations with sign 1 are
called even; permutations with sign −1 are called odd. Exactly half of the n! permutations
in Sn are even; the identity permutation is even; every transposition is odd.

Proposition 9.3 Let σ, τ ∈ Sn. Then sgn(σ−1) = sgn(σ) and sgn(στ) = sgn(σ)sgn(τ).

9.2 Properties of determinants

Definition 9.4 The determinant is the function det : Mn(F )→ F defined by

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
j=1

aσ(j),j .

In particular, the determinant of an n× n matrix is the sum of n! terms, half of which
are added and half of which are subtracted. Each term is itself the product of n entries of
the matrix, where the n entries include exactly one entry from each row and column.

Notice that from the definition, the determinant of a 1 × 1 matrix (a) is just a; the

determinant of a 2× 2 matrix

(
a b
c d

)
is ad− bc; and the determinant of the 3× 3 matrix

 a b c
d e f
g h i


is aei + bfg + cdh − afh − bdi − ceg (this 3 × 3 determinant can be computed by writing
the first two columns of the matrix next to the matrix, then multiplying numbers along
the six diagonals, and subtracting the sum of the “upward” products from the sum of the
“downward” products. The determinants of larger matrices are most efficiently calculated
using row reductions.

Theorem 9.5 (Properties of the determinant) Let A,B ∈Mn(F ). Then
1. The determinant of a triangular matrix is the product of its diagonal entries;
2. det(A) = det(AT );
3. det(Ā) = det(AH) = detA;
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4. the determinant is alternating, i.e. if B is obtained from A by swapping two columns
of A, then detB = −detA;

5. if B is obtained from A by swapping two rows of A, then detB = −detA;
6. if A contains the same row (or column) repeated twice, then detA = 0;
7. the determinant is normalized, i.e. det I = 1;
8. the determinant is n-linear (a.k.a. column linear), i.e. if all but one column of

a matrix is fixed, then the determinant is a linear transformation of the remaining
column;

9. det(AB) = detA · detB;
10. if B is obtained from A by adding a multiple of one row (column) of A to another row

(resp. column) of A, then detA = detB;
11. detA 6= 0 if and only if A is invertible (this is equivalent to many other properties by

Theorem 7.25).

In fact, the only function Mn(F ) → F which is alternating, normalized and n−linear
(i.e. satisfies properties 4,7 and 8 in the above theorem) is the determinant function.

Proposition 9.6 The volume of the n−dimensional parallelepiped whose edges are v1, ...,vn ∈
Fn is |det(v1 · · · vn)|.

The sign of the determinant, loosely speaking, gives the “orientation” of the column
vectors of the matrix. If the determinant is positive, the vectors are “positively oriented”
which in dimensions 2 and 3 means that they follow a right-hand rule.

Proposition 9.7 The determinant of any orthogonal matrix is ±1; the determinant of any
unitary matrix is a complex number of modulus 1.

10 Eigentheory

10.1 Conjugacy and similarity

Definition 10.1 Let V and W be vector spaces over the same field F . We say linear
transformations T : V → V and S : W →W are conjugate a.k.a. similar and write T ∼= S
if there exists an isomorphism φ : V →W such that φ ◦ T = S ◦ φ.

Conjugate linear transformations are essentially the same transformation, expressed in
different “languages”. The isomorphism φ is in some sense a translation between the two
transformations.

Definition 10.2 Let A,B ∈Mn(F ). We say A and B are conjugate or similar, and write
A ∼ B, if there exists an invertible matrix P ∈Mn(F ) such that PA = BP .
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Proposition 10.3 Let R,S and T be linear transformations.
1. T ∼= T .
2. If T ∼= S, then S ∼= T .
3. If T ∼= S and S ∼= R, then T ∼= R.

Proposition 10.4 Let A,B,C ∈Mn(F ).
1. A ∼ A.
2. If A ∼ B, then B ∼ A.
3. If A ∼ B and B ∼ C, then A ∼ C.
4. If A ∼ B, then det(A) = det(B) and tr(A) = tr(B).

Theorem 10.5 Let A,B ∈ Mn(F ), and let V be a vector space over F with dimV = n.
The following are equivalent:

1. A ∼ B.
2. There exists an invertible matrix P ∈Mn(F ) such that B = PAP−1.
3. There exists an invertible matrix P ∈ Mn(F ) such that B = P−1AP (this is not the

same P as in statement (2).
4. There is a linear transformation T : V → V such that A and B are both matrices of

that transformation.
5. Given any linear transformation T whose matrix relative to some basis of V is A,

there is a second basis of V such that the matrix of T relative to the second basis is
B.

10.2 Eigenvalues and eigenvectors

Definition 10.6 Let V be a vector space over a field F and let T ∈ L(V, V ). We say λ ∈ F
is an eigenvalue of T if there is a nonzero vector x ∈ V such that T (x) = λx. Given an
eigenvalue λ of T , any nonzero vector x ∈ V satisfying T (x) = λx is called an eigenvector
of T corresponding to λ. Given an eigenvalue λ of T , the set of eigenvectors corresponding
to λ (together with the zero vector) is called the λ−eigenspace of T and is denoted Vλ.

Definition 10.7 Let A ∈Mn(F ). We say λ ∈ F is an eigenvalue of A if there is a nonzero
vector x ∈ Fn such that Ax = λx. Given an eigenvalue λ of A, any nonzero vector x ∈ Fn
satisfying Ax = λx is called an eigenvector of A corresponding to λ. Given an eigenvalue
λ of A, the set of eigenvectors corresponding to λ (together with the zero vector) is called
the λ−eigenspace of A and is denoted Vλ.

Theorem 10.8 (Elementary properties of eigenvalues and eigenvectors) Let T ∈
L(V, V ). Then:

1. The eigenspace Vλ of any eigenvalue λ of T is a subspace of V .
2. If x1,x2, ...,xn are eigenvectors of T corresponding to different eigenvalues λ1, ..., λn

of T , then {x1, ...,xn} is a linearly independent set.
3. If dimV = n, then T can have at most n different eigenvalues.
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4. If W is a one-dimensional subspace of V such that T (W ) ⊆ W , then W is spanned
by an eigenvector of T .

Theorem 10.9 (Elementary properties of eigenvalues and eigenvectors) Let A ∈
Mn(F ). Then:

1. The eigenspace Vλ of any eigenvalue λ of A is a subspace of Fn.
2. If x1,x2, ...,xn are eigenvectors of T corresponding to different eigenvalues λ1, ..., λn

of A, then {x1, ...,xn} is a linearly independent set.
3. A can have at most n different eigenvalues.
4. λ is an eigenvalue of A if and only if N(A − λI) 6= {0}, in which case any nonzero

element in N(A− λI) is an eigenvector corresponding to λ.
5. The eigenvalues of a triangular (or diagonal) matrix are its diagonal entries.

Based on the last statement of the above theorem, eigenvalues of a matrix are computed
by finding values λ for which A− λI is not invertible:

Definition 10.10 Given a matrix A ∈ Mn(F ), the characteristic polynomial of A is the
degree n polynomial det(A − xI). (Here, we are considering this as a polynomial in the
variable x.)

Theorem 10.11 Let A ∈Mn(F ). The following are equivalent:
1. λ is an eigenvalue of A;
2. λ is a root of the characteristic polynomial of A;
3. (x− λ)m is a factor of the characteristic polynomial of A.

Definition 10.12 Let λ be an eigenvalue of matrix A ∈ Mn(F ). The largest integer m
such that (x−λ)m is a factor of the characteristic polynomial of A is called the multiplicity
of λ.

For example, if the characteristic polynomial of a matrix is det(A−xI) = (x−3)(x+2)3,
then 3 is an eigenvalue of multiplicity 1, and −2 is an eigenvalue of multiplicity 3.

Theorem 10.13 Let A ∈Mn(F ).
1. A and AT have the same eigenvalues.
2. If F = C, then A has at least one eigenvalue.
3. If A is Hermitian, then every eigenvalue of A is real.
4. If F = R and n is odd, then A has at least one real eigenvalue.
5. The trace of A is the sum of its eigenvalues (where each eigenvalue is counted the

number of times as its multiplicity).
6. The determinant of A is the product of its eigenvalues (again, counting multiplicities).
7. If A is a real matrix and λ ∈ C is an eigenvalue of A with eigenvector x, then λ is

also an eigenvalue of A, with eigenvector x.
8. A is invertible if and only if 0 is not an eigenvalue of A.

Proposition 10.14 Let A ∈ Mn(F ). Then if the eigenvalues of A are λ1, ..., λn, then the
eigenvalues of Ak are λk1, ..., λ

k
n. The eigenvectors of A are also eigenvectors of Ak for any

k.
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Although we gave two different definitions of eigenvalue/eigenvector/eigenspace above
(one for linear transformations and one for matrices), these two definitions are really the
same concept. To find eigenvalues/eigenvectors of a linear transformation T : V → V , if V
is finite-dimensional one can find a matrix A of T relative to some basis of V ; the eigenvalues
of A (computed by finding roots of the characteristic polynomial of A) are the eigenvalues
of T . More precisely:

Theorem 10.15 Let T and S be linear transformations, and let A,B ∈Mn(F ). Then:
1. If T and S are conjugate, then T and S have the same eigenvalues. More precisely,

if φ is an isomorphism such that S = φ−1 ◦ T ◦ φ, then x is an eigenvector of T
corresponding to λ if and only if φ(x) is an eigenvector of S corresponding to λ.

2. Suppose T ∼= S. Then for any eigenvalue λ of T and S, dim(Vλ) is the same for both
T and S.

3. The eigenvalues of the linear transformation Fn → Fn defined by x 7→ Ax are the
eigenvalues of A.

4. If A is any matrix of a linear transformation T , then A and T have the same eigen-
values.

5. If A ∼ B, then A and B have the same eigenvalues. More precisely, if P ∈ Mn(F )
is an invertible matrix such that B = P−1AP , then x is an eigenvector x of A
corresponding to λ if and only if Px is an eigenvector of B corresponding to λ.

6. Suppose A ∼ B. Then for any eigenvalue λ of A and B, dim(Vλ) is the same for both
A and B.

10.3 Diagonalization

Theorem 10.16 Every linear transformation is represented by a triangular matrix, and
every square matrix is conjugate to a triangular matrix. More precisely:

1. Let V be a finite-dimensional vector space over F and let T : V → V be a linear
transformation. Then there is a basis B of V such that the matrix of T relative to B
is upper triangular. Furthermore, if V is an inner product space, B can be taken to
be an orthonormal basis.

2. Let A ∈ Mn(F ). Then there is an invertible matrix P such that PAP−1 is upper
triangular. Furthermore, the matrix P can be assumed to be orthogonal (if F = R) or
unitary (if F = C).

Definition 10.17 A matrix A ∈ Mn(F ) is called diagonalizable if it is conjugate to a
diagonal matrix.

Theorem 10.18 Let A ∈Mn(F ). The following are equivalent:
1. A is diagonalizable;
2. there is a basis of Fn consisting of eigenvectors of A;
3. A = PΛP−1 where P is an invertible matrix (writing A = PΛP−1 is called diagonal-

izing A).
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In particular, if A is diagonalizable, the diagonal matrix Λ in the above decomposition
A = PΛP−1 must have as its diagonal entries the eigenvalues of A, and the columns of P
are the corresponding eigenvectors of A.

Theorem 10.19 Let V be a finite-dimensional vector space over F and let T : V → V be
linear. The following are equivalent:

1. there is a basis of V consisting of eigenvectors of T ;
2. there is a matrix A of T which is diagonalizable;
3. every matrix representing T is diagonalizable.
4. there is a diagonal matrix representing T .

Theorem 10.20 If an n×n matrix A has n distinct eigenvalues, then A is diagonalizable.
If dimV = n and T : V → V has n distinct eigenvalues, then some matrix of T is diagonal.

10.4 Matrix powers and exponentials

Proposition 10.21 If D is an n× n diagonal matrix with diagonal entries d1, ..., dn, then
for any nonnegative integer k, Dk is a diagonal matrix with entries dk1, ..., d

k
n.

Proposition 10.22 Suppose B = PAP−1. Then for every nonnegative integer n, Bn =
PAnP−n.

The preceding two results tell us how to compute powers of a diagonalizable matrix.
Given a diagonalizable matrix A, write A = PΛP−1 where Λ is diagonal; then Ak =
PΛkP−1.

Definition 10.23 Let A ∈ Mn(F ). The matrix exponential of A, denoted exp(A) or eA,
is the n× n matrix

exp(A) =
∞∑
k=0

1

k!
Ak = I +A+

1

2
A2 +

1

6
A3 +

1

4!
A4 + ...

(In fact, this infinite sum converges for all (real and complex) matrices A, although exactly
what is meant by “convergence” for infinite sums of matrices is beyond the scope of this
course.)

Theorem 10.24 (Properties of matrix exponentials) Let A,B ∈ Mn(F ) where F =
R or C. Then:

1. if A is diagonal with entries λ1, ..., λn, then exp(A) is diagonal with entries eλ1 , ..., eλn;
2. exp(PAP−1) = P exp(A)P−1 for any invertible P ∈Mn(F );
3. if AB = BA, then exp(A + B) = exp(A) exp(B) (this equation does not hold in

general);
4. det(eA) = etr(A).



Honors Linear Algebra Course Summary Page 39

To compute the matrix exponential of a diagonal matrix A, write A = PΛP−1; then
exp(A) = PeΛP−1.

Theorem 10.25 Let x1(t), x2(t), ..., xn(t) be a collection of n differentiable functions from
R to R. Write x(t) = (x1(t), ..., xn(t)) and set x′(t) = (x′1(t), ..., x′n(t)). Suppose A ∈Mn(F )
is such that the following differential equation holds:

x′(t) = Ax(t).

Then every solution of this differential equation is of the form x(t) = eAtx0, where x(0) =
x0.

10.5 A word about non-diagonalizable matrices

Suppose A ∈ Mn(F ) is a matrix which is not diagonalizable. Then A must have an eigen-
value λ of multiplicity m > 1 where the dimension of the corresponding eigenspace Vλ is
less than m. For example, the matrix

A =

(
1 1
0 1

)
is the “classic” example of a non-diagonalizable matrix, because it has only one eigenvalue
λ = 1 and the only eigenvectors corresponding to λ = 1 are those in the span of (1, 0).
Thus V1 is one-dimensional (but λ = 1 has multiplicity two since the characteristic poly-
nomial is (1 − x)2). Therefore F 2 has no basis of eigenvectors of A and A is therefore not
diagonalizable. This means we cannot write A = PΛP−1 where Λ is diagonal and therefore
computing exponentials and powers of a matrix becomes somewhat harder (fortunately this
is a relatively rare occurrence).

In this situation, one uses what is called the Jordan canonical form of a matrix. Roughly
speaking, the Jordan canonical form of a matrix A is a matrix J (conjugate to A) whose
powers and exponentials are relatively easy to compute. More precisely:

Definition 10.26 A matrix J is said to be in Jordan canonical form if there are square
matrices B1, B2, ... such that J has the following block form:

J =


B1

B2

. . .

Bk


where each Bj is a Jordan block matrix, which means it is of the form

Bj =


λj 1

λj 1
. . .

. . .

λj 1
λj


where λ is some constant.
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Notice that each block Bj has one λj associated to it; the numbers λ1, ..., λk are the eigen-
values of A. For a diagonalizable matrix A, each block Bj is the 1 × 1 block (λj), so J is
the diagonal matrix Λ.

Related to the ideas of the Jordan canonical form is the following fact, which is used
(via the machinery of Jordan canoncial forms) to compute powers and exponents of non-
diagonalizable matrices:

Theorem 10.27 Given A ∈ Mn(F ), there exist D,N ∈ Mn(F ) such that A = D + N ,
DN = ND, D is diagonalizable and N is nilpotent (i.e. Nk = 0 for some k ≥ 1).

11 Spectral theory

Definition 11.1 A matrix A ∈Mn(C) is called normal if AAH = AHA. (If A is real, this
means ATA = AAT .)

Proposition 11.2 Here are some facts about normal matrices:
1. Every Hermitian matrix is normal.
2. Every real symmetric matrix is normal.
3. Every unitary matrix is normal.
4. For any A ∈Mn(C), both AAH and AHA are normal.
5. A is normal if and only if ||Ax|| = ||AHx|| for every x ∈ Cn (where || · || be the norm

associated to the Hermitian inner product on Cn).
6. If A is normal, so is A− tI for any scalar t.
7. If A is normal, then if x is an eigenvector of A corresponding to eigenvalue λ, then

x is also an eigenvector of AH corresponding to eigenvalue λ.
8. If A is normal, then eigenvectors of A corresponding to different eigenvalues of A are

orthogonal (w.r.t. Hermitian inner product).

11.1 Complex spectral theory

Proposition 11.3 Let A ∈Mn(C) and let <,> be the Hermitian inner product on Cn. A
is Hermitian if and only if for every x ∈ Cn, < Ax,x >∈ R.

Theorem 11.4 (Spectral theorem, complex version) Let A ∈Mn(C). The following
are equivalent:

1. A is normal.
2. There is an orthonormal (w.r.t. to Hermitian inner product) basis of Cn of eigenvec-

tors of A.
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3. A is “unitariliy diagonalizable”, i.e. there exists a unitary matrix U ∈ Un and a
diagonal matrix Λ ∈Mn(C) such that A = UΛU−1 = UΛUH .

4. There is a unitary matrix U (the inverse of U in part (3)) such that UAUH = UAU−1

is diagonal.

11.2 Real spectral theory

Proposition 11.5 Let A ∈ Mn(C) and let <,> be dot product on Rn. If A is symmetric
and < Ax,x >= 0 for every x ∈ Rn, then x = 0.

Remark: The hypothesis that A is symmetric is necessary here (otherwise, consider a
matrix which rotates vectors by π/2). No hypothesis of symmetry/Hermiticity was neces-
sary in the complex case.

Theorem 11.6 (Spectral theorem, real version) Let A ∈ Mn(R). The following are
equivalent:

1. A is symmetric.
2. There is an orthonormal (w.r.t. to dot product) basis of Rn of eigenvectors of A.
3. A is “orthogonally diagonalizable”, i.e. there exists an orthogonal matrix Q ∈ On and

a diagonal matrix Λ ∈Mn(R) such that A = QΛQ−1 = QΛQT .
4. There is an orthogonal matrix Q (the inverse of the Q in part (3)) such that QAQT =

QAQ−1 is diagonal.

11.3 Positive and positive definite matrices

Definition 11.7 A Hermitian matrix A ∈Mn(C) is called positive if xHAx ≥ 0 for every
x ∈ Cn. A Hermitian matrix A ∈ Mn(C) is called positive definite if if is positive, and if
the only vector x ∈ Cn satisfying xHAx = 0 is x = 0.

Theorem 11.8 Let A ∈Mn(C). The following are equivalent:
1. A is positive.
2. A is Hermitian and the eigenvalues of A are nonnegative.
3. There is a positive matrix B such that B2 = A (B is called the square root of A and

is denoted B =
√
A).

4. There is a Hermitian matrix B such that B2 = A.
5. There is a matrix B ∈Mn(F ) such that A = BHB.
6. There is a matrix B ∈Mn(F ) such that A = BBH .

Corollary 11.9 Every positive matrix has a unique positive square root.

Theorem 11.10 Let A ∈Mn(C). The following are equivalent:
1. A is positive definite.
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2. The expression < x,y >= yHAx defines an inner product on Cn;
3. A is Hermitian and all its eigenvalues are positive.
4. If for each k = 1, ..., n, one takes the upper-leftmost k × k entries of A and calls that

matrix Ak the upper left submatrix of A, then detAk > 0 for all k.

11.4 Singular value decomposition

The set Mn(C) of n×n complex matrices can be thought of as a generalization of the com-
plex numbers. Many ideas about complex numbers generalize naturally to complex square
matrices. In particular:

COMPLEX NUMBER CONCEPT COMPLEX MATRIX CONCEPT

complex number z ∈ C complex matrix M ∈Mn(C)

conjugation z 7→ z taking the Hermitian of a matrix M 7→MH

real number Hermitian matrix

nonnegative real number positive matrix

positive real number positive definite matrix

nonnegative real numbers have positive matrices have unique
unique nonnegative square roots positive square roots

unit circle unitary matrices
(complex numbers of modulus 1) (UH = U−1)

(z = z−1)

every z ∈ C can be written every M ∈Mn(C) can be written
z = a+ ib where a, b ∈ R M = A+ iB

where A,B are Hermitian

every z ∈ C is z = |z|eiθ = eiθ
√
zz̄ see Theorem 11.11 below

modulus singular values (see below)

Theorem 11.11 (Polar decomposition) Let A ∈Mn(C). Then A = U
√
AHA for some

unitary matrix U .

Definition 11.12 Let A ∈ Mmn(C). The singular values of A are the eigenvalues of√
AHA (equivalently, the square roots of the eigenvalues of the positive matrix AHA).

Theorem 11.13 (Singular value decomposition (complex version)) Let A ∈Mmn(C).
Then there exist unitary matrices U ∈ Um and V ∈ Un and a diagonal matrix Σ ∈Mmn(C)
such that A = UΣV H .

Theorem 11.14 (Singular value decomposition (complex version)) Let A ∈Mmn(R).
Then there exist orthogonal matrices Q ∈ Om and R ∈ On and a diagonal matrix Σ ∈
Mmn(R) such that A = QΣRT .

The entries of Σ are the singular values of A.
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Proposition 11.15 Let A have SVD A = UΣV H . Then, if A has rank r:
1. The first r columns of U form an orthonormal basis of C(A).
2. The last m− r columns of U form an orthonormal basis of N(AH).
3. The first r columns of V form an orthonormal basis of R(A).
4. The last n− r columns of V form an orthonormal basis of N(A).

11.5 Pseudoinverses and least-squares solutions

Definition 11.16 Let A ∈ Mmn(C) have SVD A = UΣV H and rank r. Without loss of

generality we can write Σ =

(
D 0

0 0

)
where D is a diagonal r × r matrix with diagonal

entries equal to the nonzero singular values of A. Similarly, partition U and V into their
first r columns and their last m− r (respectively n− r) columns as

U =
(
Ur Um−r

)
and V =

(
Vr Vn−r

)
The (Moore-Penrose) pseudoinverse of A, denoted A+, is the matrix A+ ∈Mnm(C) defined
by

A+ = VrD
−1(Ur)

H .

Theorem 11.17 (Properties of pseudoinverses) Let A ∈Mmn(C) and let A+ ∈Mnm(C)
be its pseudoinverse. Then:

1. If A is real, so is A+.
2. If A has full column rank (i.e. if the columns of A are linearly independent), then

A+ = (AHA)−1AH .
3. If A has full row rank (i.e. if the rows of A are linearly independent), then A+ =

AH(AAH)−1.
4. If A is invertible, then A+ = A−1.
5. For any x ∈ Cm, AA+x is the projection of x onto C(A).
6. For any x ∈ Cn, A+Ax is the projection of x onto R(A).
7. AA+A = A+ and A+AA+ = A.
8. AA+ and A+A are Hermitian.
9. (A+)+ = A.

10. (A+)T = (AT )+; (A+)H = (AH)+; A+ = (A)+.
11. If r 6= 0, then (rA)+ = 1

rA
+.

12. N(A+) = N(AH) and C(A+) = C(AH).

Definition 11.18 Let A ∈Mmn(C) and let b ∈ Cm. The vector x+ = A+b ∈ Cn is called
the least-squares solution to the system Ax = b.

Theorem 11.19 Let A ∈Mmn(C) and let b ∈ Cm. Let x+ be the least-squares solution of
Ax = b and let b+ = Ax+. Then

||b+ − b|| ≤ ||Ax− b||

for any x ∈ Cn (where || · || is the norm coming from the Hermitian inner product).
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Restated, this means that the closest (with respect to the usual Euclidean distance) one
can come to solving Ax = b when b /∈ C(A) is to set x = x+ = A+b. Furthermore, if
u ∈ Cn is any other solution of Ax = b+, then ||u|| ≥ ||x+||.


