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Chapter 1

Vector spaces

1.1 Some motivating problems
For the economist: the Leontief input-output model

EXAMPLE 1
An economy is divided into three sectors: coal, steel and electricity. Each industry
depends on the others for raw materials as follows:

• To make $1 worth of coal, it takes no coal, $.10 of steel and $.10 of electricity.

• To make $1 worth of steel, it takes $.20 of coal, $.10 of steel and $.20 of elec-
tricity.

• To make $1 worth of electricity, it takes $.40 of coal, $.20 of steel and $.10 of
electricity.

If we want the economy to output $1 billion worth of coal, $.7 billion worth of steel
and $2.9 billion worth of electricity, how much coal, steel and electricity will the
economy actually need to produce?

Setup of Solution: Let c, s and e be the amounts of coal, steel and electricity produced
(in billions).

Amount of Amount of Amount of
coal used steel used electricity used

To produce c coal: 0c .1c .1c
To produce s steel: .2s .1s .2s

To produce e electricity: .4e .2e .1e
Total: .2s + .4e .1c + .1s + .2e .1c + .2s + .1e
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1.1. Some motivating problems

So to output 1 billion worth of coal, we need

(amount of coal produced) - (amount of coal used) = 1

The steel and electricity work similarly, so we end up with these equations:
c− .2s− .4e = 1

−.1c + .9s− .2e = .7
−.1c− .2s + .9e = 2.9

This is called a “system of equations” which we’d like to solve for c, s and e.

For the actuarial scientist: bonus-malus systems
EXAMPLE 2

You work for an insurance company which charges customers two different rates
for automobile policies: rate r if the policyholder has gone two years without an
accident, and rate s if the policyholder has had an accident in the last two years
(r < s). Assume that the probability that a policyholder has an accident in any
given year is p (p is between 0 and 1).

You are given p, and need to determine the long-term probability that you will be
charging a customer r (as opposed to s). This tells your company what values they
need to choose for r and s to ensure a profit.

Setup of solution: Divide the policyholders into three categories:

• A “good”, or “bonus” policyholder has gone

two years without an accident.

• A “medium” policyholder has gone one, but

not two, years without an accident.

• A “bad”, or “malus” policyholder has had

an accident in the past year.

Let x, y and z be the long-term probability that a policyholder is good, medium
or bad (so that x + y + z = 1). Observe that in one year:

• A good person has probability p of becoming bad, and probability 1 − p of
staying good;
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1.1. Some motivating problems

• A medium person has probability p of becoming bad, and probability 1 − p
of becoming good;

• A bad person has probability p of staying bad, and probability 1 − p of be-
coming medium.

So in the long run, the good people in a year (i.e. x) will be 1− p of the current
good people x plus 1− p of the current medium people y, i.e.

x = (1− p)x + (1− p)y ⇒

Similarly, the medium people (i.e. y) will be 1− p of the bad people z, i.e.

y = (1− p)z ⇒ y + (p− 1)z = 0

Last, the bad people (i.e. z) will be p of the good plus p of the medium plus p of
the bad, i.e.

z = px + py + pz ⇒ px + py + (p− 1)z = 0

Altogether, we have 
px + (p− 1)y = 0
y + (p− 1)z = 0

px + py + (p− 1)z = 0
x + y + z = 1

where p is a constant. This is another system of equations, that you can solve
for x, y and z (hopefully).

What you really care about is x, because that’s the portion of customers who
get the bonus rate.

For the surveyor: error correction
EXAMPLE 3

You are a surveyor, studying a plot of land. You take several measurements with
an instrument that measures the elevation difference between points.

You find the following:

• from point A to point D, there is an elevation drop of 30 feet

• from point A to point B, there is an elevation drop of 20 feet
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1.1. Some motivating problems

• from point B to point D, there is an elevation drop of 8 feet

• from point B to point C, there is an elevation drop of 5 feet

• from point C to point D, there is an elevation drop of 2 feet

• from point C to point A, there is an elevation gain of 26 feet

What is the best estimate of the elevation differences between these points?

Setup of solution: Let a, b, c and d be elevations A, B, C and D. We have:

a− d = 30
a− b = 20
b− d = 8
b− c = 5
c− d = 2
c− a = −26

.

The goal would be to solve for a, b, c and d, but there is no solution.

So instead, we seek the best approximation of a solution of this system.

This approximation is called a “least-squares solution” (even though it isn’t
actually a solution).

For the engineer: differential equations
EXAMPLE 4

Originally, the liquid is 215◦ F (pretty hot). To cool the liquid, you put it in a re-
frigerator which has temperature 45◦F . Describe the function f(t) which gives the
temperature of the liquid at time t.

Setup of solution: Apply Newton’s Law of Heating and Cooling (MATH 330, maybe),
which says that the rate of change of the temperature of an object is proportional to
the difference between the temperature of the object and the ambient temperature.
In this case, that means

i.e. we get the “initial value problem”{
f ′(t)− kf(t) = −45k
f(0) = 215

where k is some constant.
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1.1. Some motivating problems

EXAMPLE 5
An RLC electrical circuit consists of a voltage source, 6Ω resistor, 1H inductor and
.2F capacitor in series. If the voltage supplied to the circuit at time t is 2 sin t V, the
initial charge in the circuit is .1 and the initial current is 1 ohm, find the charge q(t)
across the circuit at time t.

Setup of solution: Apply Kirchoff’s voltage law, Ohm’s Law and Faraday’s Law to
obtain the differential equation

Lq′′(t) + Rq′(t) + 1
C

q(t) = ES(t)

which in this example is

q′′(t) + 6q′(t) + 1
.2q(t) = 2 sin t.

Again, we get a differential equation (we also know q(0) = .1 and q′(0) = 1).

For the graphic designer: warping pictures
EXAMPLE 6

Here is a picture of Emmet from the LEGO movie, which is 225 pixels by 225 pixels:

50 100 150 200

50

100

150

200

Suppose you need to warp the image of Emmet so that it fits in a parallelogram
like this:

150 222 372

142

320

462
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1.1. Some motivating problems

1. If a pixel was at position (x, y) in the old picture, what will its location be in
the original picture? In other words, what “formula” is needed to distort the
image so that it fits in the right space?

2. If a pixel ends up at position (x, y) in the new picture, what was its location
in the original picture?

For the pure mathematician: an indefinite integral
EXAMPLE 7 ∫

cos x dx

Definite integrals are used to compute areas, displacements of objects, arc lengths,
average values, probabilities and expected values, moments, centers of mass, vol-
umes, surface areas, magnetic flux, work, etc., and to compute definite integrals,
you need indefinite integrals.

For the statistician: fit a curve to some data
EXAMPLE 8

Find the equation of the form y = Aebt which best fits the data points (0, 4), (1, 3),
(2, 5), (3, 10), (4, 22), (5, 24) and (6, 27).

0 1 2 3 4 5 6

5

10

15

20

25

30
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1.2. Why do we study “linear” things?

What I hope to convince you of in MATH 322:

All these examples are really the same problem.

The commonality between these problems is that they are all “linear”
(whatever that means).

1.2 Why do we study “linear” things?
REASON 1:
Linear things approximate nonlinear things

In calculus, we learn about derivatives. Computing the derivative of a function
is useful because something associated to a derivative solves lots of problems, in-
cluding

• slope of line tangent to function

• instantaneous rate of change of function

• instantaneous velocity (if the original function gives position at time t)

• optimization problems (find maximum and/or minimum of function)

• L’Hôpital’s rule (for evaluating limits of form 0
0 or ∞

∞

• related rates problems

• Newton’s method

• etc.
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1.2. Why do we study “linear” things?

The concept behind all these applications is that if you have any function f and you
want to approximate the values of f for values of x near a, you can approximate f
by a linear function (namely, the tangent line at a):

f(x) ≈ L(x)
= f(a) + f ′(a)(x− a).

f

L

a

f (a)

Doing this makes sense because linear equations are easier to work with than ar-
bitrary equations (see reason # 2 below for more on this).

Long-term goal (MATH 320, perhaps): So far, you might only have heard about
functions f : R → R (that is, functions y = f(x) or x 7→ y). But functions may
have much more general domains and ranges; for example, a set of parametric
equations describing planar motion can be thought of as a single function

f : t 7→ (x, y)

which is a function f : R→ R2.

A function f : R2 → R3 might be something like

f(u, v) = (u3v, sin(uv + 1), e2u − 3).

A natural question is to ask what the derivative of such a function is. It should
have something to do with the best linear approximation of the function (just as the
derivative of a function y = f(x) gives the slope of the best linear approximation
to f at x). But what does linear mean in that context?

The first major goal of linear algebra is to describe what “linear” means, in
a general sense.
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1.2. Why do we study “linear” things?

REASON 2 (TO STUDY LINEAR THINGS):
Linear things are (relatively) easy to study

Suppose you have an equation in one variable (say x). Every such equation can be
written as f(x) = b, where f is some function from R to R and b is some constant.
For example,

sin x + x2 − 6 = 3(x− 2) + x− 5

can be rewritten as

To think about such an equation conceptually/theoretically, we need to ask the
following questions:

1.

2.

3.

Question 1 above is easy to answer theoretically:

There is at least one solution to f(x) = b ⇐⇒

⇐⇒

Example: x2 = b has at least one solution if and only if b ≥ 0.

-4 -2 2 4

-1

1

2

3

4

Unfortunately, in practice, Question 1 might be hard to approach, because
we might not have access to a graph of y = f(x).
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1.2. Why do we study “linear” things?

Question 2 is also easy to answer theoretically:

The number of solutions to f(x) = b is equal to

f

c

But in practice, Question 2 is also hard because we might not have access to
a graph of y = f(x), and even if we have a graph, there may be intersection
points we’re not aware of (that lie off the piece of the graph we see).

Question 3, in general, is impossible:

Consider the equation x = cos x, i.e. cos x− x = 0. We know there is a solution
(since the graph of cos x−x crosses the x−axis), but good luck finding its exact
value.

However: there is one class of equations in one variable for which we can com-
pletely (and easily) answer questions 1,2 and 3. Suppose f is a function whose
graph is a line, i.e.

In this case the equation f(x) = c becomes

14



1.2. Why do we study “linear” things?

On the previous page we saw that every linear equation in one variable can be
rewritten as Ax = b, where A and b are constants.

Let’s look at Questions 1 2 and 3 in this situation:

Equation Does the How many
Ax = b equation have solutions does What is/are

a solution? the equation have? the solution(s)? .

Case 1:
A ̸= 0

Case 2:
A = 0, b = 0

Case 3:
A = 0, b ̸= 0

Summarizing, we have the first theorem (of many) of our course:

Theorem 1.1 (Linear Equations in One Variable) Every linear equation in one
variable x can be rewritten as Ax = b for constants A and b.

1. If A ̸= 0, then an equation has exactly one solution, namely x = b

A
= A−1b.

2. If A = 0 and b = 0, then the equation has infinitely many solutions (every
x ∈ R is a solution).

3. If A = 0 and b ̸= 0, then the equation has no solution.

Note: Once you get much beyond linear equations, Questions 1-3 no longer have
such nice answers. Studying these types of questions is the field of mathematical
research called algebraic geometry.
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1.2. Why do we study “linear” things?

In MATH 322, we want to think about linear systems with more than one equation
and/or more than one variable (in part so that we could eventually describe the
derivative of a function of several variables, but also because such equations arise
naturally). For example, suppose we want to solve for x and y if{

a11x + a12y = b1
a21x + a22y = b2

where the as and bs are constants. This is a system of two equations in two vari-
ables. There are a variety of ways one might solve this system:

EXAMPLE 9
Solve the system {

2x− 3y = 13
x− 2y = 7

Method # 1: Addition / elimination{
2x− 3y = 13

x− 2y = 7

Method # 2: Substitution{
2x− 3y = 13

x− 2y = 7

Method # 3: Graphical (imprecise in general)

{
2x− 3y = 13

x− 2y = 7

-6 -4 -2 2 4 6 8 10

-8

-6

-4

-2

2

4
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1.2. Why do we study “linear” things?

These methods are fine if you have two equations in two variables, but what if you
have m equations in n variables? An example is something like

3w + 2x− y + 5z = 8
2w − x + 4y − z = −3
w + 5x + 2y + 6z = 17

This is a system of three equations in four variables. How do you solve this for
w, x, y, z? Does this system even have a solution? If so, how many solutions does
it have?

Big picture conceptual approach:

• think of the left hand side of this system as a single function called T ;

• think of the four variables (w, x, y, z) as a single variable x (a.k.a. −→x );

• group the right-hand side of the equation (8,−3, 17) into a single object
called b (a.k.a.

−→
b ).

• Then the system above becomes a single equation

T (x) = b.

What’s hard:

x and b aren’t numbers–they are objects called vectors.

Similarly, T isn’t a function like any you’ve seen before.

It turns out that T is something called a linear transformation (and is represented
by an object called a matrix).

17



1.3. Introducing vector spaces

Where we’re going:

Just like what happened with our earlier situation

Ax = b,

whether or not the system (now written as a single equation)

T (x) = b (a.k.a. Ax = b where A is a matrix)

has a solution (and what that solution is) boils down to whether or not b is in
the range of T (and this probably depends on some properties of T and/or b.

So to study these systems in general, we need to figure out what these prop-
erties are, and study the nature of linear transformations (and vectors and ma-
trices) in general. This gets us back to the first goal of MATH 322, which we
already stated earlier:

The first major goal of linear algebra is to describe what “linear” means, in
a general sense.

Once we do this, we will then know how to solve systems of any number of equa-
tions in any number of variables. Turns out, we will also discover lots of other
useful stuff along the way.

1.3 Introducing vector spaces
RECALL

Our goal is to study what “linear” means, in a general sense. To get started, re-
member that what we know about linear equations from high school is that they
all (other than vertical lines) have equation

y = mx + b

What operations are required to describe this equation?

1.

2.

18



1.3. Introducing vector spaces

Based on this, it is reasonable to expect that if we are going to define “linear” in a
general sense, we probably need to assume that there is some notion of each of the
two operations above.

A general setting in which we can add objects and multiply objects by real numbers
is called a vector space:

Definition 1.2 A (real) vector space V is a set, together with two operations:

• addition: + : V × V → V (i.e. (u, v) 7→ u + v)

• scalar multiplication: R× V → V (i.e. (c, v) 7→ cv)

such that the following rules (collectively called the Vector Space Laws) are satisfied:

Laws of Vector Addition For all u, v, w ∈ V ,

1. Addition is closed: This means u + v ∈ V .

2. Addition is commutative: This means u + v = v + u.

3. Addition is associative: This means u + (v + w) = (u + v) + w.

4. Additive identity element: This means there exists a special element of
V , called the zero vector (of V ) and denoted 0, such that v + 0 = v.

5. Additive inverses exist: For all v ∈ V , there exists a special element
−v ∈ V such that v + (−v) = 0.

Laws of Scalar Multiplication For all c, d ∈ R and all v ∈ V ,

1. Scalar multiplication is closed: This means cv ∈ V .

2. Scalar multiplication is associative: This means (cd)v = c(dv).
3. Identity element for scalar multiplication: This means 1v = v.

Distributive Laws For all c, d ∈ R and all u, v ∈ V ,

c(u + v) = cu + cv and (c + d)v = cv + dv.

In linear algebra, real numbers are called scalars and elements of the vector space are
called vectors.

Comment: There are other types of vector spaces (other than “real” vector spaces).
These vector spaces have different types of scalars (the scalars can be complex
numbers, rational numbers, or more exotic things). In MATH 322, we will not deal
with these.
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1.3. Introducing vector spaces

Notation: Vectors are usually referred to by boldface letters (like v) when typed,
and as letters with arrows over them (like−→v ) when hand-written. However, some-
times we get lazy and just refer to a vector with a letter (like v). The zero scalar is
denoted 0; the zero vector is denoted 0 or

−→0 .

WARNING: Vectors from two different vector spaces cannot be added to one an-
other; for example, if V and W are two unrelated vector spaces with u, v ∈ V but
w ∈ W , then u + v makes sense but u + w is nonsense.

Our first example of a vector space: R2

Theorem 1.3 The set R2 = {(x, y) : x, y ∈ R} is a real vector space, where the
addition and scalar multiplication are defined coordinate-wise, i.e.

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) and c(x1, y1) = (cx1, cy1).

PROOF Let u, v, and w be arbitrary elements of R2, and let c, d ∈ R. By definition
of R2, we have u = (u1, u2); v = (v1, v2) and w = (w1, w2). To verify R2 is a vector
space, we have to check all the vector space laws one by one:

1. Addition is closed: This is obvious by the definition of vector addition.
2. Addition is commutative: We need to check u + v = v + u:

u + v = (u1, u2) + (v1, v2)
= (u1 + v1, u2 + v2) (by def’n of + in R2)
= (v1 + u1, v2 + u2) (since + is commutative in R)

= (v1, v2) + (u1, u2) (by def’n of + in R2)
= v + u.

3. Addition is associative:

u + (v + w) = (u1, u2) + ((v1, v2) + (w1, w2))
= (u1, u2) + (v1 + w1, v2 + w2) (by def’n of + in R2)

= (u1 + (v1 + w1), u2 + (v2 + w2)) (by def’n of + in R2)
= ((u1 + v1) + w1, (u2 + v2) + w2) (since + is associative in R)

= (u1 + v1, u2 + v2) + (w1, w2) (by def’n of + in R2)

= ((u1, u2) + (v1, v2)) + (w1, w2) (by def’n of + in R2)
= (u + v) + w.
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4. Additive identity element: Let 0 = (0, 0).Then

v + 0 = (v1, v2) + (0, 0)
= (v1 + 0, v2 + 0) (by def’n of + in R2)
= (v1, v2) (since 0 is additive identity in R)
= v.

5. Additive inverses exist: Given v = (v1, v2), let −v = (−v1,−v2). Then

v + (−v) = (v1, v2) + (−v1,−v2)
= (v1 + (−v1), v2 + (−v2)) (by def’n of + in R2)
= (0, 0) (by properties of additive inverses in R)
= 0 (by def’n of 0).

6. Scalar multiplication is closed: This is obvious by the definition of scalar multi-
plication.

7. Scalar multiplication is associative:

(cd)v = (cd)(v1, v2)
= ((cd)v1, (cd)v2) (by def’n of scalar multiplication)
= (c(dv1), c(dv2)) (by associativity of · in R)
= c(dv1, dv2) (by def’n of scalar multiplication)
= c(d(v1, v2)) (by def’n of scalar multiplication)
= c(dv).

8. Identity element for scalar multiplication:

1v = 1(v1, v2)
= (1v1, 1v2) (by def’n of scalar multiplication)
= (v1, v2) (since 1 is mult. identity in R)
= v.

9. Distributive Law # 1:

c(u + v) = c((u1, u2) + (v1, v2))
= c(u1 + v1, u2 + v2) (by def’n of + in R2)
= (c(u1 + v1), c(u2 + v2)) (by def’n of scalar multiplication)
= (cu1 + cv1, cu2 + cv2) (by distributivity of R)

= (cu1, cu2) + (cv1, cv2) (by def’n of + in R2)
= c(u1, u2) + c(v1, v2) (by def’n of scalar multiplication)
= cu + cv.

21



1.3. Introducing vector spaces

10. Distributive Law # 2:

(c + d)v = (c + d)(v1, v2)
= ((c + d)v1, (c + d)v2) (by def’n of scalar multiplication)
= (cv1 + dv1, cv2 + dv2) (by distributivity of R)

= (cv1, cv2) + (dv1, dv2) (by def’n of + in R2)
= c(v1, v2) + d(v1, v2) (by def’n of scalar multiplication)
= cv + dv.

Since all the laws hold, R2 is indeed a vector space over R. □

Note: Actually checking the vector space laws is extremely tedious; for the most
part, we don’t do this in undergraduate mathematics.

Logical technicality: To verify the vector space laws, you need to describe exactly
what the additive identity element (a.k.a. the zero vector) is what exactly is meant
by an additive inverse.

The work in Theorem 1.3 generalizes:

Theorem 1.4 For any n ≥ 1, define Rn to be the set of n−tuples of real numbers with
addition and scalar multiplication defined coordinate-wise. For each n, Rn is a vector
space (and these are the most important examples of vector spaces).

EXAMPLE 10
Let v = (2,−1, 3, 0) and w = (−3,−2, 0, 2).

1. To what vector space should one assume v and w belong?

2. Compute 4v.

3. Compute v + w.

4. Compute 2v− 3w.
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Pictorial representations of vectors

To get a picture of elements of Rn (or any vector space, really), we think of them as
“arrows”:

v
PPPPPq

PPPPPq

In reality, vectors in Rn are more like “floating” arrows, in that two vectors point-
ing the same direction with the same length are really the same vector (even if they
are drawn in different spots).

Using the idea of vectors as “arrows”, vector addition then corresponds to “head-
to-tail” or “parallelogram” addition:

�
���w

PPPPPqv

Scalar multiplication corresponds to “stretching”:

�����:

v

EXAMPLE 11

1. Let v = (3,−1) and u = (2, 1).

-6 -4 -2 2 4 6 8 10 x

-8

-6

-4

-2

2

4

6

8
y
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1.3. Introducing vector spaces

2. Let v = (1, 2, 4) and w = (−6,−2, 5).

y

x

z

3. Let v = (0,−2, 3, 1) and w = (2, 8,−1, 4).

4. Let v and w be as shown here:

v

w
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In the definition of a vector space, we assume the ten so-called “vector space laws”.
From those ten laws, it is possible to show that the following standard rules also
hold in any real vector space:

Theorem 1.5 (Additional laws of real vector spaces) Let V be a real vector space.
Then:

1. Uniqueness of additive identity: There is only one zero vector 0 in V .

2. Uniqueness of additive inverses: For every v ∈ V , there is only one vector
−v which is the additive inverse of v.

3. Rule for additive inverses: For every v ∈ V , (−1)v = −v.

4. Zero property # 1: For every v ∈ V , 0v = 0.

5. Zero property # 2: For every c ∈ R, c0 = 0.

1.4 Examples of vector spaces
Here is a fairly exhaustive list of vector spaces; you should familiarize yourself
with this list and know the symbol(s) used to represent each space:

1. “Traditional” vector spaces: For any n ∈ N, Rn = {(x1, ..., xn) : xj ∈ R∀ j} is
a real vector space, where the addition and scalar multiplication are defined
coordinate-wise. (P.S. ∀ means “for all”; ∃means “there exists”)

2. Real numbers: R is a real vector space (where the addition and scalar multi-
plication are the usual numerical operations). In particular, R1 = R.

3. Zero vector space: {0} (the set consisting only of a zero vector) is a vector space.
In particular, R0 = {0}.

4. Function spaces: Each of the following sets is a real vector space; for all these
sets of functions, the addition is described by (f +g)(x) = f(x)+g(x) and the
scalar multiplication is (cf)(x) = c · f(x). (In all cases, the additive identity
element is the constant function f(x) = 0 and the additive inverse of f is the
function −f .) Specific function spaces include:

a) Polynomials: The set R[x] of polynomials whose coefficients are in R is a
real vector space.
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b) Polynomials of bounded degree: The set Pn of polynomials with real coeffi-
cients whose degree is at most n is a real vector space.

c) Continuous functions: The set C(R,R) of continuous functions from R to
R is a real vector space.

d) Differentiable functions: The set of differentiable functions from R to R is
a real vector space.

e) Analytic functions: The set Cω of analytic functions from R to R is a real
vector space (a function is analytic if it can be written as a power series
which converges everywhere).

5. Sequence spaces: In these examples, the addition and scalar multiplication are
defined term-by-term, i.e.

(x1, x2, x3, ...) + (y1, y2, y3, ...) = (x1 + y1, x2 + y2, x3 + y3, ...)
and

c(x1, x2, ...) = (cx1, cx2, ...).

a) The set RN of infinite sequences of elements of R is a real vector space
(where the addition and scalar multiplication are done term-by-term).

b) The set R∞ of infinite sequences where all but finitely many elements of
the sequence are 0 also forms a real vector space. Here, some care needs
to be taken to verify that addition is closed.

c) The set of convergent sequences of real numbers forms a vector space
over R.

6. Matrix spaces: The set of m × n matrices (this means m rows and n columns)
with elements in R, denoted Mmn(R), is a real vector space where the ad-
dition and scalar multiplication are defined entry-wise. (Notation: the set of
square n×n matrices with entries in R is denoted Mn(R) rather than Mnn(R).)
Matrix spaces are discussed in more detail in Chapter 2.

Key commonalities: With all these examples of vector spaces,

1. You can add two things in the set, and the sum is always something in
the set.

2. You can multiply things in the set by a scalar, and the result is always
something in the set.

If either (1) or (2) fail, then the set is not a vector space.
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EXAMPLE 12
Suppose V and W are (different) real vector spaces; suppose v1, v2 and v3 are vec-
tors in V ; suppose w1 and w2 are vectors in W ; suppose all other letters represent
scalars. Determine whether each of the following expressions results in a scalar, a
vector, or if the expression is nonsense.

1. v1 + 5cv3

2. c(v1 − v1)

3. c(dv2)

4. v1(v2 + cv3)

5. v2(c + d)

6. v1 + w1

7. 1
c
v1

8. 0w2

9. c(d1 + d2)
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1.5 Summary of Chapter 1
1. A (real) vector space is a set V of objects called vectors which can be added

to one another and multiplied by scalars (a scalar is a real number) in such
a way that the addition and scalar multiplication obey a bunch of algebraic
rules (listed earlier in this packet).

2. A vector space is the most general setting in which one can define addition
and multiplication. Since linear functions are made up of addition and mul-
tiplication, this means vector spaces are the most general settings for “linear”
objects.

3. Examples of vector spaces include:

• “traditional vector spaces” Rn, where the vectors are ordered n−tuples
of real numbers;

• “function spaces”, where the vectors are functions;

• “sequence spaces”, where the vectors are sequences;

• “matrix spaces”, where the vectors are matrices.

Each of these vector spaces has their own notion of addition and scalar mul-
tiplication. You cannot add vectors from two different vector spaces.

4. A good pictorial representation of a vector is a “floating arrow”. In this
setting, scalar multiplication corresponds to stretching and addition corre-
sponds to “head-to-tail” addition.

5. The whole point of linear algebra is to define what linear means in a general
sense. We are interested in doing this because linear things are relatively easy
to work with, and because you can approximate any real-world problem with
a linear problem.

6. Eventually we will get around to studying systems of linear equations. So
far, we have looked only at systems of one linear equation in one variable.
Such an equation can always be rewritten as

Ax = b.

• If A ̸= 0, there is exactly one solution of this equation, namely x = A−1b.
• If A = 0 and b = 0, then every x is a solution of this equation (there are

infinitely many solutions).
• If A = 0 and b ̸= 0, the equation has no solution.
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1.6 Homework exercises for Chapter 1
Note: Exercises 1-12 are unrelated to material we cover during lecture; these ques-
tions are based on the material in Appendix A (“All about sets”) in the back of
these notes.

In Problems 1-3, consider the following sets:

E = {1, 3, 5, 7}

F = {0, 2, 4, 6}

G = {1, 2, 4, 5, 7}

H = {x : 0 ≤ x ≤ 7 and x is an integer}

1. Classify the following statements as true or false:

a) 2 ∈ G
b) 2 /∈ E
c) 2 ∈ F ∩H
d) E ∈ H

e) E ⊆ H
f) H ⊆ G
g) E ∩ F = ∅
h) E ∪ F = H

2. Describe the set by giving a list of its elements:

a) E ∪ F
b) E ∩ F

c) (E ∩ F ) ∩G
d) (E ∪ F ) ∩G

3. Which two of the sets E, F , G and H are disjoint?

4. a) Suppose A and B are two arbitrary sets with A ⊆ B.
i. In this situation, what is A ∩B?

ii. What is A ∪B?

b) Let S be any set.

i. What is S ∪ S?
ii. What is S ∩ S?

iii. What is S ∩ ∅?
iv. What is S ∪ ∅?

5. Let E, F and G be any three sets. Classify each statement as true or false:

a) E ∩ F = F ∩ E
b) E ∪ F = F ∪ E
c) E ∩ (F ∩G) = (E ∩ F ) ∩G

d) E ∪ (F ∪G) = (E ∪ F ) ∪G
e) E ∩ (F ∪G) = (E ∩ F ) ∪G
f) E ∩ (F ∪G) = (E ∩ F )∪ (E ∩G)
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Hint: For each question, draw a Venn diagram and figure out which region(s)
of the Venn diagram go with the left- and right-hand sides of the equation.
If the same regions go with both sides, the statement is true; otherwise, the
statement is false.

6. In this problem, you are given various subsets of R2. For each subset, sketch
a picture of R2 and indicate (by shading, or color-coding, etc.) which points
belong to the set. Please draw a different picture for each problem:

a) A = {(x, y) : y = 2x};
b) B = {(x, y) : x ≥ 1};
c) A ∩B (where A and B are as in the previous two parts);
d) C = {(x, y) : x + y = 3}.

7. Same directions as the previous problem:

a) A ∪ C (where A and C are as in the previous problem);
b) A ∩ C (where A and C are as in the previous problem);
c) D = {(x, y) : x2 = y2};
d) E = {(x, y) : y < x2}.

8. In this problem, let E be the set of all even integers, let D be the set of all
odd integers, let P be the set of positive integers, and let N be the set of all
negative integers.

a) Is the statement E + E = 2E true or false? Explain.
b) Describe each of the following sets (i.e. they are one of E, D, P, N or Z):

E + D D + D D + P P + P − P E + 3

9. In this problem, consider the following intervals in R:

A = [0, 3) (i.e. A = {x : 0 ≤ x < 3})
B = [−5,−1]
C = [2,∞)

Write each of the sets below in interval notation:

a) 4A
b) −3C
c) A + B
d) A + C

e) C + C + C
f) A− A
g) C − 3
h) B + 4
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10. In this problem, consider the following subsets of R2:

A = {(x, y) : y = x}
B = {(x, y) : y = 3x + 6}
C = {(x, y) : |x| ≤ 1}
D = {(x, y) : y ≥ 3}
E = {(x, y) : x ≥ 2}

For each given set below, sketch a picture of R2 and indicate (by shading,
etc.) which points belong to the set. Please draw a different picture for each
problem:

a) 3A
b) 2B

c) −C
d) D + E

11. Same directions and sets as the previous problem:

a) A + E
b) A + B

c) A + (0, 1)
d) A + (−3, 4)

12. Consider the following subsets of R2:

A = {(x, y) ∈ R2 : x ≥ 2}

B = {(x, y) ∈ R2 : y = 1
2x}

C = {(x, y) ∈ R2 : y = x2}

D = {(x, y) ∈ R2 : x = 0}

E = {(x, y) ∈ R2 : x2 + y2 = 1}

For each subset of R2 given below, sketch a picture of R2 and indicate (by
shading, etc.) which points belong to the set. Please draw a different picture
for each problem.

a) B + (2, 3)
b) C − (0, 1)
c) C + (0, 5)
d) D + (3, 2)
e) D + (4, 0)

f) A + B

g) B + D

h) −E

i) 4E

j) D + E
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13. a) Let W be a subset of a vector space V and let v ∈ V . Based on your
answers to parts (a)-(e) of the preceding question, describe in your own
words what you think the difference is between the sets W and W + v.
Hint: One or more of the words “rotate”, “reflect”, “shift”, “translate”,
“stretch”, “shrink” may be useful in describing what is going on.

b) Let E be the pentagon in R2 whose vertices are (−1, 0), (0, 1), (2, 1),
(2,−1) and (0,−1). Sketch a picture of E + (−5,−2), indicating the co-
ordinates of the vertices of this object.

14. Classify the following statements as true or false (no explanation is required).
The sets A, ..., E in this problem are the same ones as in Problem 12.

a) A = A + A

b) B = 2B

c) C = 2C

d) B = B + B

e) D = D −D

f) E = 2E

g) cD = D for any constant c

h) 0A = D

15. Which one or ones of the sets A, B, C, D, E from Problem 12 contain the zero
vector?

16. Which one or ones of the sets A, B, C, D, E from Problem 12 are “closed un-
der addition”? (A set is called closed under addition if the sum of any two
elements from that set is also in that set.)

17. Which one or ones of the sets A, B, C, D, E from Problem 12 are “closed under
scalar multiplication”? (A set is called closed under scalar multiplication if
the product of any scalar times any element of the set must also be in that
set.)

18. Compute the following quantities, if they make sense. If they don’t make any
sense, just write “nonsense”.

a) (2,−3, 1) + (−7, 5, 2)
b) 3(−1, 0, 4)− 2(1, 3, 0)

c) 2(1, 4,−2, 5) + (2, 3, 0, 1, 0)
d) 4(1, 2) + 3(0,−1) + (5, 6)
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Chapter 2

Matrices

2.1 Vocabulary
In the last chapter, we discussed several examples of vector spaces (sets of ordered
n−tuples, the zero vector space, spaces of functions, etc.). Now, we introduce one
more class of a vector spaces, whose importance will be in helping us represent the
“T ”s in the T (x) = b we want to study.

Definition 2.1 Given positive integers m and n, an m× n matrix with entries in R
is an array of numbers aij ∈ R where 1 ≤ i ≤ m and 1 ≤ j ≤ n. We denote matrices
by capital letters (usually); a matrix with entries aij is usually denoted A. We arrange
the entries of the matrix in a rectangle as follows:

A =



a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32
. . . ...

...
... . . . ...

am1 am2 · · · · · · amn


The set of matrices of size m× n with entries in R is denoted Mmn(R).

Two matrices are equal if they are the same size and if all their entries coincide, i.e.
A = B if they are both m× n and if aij = bij for all i, j.

In particular, aij is the entry of A in the ith row and jth column. m is the number of
rows of A; n is the number of columns of A.
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Definition 2.2 A matrix is called square if it has the same number of rows as columns.
The set of square n × n matrices with entries in R is denoted Mn(R) (as opposed to
Mnn(R)).

EXAMPLES: A =
(

1 6
−4 5

)
B = ( 1 5 7 )

Definition 2.3 Given a matrix A, the diagonal entries of A are the numbers a11, a22,
a33, ...ann (this list may stop at amm depending on when you run out of entries).

EXAMPLE: A =
 2 7

5 1
4 −2


Definition 2.4 A matrix A is called diagonal if it is square and all of its nondiagonal
entries are zero.

EXAMPLE: A =


2 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 4


Definition 2.5 The trace of a matrix, denoted tr(A), is the sum of the diagonal en-
tries of that matrix.

EXAMPLE: A =
 7 −2 4

1 −2 5
0 1 −1

 tr(A) =

Definition 2.6 A square matrix is called upper triangular (abbreviated upper ∆)
if all its entries below its diagonal are zero. A matrix is called lower triangular
(abbreviated lower ∆) if all the entries above its diagonal are zero. A matrix is called
triangular if it is either lower triangular or upper triangular.

EXAMPLES: A =
(

2 3
0 −4

)
is upper ∆. B =

 −7 0 0
3 −2 0
1 −3 4

 is lower ∆.

Note: diagonal matrices are both upper triangular and lower triangular.

Definition 2.7 The transpose of an m×n matrix A, denoted AT or At, is the n×m
matrix satisfying (aT )ij = aji for all i, j.

EXAMPLE: A =
 1 −4

2 −1
3 0

 AT =

34



2.1. Vocabulary

Definition 2.8 The n × n identity matrix, denoted I or In, is the diagonal n × n
matrix with all diagonal entries equal to 1.

I =



1 0 0 · · · 0
0 1 0 · · · 0

0 0 1
...

...
...

. . . 0
0 0 · · · 0 1



Definition 2.9 Given an m× n matrix A as above, the vectors

(a11, a12, a13, ..., a1n),
(a21, a22, a23, ..., a2n),

...,
(am1, am2, ..., amn)

are called the rows of A; note that each row of A is an element of Rn. The vectors
a11
a21

...
am1

 ,


a12
a22

...
am2

 , ...,


a1n

a2n
...

amn


are called the columns of A; note that each column of A is an element of Rm.

EXAMPLE 1
For each given matrix:

a) Give the size of the matrix.
b) Write down the (3, 2)−entry of the matrix (if it exists).
c) Write down the diagonal entries of the matrix.
d) Write down the second row of the matrix.
e) What is the trace of the matrix?
f) Is the matrix square? diagonal? upper triangular? lower triangular?
g) Write down the transpose of the matrix.

1. A =

 1 2 3
4 5 6
7 8 9
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2. B =

 −4 2 5 6
7 0 −3 2
4 2 1 −2


a) B ∈
b) b32 =
c) diagonal entries are
d) the second row of B is
e) tr(B) =
f) B is not square and hence not diagonal or triangular

g) BT =


−4 7 4
2 0 2
5 −3 1
6 2 2

.

3. C =
(
−1 2 0 −3 0
0 3 1 4 −6

)
a) C ∈M25(R), i.e. C is 2× 5
b) c32 DNE
c) diagonal entries are −1 and 3
d) the second row of C is (0, 3, 1, 4,−6) (this is an element of R5)
e) tr(C) = −1 + 3 = 2
f) C is not square and hence not diagonal or triangular

g) CT =


−1 0
2 3
0 1
−3 4
0 −6



4. D =
(

3 0
1 −5

)
a) D ∈M2(R)
b) d32 DNE
c) diagonal entries are 3 and −5
d) the second row of D is (1,−5) (this is an element of R2)
e) tr(D) = 3 + (−5) = −2
f) D is square and lower triangular, but not diagonal

g) DT =
(

3 1
0 −5

)
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2.2 Matrix operations
The first thing we want to do is show that for each m and n, the set Mmn(R) of
m × n matrices forms a vector space. To do this, we need to define what it means
to add two matrices, and what it means to multiply a matrix by a scalar. Essen-
tially, addition and scalar multiplication of matrices are performed entry-by-entry. More
precisely,

Definition 2.10 Given two matrices A, B ∈ Mmn(R) and a scalar r ∈ R, we define
the matrix A + B ∈Mmn(R) by

A + B =



a11 + b11 a12 + b12 a13 + b13 · · · a1n + b1n

a21 + b21 a22 + b22 a23 + b23 · · · a2n + b2n

a31 + b31 a32 + b32
. . .

...
...

...
. . .

...
am1 + bm1 am2 + bm2 · · · · · · amn + bmn


(equivalently we set (a + b)ij = aij + bij for all i, j); and we define the matrix rA ∈
Mmn(R) by

rA =



ra11 ra12 ra13 · · · ra1n

ra21 ra22 ra23 · · · ra2n

ra31 ra32
. . .

...
...

...
. . .

...
ram1 ram2 · · · · · · ramn


(equivalently we set (ra)ij = r(aij) for all i, j).

Note: You can only add two matrices of the same size.

EXAMPLE 2

Let A =
(

4 1 −1
2 0 −3

)
, B =

(
1 1 2
0 1 −1

)
and C =

(
2 1
1 5

)
.

1. A + B =

2. 3A− 2B =
(

3(4)− 2(1) 3(1)− 2(1) 3(−1)− 2(1)
3(2)− 2(0) 3(0)− 2(1) 3(−3)− 2(−1)

)
=

(
10 1 −5
6 −2 −7

)
.

3. 4C =
(

4(2) 4(1)
4(1) 4(5)

)
=

(
8 4
4 20

)
.

4. A + C DNE because A and C are not the same size.
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Theorem 2.11 The operations defined above make each Mmn(R) into a real vector
space; the additive identity element of Mmn(R) is the m× n zero matrix

0 = 0m×n =



0 0 0 · · · 0
0 0 0 · · · 0

0 0
. . .

...
...

...
. . .

...
0 0 · · · · · · 0

 .

Associating vectors in Rn to column vectors

We associate vectors in Rn to n× 1 matrices as follows:

x = (x1, x2, ..., xn) ∈ Rn ←→ x =


x1
x2
...

xn

 ∈Mn1(R).

In particular, an n× 1 matrix is also called a column vector. A column vector with
n entries is the same thing as a vector in Rn. Given a vector x = (x1, ..., xn) ∈ Rn, if
we want to think of that vector as a row vector, we take the transpose of x:

xT =
(

x1 x2 x3 · · · xn

)
∈M1n(R).

Theorem 2.12 (Properties of elementary matrix operations) Let A and B be ma-
trices of the same size, and let r ∈ R. Then:

Transpose is linear: This means (A + B)T = AT + BT and (rA)T = r(AT )

Transpose undoes itself: (AT )T = A.

Transpose preserves trace: tr(AT ) = tr(A).

Trace preserves addition: tr(A + B) = tr(A) + tr(B)
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2.3 Matrix multiplication
There is another operation one can perform on matrices, which doesn’t directly
have anything to do with thinking of matrices as vectors. The importance of this
operation will be seen later in the course; for now we simply define it:

Definition 2.13 Given matrices A ∈ Mmn(R) and B ∈ Mpq(R), if n = p then we
can define the product AB, which is an m×q matrix AB defined entrywise by setting

(ab)ij =
n(=p)∑
k=1

aikbkj.

(If n ̸= p, AB is undefined.)

REMARKS

• If A is a square matrix, we write A2 for AA, A3 for AAA, etc. But if A isn’t
square, then A2 is undefined.

• In general matrix multiplication is not commutative: AB ̸= BA most of the
time, even if both products are defined.

How to recognize matrix multiplication:

Matrix multiplication is ubiquitous in mathematics. Whenever you encounter
one of these type of formulas in a math problem:

(answer)□△ =
∑
⋆

something□⋆something else⋆△

answer(□,△) =
∑
⋆

something(□,⋆)something else(⋆,△)

you should instinctively think

“Hey! The answer is the matrix product of “something” times “something else”.

If you are familiar with dot products, you can see that each entry of AB is a
dot product:

(i, j)−entry of AB = (ith row of A) · (jth column of B)

If you aren’t familiar with dot products, don’t worry... we’ll discuss them later.
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2.3. Matrix multiplication

EXAMPLE 3

Let A =
(

1 −1 0
2 1 −3

)
, B =

(
−2 1
1 3

)
and C =

 5 −1
1 2
0 1

. Compute each quan-

tity. If the quantity is undefined, say so (with justification).

1. AB

2. BA

3. A2

4. B2
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2.3. Matrix multiplication

5. (Recall that A =
(

1 −1 0
2 1 −3

)
, B =

(
−2 1
1 3

)
and C =

 5 −1
1 2
0 1

.)

CB2A
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2.3. Matrix multiplication

Theorem 2.14 (Properties of matrix multiplication) Let A, B, C be matrices with
entries in R, let I be the identity matrix of the appropriate size and let r ∈ R. Then,
so long as everything is defined, we have:

Matrix multiplication is associative: This means

A(BC) = (AB)C and r(AB) = (rA)B = A(rB)

Matrix multiplication distributes over addition: This means

A(B + C) = AB + AC and (A + B)C = AC + BC

I is a multiplicative identity: This means IA = A and AI = A.

Transpose of a prod. is the backward prod. of transposes: (AB)T = BT AT .

Trace of a product doesn’t care about the order: tr(AB) = tr(BA).

EXAMPLE 4
Suppose A ∈ Mmn(R), b ∈ Rn, C ∈ Mnn(R), D ∈ Mnm(R) (assume in this prob-
lem that neither m nor n are 1, and assume m ̸= n). For each of the following
expressions, determine if the expression is a scalar, a vector, a matrix (in which
you should give its size), or nonsense.

1. Ab

2. AC2

3. CAb

4. bCI

42



2.3. Matrix multiplication

5. bbT

6. bT b

7. bT IC

8. bT Cb

9. (bT b)D

10. DACD

Solution: Dn×mAm×nCn×nDn×m = (DACD)n×m which is an n×m matrix .

11. DAC2b
Solution: Dn×mAm×nCn×nCn×nbn×1 = (DAC2b)n×1 which is a vector in Rn .

12. bT DA

13. (AC)T
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2.4 Mathematica and calculator commands for matrix operations
Matrix operations for large-sized matrices can and should be done electronically
using either a computer software package or calculator. In this section I give direc-
tions for matrix operations using the computer software package Mathematica and
I give directions for matrix operations on a TI-83/84 series graphics calculator. For
other calculators, consult your user manual or the internet, or ask your instructor
or classmate.

Matrix operations on Mathematica

Defining a matrix: To store a matrix as a variable, there are two methods.

1. Type the matrix in using braces very carefully. For example, to save the

matrix
(

2 4 7
−5 3 1

)
as A, execute

A = {{2,4,7}, {-5,3,1}}

Note that the entries are separated by commas, every row of the matrix
needs braces around it, and the entire matrix needs braces around it.

To type in a column vector, you need only one set of braces, so if you

execute b = {1,2,3}, this defines the column vector (1, 2, 3) =
 1

2
3

.

2. Use the Basic Math Assistant Pallette. Click Pallettes and Basic Math
Assistant, then on the Basic Math Assistant click the fourth tab under
Basic Commands that looks like a matrix. In the Mathematica notebook,
type A=, then click the large button that looks like a matrix, then click
AddRow or Add Column until the matrix is the appropriate size. Click
in each box of the matrix and type in the appropriate numbers. For
example, your command to define the A above would look like

A =
(

2 4 7
-5 3 1

)

Matrix multiplication: To multiply two matrices in Mathematica, you need a pe-
riod between the matrices. For example, after defining matrices A and B,
you can compute the matrix product by

A.B

The output you will get won’t look like a matrix; to make it look like a matrix
you can type
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2.4. Mathematica and calculator commands for matrix operations

A.B //MatrixForm

For matrix powers, you will need to type A.A rather than Aˆ2. For a larger
matrix power (say A100), run the following:

MatrixPower[A,100] //MatrixForm

Other matrix operations: Once you have saved a matrix as a letter or string, you
can perform standard operations on it as follows (add //MatrixForm to the
end of the command to make the output look like a matrix):

1. For the transpose of A, execute Transpose[A].
2. For the trace of A, execute Tr[A].
3. To multiply A by a scalar (say 5), execute A.

4. To add two matrices (say A and B), execute A + B.

5. To get the i, j entry of a matrix, use double braces: execute A[[2,3]] (to
get the 2, 3−entry).

6. To call the n × n identity matrix, use a command like IdentityMatrix[4]
(this generates the 4× 4 identity matrix).

Matrix operations on TI-83/84-type calculators

The main button you need to find is the [MATRX] button, which may be above the
[SIN] key or the second function on the [x−1], button depending on your particular
model.

Defining a matrix: Suppose you want to enter the matrix(
2 4 7
−5 3 1

)

into your calculator. There are two ways to do this:

1. On your normal screen, type [[2,4,7][-5,3,1]], then hit [STO→], [MATRX]
and choose a name for the matrix from the NAME menu. Note that there
are no commas between the rows.

2. Alternatively, you can hit [MATRX]. You will see a menu where across
the top of the screen the calculator says NAMES, MATH, EDIT. Use the
right arrow to highlight EDIT, and then if necessary move the cursor
up or down until you get to the letter you want to save your matrix as.
Type in the size of the matrix (in this case it is 2 × 3), and then type the
entries in one by one. Once you get done, hit [QUIT] to return to the
home screen.
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2.4. Mathematica and calculator commands for matrix operations

Matrix multiplication: To multiply two matrices (say A times B) with a TI-83/84
calculator, first save the two matrices and then return to the home screen.
Now, hit [MATRX], highlight NAMES, and go down to [A] and hit [ENTER].
Now hit [MATRX], highlight names, and go down to [B] and hit [ENTER].

Your home screen should now look like [A][B]; now hit [ENTER] and the ma-
trix product will be displayed.

Other matrix operations: Assuming you have saved the matrices you want to work
with:

1. For the transpose of A, type [MATRX], highlight NAMES, go down to
[A] and hit [ENTER]. Then hit [MATRX], highlight MATH and choose T .
Hit [ENTER]; the home screen will look like [A]"T . Hit [ENTER] and the
transpose will be displayed.

2. To multiply A by a scalar (say 5), hit 5 and then hit [MATRX], highlight
NAMES, and go down to [A] and hit [ENTER]. Your home screen will look
like 5[A]; now hit [ENTER] and the product will be displayed.

3. To add two matrices (say A and B), use the same commands as for ma-
trix multiplication, but put a + in between the matrices.
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2.5 Homework exercises for Chapter 2
In problems 1 through 6, let

A =
(

1 2 3
2 1 4

)
; B =

 1 0
2 1
3 2

 ; C =

 3 −1 3
4 1 5
2 1 3

 ;

D =
(

3 −2
2 4

)
; E =

 2 −4 5
0 1 4
3 2 1

 ; F =
(
−4 5
2 3

)
;

x = (2, 1,−1); y = (1,−3).

1. Compute each of the following quantities, if they make sense. If they don’t
make any sense, just write “nonsense”.

a) the size of A

b) the size of C

c) the size of BT

d) the diagonal entries of E

e) the trace of C

f) tr(F )

2. Compute each of the following quantities, if they make sense. If they don’t
make any sense, just write “nonsense”.

a) b1,2

b) b2,1

c) 2c1,3 − c2,3

d) the second row of A

e) the third column of C

f) the third row of D

3. Compute each of the following quantities, if they make sense. If they don’t
make any sense, just write “nonsense”.

a) A + B

b) C + E

c) 2F − 3D

d) AT

e) (AT )T

f) (2 + 3)B

4. Compute each of the following quantities, if they make sense. If they don’t
make any sense, just write “nonsense”.

a) 2(3B)
b) D −DT

c) (2A)T

d) (B + AT )T

e) (B + F )T

f) C + I (you should know what I
is)
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5. Compute each of the following quantities, if they make sense. If they don’t
make any sense, just write “nonsense”.

a) AB

b) (3A)B
c) BF

d) FB

e) A(C + E)
f) F 3

6. Compute each of the following quantities, if they make sense. If they don’t
make any sense, just write “nonsense”.

a) ABDF

b) DBT

c) DAT

d) Ax
e) xA

f) yT Fy

7. a) Give an example of two 2 × 2 matrices A and B such that AB ̸= BA
(verify that these products are unequal).

b) Give an example of two 2× 2 matrices A and B such that:
• neither A nor B are diagonal matrices;
• B ̸= cA for any scalar c; and
• AB = BA (verify that the products are equal).
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Chapter 3

Subspaces

3.1 Introducing subspaces
RECALL

We have seen several examples of real vector spaces so far:

• The zero vector space {0};
• Rn, the space of “traditional” vectors;

• spaces of functions like C(R,R), R[x], Pn, etc.;

• spaces of sequences; and

• spaces Mmn(R) of m× n matrices.

Some of these vector spaces are subsets of one another. For example, we know
from calculus that every polynomial is a continuous function. Restated, this says
that the set R[x] of polynomials is a subset of the space C(R,R) of all continuous
functions from R to R. In set language, we would write

When one vector space is a subset of another, we say that the first space is a subspace
of the second. More precisely:

Definition 3.1 Let V be a real vector space, and let W ⊆ V be a subset of V . W
is called a subspace of V if W is itself a real vector space under the operations of
addition and scalar multiplication that define V .

The only way W would not be a real vector space is if it is not closed under addition
or scalar multiplication, so this definition can be restated as follows:
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Definition 3.2 (equivalent to Definition 3.1) Let V be a real vector space, and let
W ⊆ V be a subset of V . W is called a subspace of V if:

1. W is nonempty, meaning there exists some w ∈ W ;

2. W is closed under addition, meaning that if w1 ∈ W and w2 ∈ W , then
w1 + w2 ∈ W .

3. W is closed under scalar multiplication, meaning that if w1 ∈ W and r ∈ R,
then rw1 ∈ W .

Theorem 3.3 Let V be a real vector space, and let W ⊆ V be a subspace. Then the
zero vector 0 must be in W .

PROOF Let W be a subspace of V . Then W ̸= ∅, so there is some w ∈ W . Since W
is closed under scalar multiplication,

0w = 0 ∈ W

as desired. □

A preview: It turns out that a deep understanding of subspaces is key to solving
problems like those we encountered in Chapter 1.

Therefore, we need to obtain a good understanding of what is and what isn’t a
subspace. Eventually, we’ll develop intuition for this, but for now, we need to
learn how to prove whether or not subsets of a vector space are subspaces.

How to prove if a subset of a vector space is a subspace

Definition 3.2 and Theorem 3.3 give us a standard way to decide whether a subset
of a vector space is a subspace. If you are given vector space V and subset W ⊆ V ,
to decide whether W is a subspace, ask the following questions (this is called the
brute-force method for determining whether or not W is a subspace:

START
Is

0 ∈W ?

Is W
closed

under +?

Is W
closed
under

scalar ×?

W is a
subspace

W is not
a subspace

W is not
a subspace

W is not
a subspace

Yes Yes Yes

No No No
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3.1. Introducing subspaces

EXAMPLE 1
In these examples, you are given a real vector space V and a subset W of V . Deter-
mine, with justification, whether or not W is a subspace of V .

1. V = any vector space. W = {0}.

INTUITION RIGOROUS PROOF

2. V = M2(R). W = the set of diagonal 2× 2 matrices.

INTUITION RIGOROUS PROOF
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3.1. Introducing subspaces

3. V = R2. W = the set of vectors (x, y) such that y = 3.

INTUITION RIGOROUS PROOF

• Is 0 ∈ W ?

4. V = R2. W = the x−axis.

INTUITION RIGOROUS PROOF

• Is 0 ∈ W ?

•W closed under +?

•W closed under · ?

5. V = R2. W = the upper half-plane = {(x, y) : y ≥ 0}

INTUITION RIGOROUS PROOF

• Is 0 ∈ W ?

•W closed under +?

•W closed under · ?
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6. V = C(R,R). W = the set of differentiable functions from R to R.

INTUITION RIGOROUS PROOF

• Is 0 ∈ W ?

•W closed under +?

•W closed under · ?

7. V = C(R,R). W = the set of functions passing through (5, 0).

INTUITION RIGOROUS PROOF

• Is 0 ∈ W ?

•W closed under +?

•W closed under · ?
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8. V = C(R,R). W = the set of functions passing through (5, 2).

INTUITION RIGOROUS PROOF

• Is 0 ∈ W ?

9. V = any vector space. W = V .

INTUITION RIGOROUS PROOF

• Is 0 ∈ W ? Let w1, w2 ∈ W and r ∈ R.

Then w1 ∈ V and w2 ∈ V .

•W closed under +? Therefore w1 + w2 ∈ V , since V is a vector space.
Since V = W , that means w1 + w2 ∈ W ,

so W is closed under +.

Also, rw1 ∈ V , since V is a vector space.
•W closed under · ? Since V = W , that means rw1 ∈ W ,

so W is closed under scalar multiplication.

Therefore W is a subspace of V . □

To write a proof that a subset W is a subspace of V , you need to do both of
these things:

1. Take two generic elements of W (see worksheet) and add them. Verify
that the sum belongs to W .

2. Take a generic element of W and multiply it by a generic constant (like
r). Verify that this product belongs to W .
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To write a proof that a subset W is NOT a subspace of V , you need to do one
of these three things:

1. Explain why 0 does not belong to W .

2. Alternatively, write down two specific elements of W (i.e. with numbers)
whose sum is not in W .

3. Alternatively, write down a specific element of W (i.e. with numbers)
and a specific scalar (i.e. a number) such that when you multiply that
scalar by that element, the product is not in W .

Performing either (2) or (3) in this context is called finding an explicit counterex-
ample.

Intuition regarding subspaces

How do you know which of the two above procedures you are supposed to be
carrying out?

In order for a subset W to be a subspace of vector space V , W should ...

• contain the zero vector,

• be unbounded, i.e. extend “forever” in any direction it goes (otherwise it
won’t be closed under scalar multiplication);

• be flat/straight (otherwise it won’t be closed under scalar multiplication);

• and be convex, i.e. for any two points in W , the line segment connecting
the points should stay entirely within W (otherwise, it won’t be closed under
addition).

If W is these four things, it is probably a subspace. That said, these intuitive con-
cepts are NOT substitutes for a proof.
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3.2 Span
Here is an important example of a class of subspaces:

Definition 3.4 Let V be a real vector space and let v ∈ V be any vector. Define
W = {cv : c ∈ R} to be the set of scalar multiples of v. W is called the span of v and
denoted Span(v) or ⟨v⟩.

General pictorial representation of the span of a single vector:

EXAMPLE 2
V = R2; v = (3, 1).

1

3
x

y

EXAMPLE 3
V = R3; v = (0, 1, 0).

y

x

z

1

EXAMPLE 4
V = C(R,R), f(x) = sin x.
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Theorem 3.5 Let V be a real vector space. Then the span of any vector is a subspace
of V .

PROOF Suppose w1, w2 ∈ Span(v) and r ∈ R.

That means w1 = c1v, w2 = c2v.

So w1 + w2 = c1v + c2v = (c1 + c2)v ∈ Span(v), so Span(v) is closed under +.

Also, rw1 = r(c1v) = (rc1)v ∈ Span(v), so Span(v) is closed under scalar
multiplication.

Therefore Span(v) is a subspace of V .

Definition 3.6 Let V be a real vector space and let v1, v2, ..., vn ∈ V be any col-
lection of vectors. Define the span of these vectors to be the set W ⊆ V , denoted
Span(v1, ..., vn) or ⟨v1, ..., vn⟩, by

W = Span(v1, ..., vn) = {c1v1 + ... + cnvn : cj ∈ R∀j}

(this the set of linear combinations of the vj).

The word “span” can also be used as a verb:

Definition 3.7 Let V be a real vector space (or subspace) and let v1, v2, ..., vn ∈ V be
a collection of vectors. We say the set {v1, v2, ..., vn} spans V if V = Span(v1, ..., vn).

EXAMPLE 5
V = R3; v1 = (1, 0, 0), v2 = (0, 1, 0)

y

x

z

v2v1
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EXAMPLE 6
V = R3; v1 = (1, 2,−1), v2 = (−2, 1, 3)

y

x

z

v2

v1

EXAMPLE 7
V = R3; v1 = (1, 3, 1), v2 = (2, 6, 2)

y

x

z

v2
v1

Theorem 3.8 (Spans are subspaces) Let V be a real vector space. Then the span of
any collection of vectors in V is a subspace of V .

PROOF HW (this is similar to the proof of Theorem 3.5).

Hint: If w is a generic element of Span(v1, ..., vn), then w can be written down as
n∑

j=1
cjvj , where cj ∈ R for all j.
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3.3 Distinguishing between subspaces
QUESTIONS

1. In a general sense, what kinds of sets are subspaces?
2. How do you distinguish between vector spaces?
3. How do you distinguish between different subspaces of a vector space?

FIRST EXAMPLE

What is the difference between R2 and R3?

x

y

y

x

z

Some questions related to these observations:

1. Is it possible to span R2 with only 1 vector?

2. Is it possible to span R3 with less than 3 vectors?

3. R2 is also Span((1, 0), (0, 1), (1, 1)):

x

y

If W = Span(v1, v2, v3, ..., vn), which vj are needed? Which are not?

4. R2 is also spanned by lots of other sets of two vectors. Is R2 spanned by any
set of two vectors in R2?
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SECOND EXAMPLE

Let V = R2 and let W1 = Span(1, 0); W2 = Span(1, 1); W3 = Span(−4, 0).

x

y

But what does “going in the same direction” mean, in general?

Definition 3.9 Let V be a real vector space. Two vectors v and w in V are called
parallel (denoted v||w) if one is a scalar multiple of another, i.e.

v||w ⇐⇒ (∃ c ∈ R s.t. cv = w) or (∃ c ∈ R s.t. cw = v).

Two vectors v and w are in the same direction if the c in the above definition can be
taken to be greater than or equal to zero.

Some mathematical shorthand:

⇐⇒ means “if and only if”
⇒ means “therefore”

“s.t.” means “such that”
∃ is short for “there exists”
∀ is short for “for all”
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EXAMPLE 8
V = R2; v = (2,−3); w = (−4, 6).

EXAMPLE 9
V = R2; v = (0, 0); w = (1, 2).

EXAMPLE 10

V = M2(R); A =
(

2 −3
0 1

)
; B =

(
8 −12
0 4

)
.

The following characterization of parallelism is important because it will general-
ize to collections of more than two vectors.

Theorem 3.10 Let v, w ∈ V , where V is a real vector space. Then

v||w ⇐⇒ ∃ c1, c2 ∈ R with c1, c2 not both zero,
so that c1v + c2w = 0.

PROOF (⇒) Assume v||w. Then

v = cw for some scalar c

⇒ v− cw = 0
⇒ 1v + (−c)w = 0
⇒ c1v + c2w = 0 (where c1 = 1, c2 = −c).

(⇐) Suppose c1v + c2w = 0 where either c1 or c2 is nonzero.
If c1 ̸= 0, divide through by c1 to get

v + c2

c1
w = 0 ⇒ v = −c2

c1
w ⇒ v||w.

If c2 ̸= 0, divide through by c2 to get
c1

c2
v + w = 0 ⇒ w = −c1

c2
v ⇒ v||w. □
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3.4 Affine subspaces
Definition 3.11 Let V be a real vector space. An affine subspace A of V is a trans-
late of a subspace, i.e. A is an affine subspace of V if there exists a vector p ∈ V and a
subspace W ⊆ V such that

A = p + W = {p + w : w ∈ W}.

In this setting, the vector p is called a translation vector for A, and the subspace W
is called the associated subspace of A.

FIRST EXAMPLES

• For any vector space V , V is a subspace of itself (hence an affine subspace of
itself).

• For any vector space V , any set {v} consisting of exactly one vector v ∈ V
constitutes an affine subspace called a point (since any such set is the trans-
lation of the subspace {0} by the translation vector v).

Note: “Affine” is not an adjective which describes some subspaces. In fact, sub-
spaces are special kinds of affine subspaces, not the other way around:

W

x

y

W

p

x

y

Lines

Definition 3.12 Let V be a real vector space. A line Λ in V is an affine subspace
whose associated subspace is the span of a single nonzero vector v ∈ V . v is called a
direction vector for the line.

Span(v)

p v
y

x

z
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Definition 3.13 Let Λ be a line in vector space V . A set of parametric equations
for Λ is a coordinate-wise version of the equation x = p + tv, where p ∈ Λ and v is a
direction vector of Λ.

Note: parametric equations for a line (or other affine subspace) are NEVER unique,
because they depend on a choice of p and v.

EXAMPLE 11
Find parametric equations for the line which passes through (4,−1, 3) and (2, 5,−1)
in R3.

Parametric equations for a line “lay a t−axis” on that line, i.e. coordinatize the line
where

t = 0↔ choice of translation vector p

one unit of t↔ choice of direction vector v

Λ

p

v
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Planes

Definition 3.14 Let V be a real vector space. A plane Π in V is an affine subspace
whose associated subspace is the span of two nonparallel vectors v, w ∈ V .

vw
p

Definition 3.15 Let Π be a plane in vector space V . A set of parametric equations
for Π is a coordinate-wise version of the equation x = p + sv + tw, where p ∈ Λ and
v and w span the subspace associated to Π.

EXAMPLE 12
Find parametric equations of the plane in R3 containing the point (3, 2,−7) and
whose associated subspace is spanned by (1, 5,−1) and (2, 0,−3).
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EXAMPLE 13
Find parametric equations of the plane in R3 passing through (1, 1, 4), (2, 3, 1) and
(−2, 4, 4).

(1,1,4)

(2,3,1)

(-2,4,4)

Parametric equations for a plane Π “lay an s, t−plane” on Π where

(s, t) origin ↔ choice of translation vector p
s− axis ↔ choice of v
t− axis ↔ choice of w

The s− and t−axes need not be ⊥:

v
w
p
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Affine subspaces of R, R2 and R3

QUESTION

Can we completely list all the subspaces and affine subspaces of a given vector
space V ?

Answer: In most cases, yes; for now, we do this when V is R, R2 or R3.

Theorem 3.16 The only subspaces of R are the zero subspace {0} and the entire real
number line R.

PROOF First, both {0} and R are obviously subspaces of R.
So we need to show that there aren’t any other subspaces of R.
To do this, let W ⊆ R be a subspace. There are two cases:

Case 1: W = {0}.
Case 2: W ̸= {0}. In this situation, there is a w ̸= 0 s.t. w ∈ W .

Then rw ∈ W for all r ∈ R, so all real numbers are in W . Thus W = R. □

Corollary 3.17 The only affine subspaces of R are points and the entire real number
line R.

PROOF Let A be an affine subspace of R.
Then A = p + W where W is a subspace of R and p ∈ R.
By the previous theorem, there are two cases:

Case 1: W = {0}. Then A = {p}, a point.

Case 2: W = R. Then A = p + R = R. □

Theorem 3.18 The only subspaces of R2 are the zero subspace {0}, lines passing
through the origin, and all of R2. Consequently, the only affine subspaces of R2 are
points, lines, and R2.

PROOF It is clear that points, lines and all of R2 are affine subspaces.
We have to prove there aren’t any other affine subspaces; we’ll do this later. □

Corollary 3.19 The only subspaces of R3 are the zero subspace {0}, lines passing
through the origin, planes passing through the origin, and all of R3. Consequently, the
only affine subspaces of R3 are points, lines, planes and R3 itself.

PROOF It is clear that points, lines, planes, and all of R3 are affine subspaces.
We have to prove there aren’t any other affine subspaces; we’ll do this later. □
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Generic pictures of subspaces:

x
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y
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y

y

x

z
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z

y

x

z

y

x

z

These pictures reflect the idea that subspaces contain the zero vector and are flat,
convex, and unbounded.

Generally speaking, when you are told “W is a subspace of V ”, think of W as being
something like a line or plane passing through the origin.
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3.5. Linear independence

3.5 Linear independence
MOTIVATING EXAMPLE

Let V = Rn; take two vectors v, w ∈ Rn and let W = Span(v, w). What kind of
object is W ?

Classifying these cases depends on whether or not v and w are parallel.

Linear dependence
NEW QUESTION

What is the right notion of “parallelism” for a family of n > 2 vectors v1, ..., vn?

Recall: Theorem 3.10 from earlier gives an equivalent characterization of paral-
lelism of two vectors:

v1||v2 ⇐⇒ ∃ c1, c2 ∈ R (not both zero) s.t. c1v1 + c2v2 = 0.

EXAMPLE (2, 1) || (4, 2) since
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3.5. Linear independence

The equation c1v1 + c2v2 = 0 from Theorem 3.10 generalizes naturally to sets of
more than two vectors:

Definition 3.20 Let V be a real vector space. A collection of vectors v1, ..., vn ∈ V is
called linearly dependent (lin. dep.) if ∃ c1, ..., cn ∈ R, with not all cj = 0, such
that c1v1 + ... + cnvn = 0.

Here is an equivalent formulation of the same idea:

Definition 3.21 Let V be a real vector space, and let v1, ..., vn ∈ V .
Any expression of the form c1v1 + ... + cnvn is called a linear combination of the
vj .
The expression 0v1 + ... + 0vn is called the trivial combination (this combination
always equals 0).
Any other combination (other than the trivial one) is called a nontrivial combina-
tion of the vj otherwise (i.e. if not all the cj are zero).
A set of vectors is linearly dependent if and only if they have a nontrivial combina-
tion which equals 0.

The idea behind this definition is that a lin. dep. set of vectors “repeats the same
direction unnecessarily”, in the same way that two parallel vectors do. This idea is
made precise in the upcoming Theorems 3.22 and 3.23.

EXAMPLE 14
In R3, set v1 = (1, 0, 0); v2 = (0, 1, 0); v3 = (1, 2, 0).
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3.5. Linear independence

Theorem 3.22 Let V be a real vector space.

A collection of vectors
v1, ..., vn ∈ V is

linearly dependent
⇐⇒

for some k, we can write vk as a
linear combination of the

previous vectors in the list, i.e.

vk =
k−1∑
j=1

djvj = d1v1 + d2v2 + ... + dk−1vk−1.

PROOF (⇒) Assume the vj are lin. dep. Then

c1v1 + c2v2 + ... + cnvn = 0

where c1, ..., cn ∈ R with not all the cj zero.

Let k be the largest subscript so that ck ̸= 0. Then

c1v1 + ... + ck−1vk−1 + ckvk = 0
⇒ ckvk = −c1v1 − ...− ck−1vk−1

⇒ vk = −c1

ck

v1 − ...− ck−1

ck

vk−1

⇒ vk = d1v1 + ... + dk−1vk−1.

(⇐) Suppose vk = d1v1 + ... + dk−1vk−1. Then

d1v1 + ... + dk−1vk−1 − 1vk + 0vk+1 + ... + 0vn = 0

so {v1, ..., vn} lin. dep. by definition. □

Why do we care about whether or not a set of vectors is linearly dependent? Be-
cause linear dependence has a lot to do with what the span of these vectors is.
Consider the following theorem:

Theorem 3.23 (Removing lin. dep. vectors doesn’t change span) Let V be a real
vector space. Let v1, ..., vn be a collection of linearly dependent vectors such that

vk = d1v1 + ... + dk−1vk−1.

Then Span(v1, ..., vn) = Span(v1, ..., vk−1, vk+1, ..., vn).
In other words, vk can be removed from the list without changing the span of the
vectors.
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3.5. Linear independence

PROOF Let W1 = Span(v1, ..., vn) and let W2 = Span(v1, ..., vk−1, vk+1, ..., vn).
We will show W1 = W2 by showing each set is a subset of the other:

(⊇): Suppose w ∈ W2. Then by definition of span,

w =
n∑

j=1,j ̸=k

cjvj =
n∑

j=1
cjvj (by setting ck = 0)

So by definition, w ∈ Span(v1, ..., vn) so w ∈ W1.

(⊆): Suppose w ∈ W1. Then by definition of span,

w =
n∑

j=1
cjvj =

n∑
j=1,j ̸=k

cjvj + ckvk

=
n∑

j=1,j ̸=k

cjvj + ck

k−1∑
j=1

djvj

=
k−1∑
j=1

(cj + ckdj)vj +
n∑

j=k+1
cjvj.

Thus w ∈ W2 by definition of span.

Since W1 ⊆ W2 and W2 ⊆ W1, W1 = W2. □

Linear independence

If a collection of vectors are not linearly dependent, then they are called linearly
independent:

Definition 3.24 Let V be a real vector space. A collection of vectors v1, ..., vn ∈ V is
called linearly independent (lin. ind.) if the collection is not linearly dependent.

Equivalently, the vectors are lin. ind. if the only combination of them that makes 0 is
the trivial one.

Equivalently, the vectors are lin. ind. if c1v1 + ... + cnvn = 0 implies c1 = c2 = ... =
cn = 0.
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3.5. Linear independence

Theorem 3.25 (Elementary properties of lin. dep. and lin. ind. sets) Let V be
a real vector space. Then:

1. The zero vector 0 cannot be part of a linearly independent set of vectors.

2. A collection of one vector v is linearly independent if and only if v ̸= 0.

3. A collection of two vectors v, w is linearly dependent if and only if v||w.

4. Any subset of a collection of linearly independent vectors is linearly indepen-
dent.

5. Any collection of vectors containing a linearly dependent subcollection is itself
linearly dependent.

EXAMPLE 15
Let v1 = (1, 0, 0); v2 = (0, 1, 0); v3 = (1, 1, 4). Is the set {v1, v2, v3} of vectors lin-
early independent, or linearly dependent? Explain.

CONCEPTUAL IDEA ALGEBRAIC JUSTIFICATION
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3.5. Linear independence

EXAMPLE 16
Let v1 = (1,−1, 2, 5); v2 = (0, 2,−1, 4); v3 = (−3, 0,−1, 2). Is the set {v1, v2, v3} of
vectors linearly independent, or linearly dependent? Explain.
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3.6 Basis and dimension
Definition 3.26 Let V be a real vector space (or a subspace of some other real vector
space). A collection of vectors v1, ..., vn ∈ V is called a basis of V if

1. v1, ..., vn are linearly independent; and

2. V = Span(v1, ..., vn).

Note: Regarding part (2) of this definition, it is always true that Span(v1, ..., vn) ⊆
V . The question is whether every v ∈ V is a linear combination of the vj .

Heuristic: Statement 1 says that no “directions” in V are repeated by the vj

(i.e. that the set of the vj’s isn’t unnecessarily big). Statement 2 says that no
“directions” are “missed” by the vj (i.e. that the set of the vj’s isn’t too smallto
capture all of V ).

EXAMPLE 17
Determine whether each given set of vectors forms a basis of R3.

1. {v1, v2}, where v1 = (1, 0, 0); v2 = (0, 1, 0).

y

x

z

2. {v1, v2, v3, v4}, where v1 = (1, 0, 0); v2 = (0, 1, 0); v3 = (0, 0, 1); v4 = (1,−1, 2).

y

x

z
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3.6. Basis and dimension

3. {v1, v2, v3}, where v1 = (1, 0, 0); v2 = (0, 1, 0); v3 = (1, 2, 0).

y

x

z

4. {v1, v2, v3}, where v1 = (1, 0, 0); v2 = (0, 1, 0); v3 = (0, 0, 1).

y

x

z

A vector space (or subspace) is completely described by giving a basis of that space,
because of the following theorem:

Theorem 3.27 (Unique Representation Theorem) Let V be a real vector space
and let B = {v1, ..., vn} be a basis of V . Then, for every v ∈ V there is exactly
one choice of c1, ..., cn ∈ R such that

v =
n∑

j=1
cjvj.

Equivalently, there is exactly one linear combination of the basis vectors that makes
each v ∈ V .
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3.6. Basis and dimension

PROOF Since B is a basis, {v1, ..., vn} spans V . By definition of span, every v ∈ V
can be written as

v =
n∑

j=1
cjvj = c1v1 + ... + cnvn

in at least one way.

Now suppose there are two combinations of the vectors that make v, i.e.

v =
n∑

j=1
cjvj =

n∑
j=1

djvj.

Subtracting the right-hand side from both sides, we get

n∑
j=1

cjvj −
n∑

j=1
djvj = 0

so
n∑

j=1
(cj − dj)vj = 0.

But since B is a basis, {v1, ..., vn} are linearly independent!

So the left-hand side of the above equation has to be the trivial combination.

This means cj − dj = 0 for all j, i.e. cj = dj for all j.

Therefore, the two combinations we started with weren’t actually different.

This means v can’t be written as a linear combination of the vj in more than
one way. □

EXAMPLE 18
One basis of R3 is {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Take the vector v = (−2, 4, 3).
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3.6. Basis and dimension

The Exchange Lemma

We now come to the most important theoretical principle of linear algebra, upon
which the rest of the subject (including all applications) rests:

Theorem 3.28 (Exchange Lemma) Let V be a real vector space. If {v1, ..., vm}
spans V , and if {w1, ..., wn} is linearly independent in V , then m ≥ n.

In English: Spanning sets must contain at least as many vectors as linearly
independent sets.

PROOF We are given that V = Span(v1, ..., vm).
Since w1 ∈ V = Span(v1, ..., vm). Therefore the set

{v1, v2, ..., vm, w1}

is linearly dependent (since the last vector is in the span of the others).

Writing these vectors in a different order doesn’t change the fact they are lin.
dep., so

{w1, v1, v2, ..., vm}

is also lin. dep.

Now discard the first vj in this list which depends on the previous vectors.

Discarding this vj doesn’t change the span of the vectors in this list, so we have

V = Span(w1, v1, ..., vm) = Span(w1, v1, ..., vj−1, vj+1, ..., vm).

Essentially, what we have done above is “exchange” one of the vjs for w1
without changing the span of the set.

This technique is why this theorem is called the Exchange Lemma.
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3.6. Basis and dimension

Now we “exchange” again. w2 ∈ V , so w2 ∈ Span(w1, v1, ..., vj−1, vj+1, ..., vm)
so {w1, w2, v1, ..., vj−1, vj+1, ..., vm} is lin. dep.

Remove the first dependent vector vk in this list to obtain

{w1, w2, v1, ..., vj−1, vj+1, ..., vk−1, vk+1, ...vm}

which still spans V .

Keep exchanging in this fashion.
If n > m, then we can exchange all the vs with ws to obtain a set

{w1, ..., wm}

which spans V , and still have wm+1 leftover. But

wm+1 ∈ V = Span(w1, ..., wm),

so {w1, ..., wm+1} is lin. dep. (since the last vector is in the span of the others).
This contradicts the hypothesis that {w1, ..., wn} is lin. ind.
Thus n ≤ m, proving the Exchange Lemma. □

Dimension

Corollary 3.29 (Dimension Theorem) Let V be a real vector space which has a
basis consisting of n vectors. Then any other basis of V must also consist of n vectors.

PROOF Suppose B = {v1, ..., vn} and B′ = {w1, ..., wm} are two bases of V .

B is spanning set; B′ is lin. indep⇒ n ≥ m by Exchange Lemma.
B is lin. indep.; B′ is spanning set⇒m ≥ n by Exchange Lemma.

Thus m = n. □

Definition 3.30 Let V be a real vector space. If V is spanned by a finite set of vectors,
we say V is finite dimensional and write dim V <∞.

In this case, the dimension of V is the number of elements in any basis of V .

(We define dim({0}) = 0 even though {0} does not have a basis.)

If V is not spanned by any finite set of vectors, we say V is infinite dimensional and
write dim V =∞.
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3.6. Basis and dimension

Definition 3.31 Let V be a real vector space, and A ⊆ V be an affine subspace of V .

The dimension of A is the dimension of the subspace W = A − p, where p is any
translation vector for A.

In particular, a point is an affine subspace of dimension zero; a line is an affine sub-
space of dimension one; and a plane is an affine subspace of dimension two.

A hyperplane is an affine subspace whose dimension is one less than the dimension
of V .

EXAMPLE 19
Find a basis for, and the the dimension of, of each of the following vector spaces:

1. Rn

2. Mn(R), the set of n× n matrices with entries in R.

79



3.6. Basis and dimension

3. W = the set of 3× 3 diagonal matrices with entries in R.

4. The set R[x] of polynomials with real coefficients.
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Theoretical consequences of the Exchange Lemma

Theorem 3.32 (Spanning Set Theorem) If {v1, ..., vn} spans vector space V , then
some subset of {v1, ..., vn} forms a basis of V (so n ≥ dim V ).

Consequence: No two vectors span R3; no m vectors span Rn if n > m, etc.

PROOF Start with spanning set {v1, ..., vn}.
If the vectors are lin. indep., they form a basis.

Otherwise, they are lin. dep., so there is a first vector in the list which depends
on the preceding vectors. Discard this vector from the list.

If what is left is lin. indep., then it forms a basis; otherwise, keep discarding
vectors which depend on the others until what is left is lin. indep.

Since discarding dependent vectors doesn’t change the span, what’s left will
span V and be linearly independent, hence form a basis. □

Theorem 3.33 (Linearly Independent Set Theorem) If {v1, ..., vn} is a linearly
independent set of vectors in vector space V , then n ≤ dim V .

Consequence: No four vectors in R3 are linearly independent; no m vectors in
Rn are linearly independent if m > n, etc.

PROOF Follows immediately from the Exchange Lemma, since there are dim V
vectors in a basis of V (which spans V ). □

Theorem 3.34 (Basis Extension Theorem) Let V be a finite dimensional real vec-
tor space. If {v1, ..., vn} is a linearly independent set of vectors in V , then V has a
basis of the form

{v1, ..., vn, w1, ..., wm}

(where dim(V ) = m + n).

Note: m could equal 0 in this theorem (if the vjs already form a basis).

PROOF Let W0 = Span(v1, ..., vn).
If W0 = V , then we are done ({v1, ..., vn} forms a basis of V ).
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Otherwise, there is w1 /∈ W0.
Thus {v1, ..., vn, w1} is lin. ind. (since the first n vectors in this list are lin. ind.
and the last vector is not a linear combination of the first n).
Let W1 = Span(v1, ..., vn, w1).
If W1 = V , then we are done ({v1, ..., vn, w1} forms a basis of V ).

Otherwise, there is w2 /∈ W1.
Thus {v1, ..., vn, w1, w2} is lin. ind.
Let W2 = Span(v1, ..., vn, w1, w2).
If W2 = V , then we are done ({v1, ..., vn, w1} forms a basis of V ).

Otherwise, continue this process.
Eventually, if dim V = m+n, we get a list of lin. ind. vectors {v1, ..., vn, w1, ..., wm}.
Let Wm be the span of these vectors.
If Wm ̸= V , then there is wm+1 /∈ Wm that could be added to this collection to

produce a list of n+m+1 > dim V lin. ind. vectors, contradicting the Linearly
Independent Set Theorem. □

Theorem 3.35 (Basis Theorem) Let V be a vector space with n = dim V < ∞.
Then:

1. V has a basis (so long as V ̸= 0).

2. Any set of n linearly independent vectors in V forms a basis of V .

3. Any set of n vectors which span V forms a basis of V .

PROOF For (1), if V ̸= 0 choose a nonzero v ∈ V . {v} is linearly independent; by
the Basis Extension Theorem it can be extended to a basis of V .

For (2), if the set of linearly independent vectors {v1, ..., vn} isn’t a basis, then
these vectors don’t span V , so there is w ∈ V which is not in their span. Thus
{v1, ..., vn, w} is a set of n + 1 > dim V lin. ind. vectors in V , contradicting the
Linearly Independent Set Theorem.

For (3), if the spanning set {v1, ..., vn} isn’t a basis, then these vectors are lin.
dep. Remove all the dependent vectors from this set; this leaves a set of < n
vectors which still span V (since removing dependent vectors doesn’t change
the span of a set). This contradicts the Spanning Set Theorem. □

Theorem 3.36 If W is a subspace of real vector space V , then dim W ≤ dim V .
Also, if W is a subspace of V and dim W = dim V <∞, then W = V .
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PROOF First, let’s prove the first statement. If dim V =∞, the result is trivial.
Otherwise, let n = dim W and let {w1, ..., wn} be a basis of W . This basis can

be extended to a basis of V , which must necessarily have ≥ n elements.
Therefore dim V ≥ n = dim W as desired.

For the second statement, if n = dim V = dim W <∞, let {w1, ..., wn} be a basis
of W . Thus {w1, ..., wn} are a set of n lin. ind. vectors in V , hence form a basis
of V by the Basis Theorem. Therefore W = Span(w1, ..., wn) = V . □

We can now revisit some ideas we encountered earlier:

Theorem 3.37 (Classification of subspaces of R, R2 and R3) x

• The only subspaces of R are {0} and R.

• The only subspaces of R2 are {0}, lines passing through the origin, and R2.

• The only subspaces of R3 are {0}, lines passing through the origin, planes pass-
ing through the origin, and R3.

PROOF For statement (3), notice dimR3 = 3. If W ⊆ R3 is a subspace, then
dim W ≤ 3. Since dim W is a nonnegative integer, we have four possibilities:

• dim W = 0. Then W is a point by definition.

• dim W = 1. Then W is a line by definition.

• dim W = 2. Then W is a plane by definition.

• dim W = 3. Then W = R3 by Corollary 3.36.

The proofs of the first two statements are similar. □

Corollary 3.38 (Classification of affine subspaces of R, R2 and R3) x

1. The only affine subspaces of R are points, and all of R.

2. The only affine subspaces of R2 are points, lines and all of R2.

3. The only affine subspaces of R3 are points, lines, planes and all of R3.

PROOF This is obvious, given the preceding theorem. □
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3.7 Summary of Chapter 3
Fundamental definitions:

• A subspace W of vector space V is a subset of V which is itself a vector
space. That means that W must contain 0, be closed under addition, and
closed under scalar multiplication.

• An affine subspace A of vector space V is a translate of a subspace of V .

• The span of a set of vectors is the set of linear combinations of those vectors;
the span of any set of vectors is always a subspace. A set of vectors spans a
vector space (or subspace) V if every vector in V is a linear combination of
vectors in that set.

• A set of vectors {v1, ..., vn} is called linearly independent if the only way to
write 0 = c1v1 + ... + cnvn is to set all the cj = 0. A set of vectors is called
linearly dependent if it is not linearly independent.

• A set of vectors is called a basis of vector space V if the set spans V and is
linearly independent.

• Any two bases of a vector space V must have the same number of elements;
the count of the number of vectors in any basis of V is called the dimension
of V .

Fundamental theoretical concepts relating these definitions

• A set of vectors is lin. dep. if and only if there is some vector in the list which
is a linear combination of the previous vectors in the list.

• 0 is never part of a lin. ind. set of vectors.

• A set of one vector is lin. ind. if and only if the vector is nonzero.

• A set of two vectors is lin. ind. if and only if the vectors are nonparallel.

• A subset of a linearly independent set must also be lin. ind.

• If a set of vectors has a lin. dep. subset, then it is also lin. dep.

• Any set of more than dim V vectors in V must be lin. dep.

• No set of less than dim V vectors in V can span V .

• Lin. dep. vectors can be removed from a list without changing the span of
that list.

84



3.7. Summary of Chapter 3

• Every spanning set for V can be reduced to a basis of V by removing the lin.
dep. vectors.

• Any set of dim V vectors which span V must also be a basis of V (i.e. must
also be lin. ind.).

• Any lin. ind. set of vectors in V can be extended to a basis of V .

• Any set of dim V vectors which are lin. ind. must also be a basis of V (i.e.
must also span V ).

• Every vector space has a basis.

• Given a basis of V , every vector in V can be written as a linear combination
of those basis vectors in exactly one way.

• If W is a subspace of V , then dim W ≤ dim V .

• If W is a subspace (or affine subspace) of V and dim W = dim V < ∞, then
V = W .

Classification of subspaces and affine subspaces

These objects are classified according to their dimension:

• The only subspaces of R are {0} (dimension 0) and R (dimension 1).

The only affine subspaces of R are points (dimension 0) and R (dimension 1).

• The only subspaces of R2 are {0} (dimension 0), lines passing through the
origin (dimension 1), and all of R2 (dimension 2).

The only affine subspaces of R2 are points (dimension 0), lines (dimension 1)
and all of R2 (dimension 2).

• The only subspaces of R3 are {0} (dimension 0), lines passing through the
origin (dimension 1), planes passing through the origin (dimension 2), and
all of R3 (dimension 3).

The only affine subspaces of R3 are points (dimension 0), lines (dimension 1),
planes (dimension 2), and all of R3 (dimension 3).

In general, you should think of an affine subspace as an object akin to a point, line
or plane (but perhaps larger-dimensional), and you should think of a subspace as
an affine subspace which passes through 0.

A hyperplane in V is an affine subspace whose dimension is 1 less than the dimen-
sion of V .
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3.8 Homework exercises for Chapter 3
1. Let v1, v2, ..., vn be vectors in some vector space V . Define the span of this

collection of vectors to be the set of linear combinations of those vectors, i.e.

Span(v1, ..., vn) = {c1v1 + c2v2 + ... + cnvn : c1, c2, ..., cn ∈ R}.

Prove that the span of any collection of vectors is a subspace.

Hint: a generic element of the span is a vector w where w = c1v1 + ... + cnvn.

2. Let V be a vector space and let W1 and W2 be two subspaces of V . Prove that
W1 + W2 is also a subspace of V .

Hint: Let W = W1 + W2. A generic element of W is a vector w such that
w = w1 + w2 where w1 ∈ W1 and w2 ∈ W2.

3. Sketch a picture of each of the following subsets of R2 (please draw a different
picture for each set):

a) Span((2, 3))
b) Span((−4,−1))
c) Span((1, 0), (1, 1))

d) Span((4, 2), (2, 1))

e) Span((0, 0))

4. Sketch a picture of each of the following subsets of R2 (please draw a different
picture for each set):

a) (2,−1) + Span((1, 1))
b) (5, 3) + Span((−2, 0))

c) Span((2,−2)) + Span((−3, 3))
d) Span((3, 0)) + Span((1,−1))

5. Give an example of a subset of R2 which contains the zero vector and is closed
under scalar multiplication, but is not a subspace of R2.

In each part of Problems 6-9, you are given a vector space V and a subset W of
V . Determine whether or not W is a subspace of V , and write a rigorous proof to
support your assertion.

6. a) V = R3; W = {(x, y, z) : x + y + z = 0}
b) V = R3; W = {(x, y, z) : x + y + z = 1}
c) V = R2; W = {(x, y) : y = 1

2x}

7. a) V = R2; W = the x−axis

b) V = R2; W = {(x, y) : x + y ≥ 1}
c) V = R4; W = {(w, x, y, z) : x = 2w and y = −3w}
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8. a) V = C(R,R); W = the set of functions which are equal to their deriva-
tive

b) V = C(R,R); W = the set of functions f which are of the form a sin x +
b cos x for constants a, b ∈ R

c) V = M23(R); W = the set of 2 × 3 matrices such that the entries in the
first row sum to zero

9. a) V = M2(R); W = the set of 2 × 2 matrices which equal to (−1) times
their transpose

b) V = M2(R); W = the set of 2× 2 matrices which have at least one entry
which is zero

c) V = M2(R); W = {A ∈M22(R) : tr(A) = 0}

10. Write parametric equations for each of the given lines:

a) The line in R2 that passes through the points (−3, 5) and (2,−6).
b) The y−axis in R2.

c) The line in R2 whose Cartesian equation is y = 5x + 4.
Hint: find any two points on this line and then proceed as in part (a).

11. Write parametric equations for each of the given lines:

a) The line in R3 which has direction vector (2,−3, 0) and passes through
the point (1,−3, 4).

b) The line in R3 passing through the points (0, 1,−5) and (4,−2,−1).
c) The line in R6 passing through the points (−1, 1, 2, 0, 1, 4) and (2,−1, 0, 3, 1,−2).

12. Write parametric equations for each of the given planes:

a) The plane in R3 that passes through the points (1, 2, 3), (−1, 4, 2) and
(3, 2, 2).

b) The xy−plane in R3 (this is the set of points whose z−coordinate is zero).
Hint: first find any three noncollinear points in this plane and then pro-
ceed as in part (a).

c) The plane in R3 that passes through the points (0, 5,−2), (−5, 3, 2) and
(4, 1,−1).

13. Here are the parametric equations for two lines in R3:
x = 2 + 3t
y = 1− t
z = 4 + 7t

;


x = 3− 7t
y = −2 + 5t
z = −6− 4t

87



3.8. Homework exercises for Chapter 3

Show that these two lines intersect in a point. Find the coordinates of this
point.

Hint: If two lines intersect, they must meet at the same (x, y, z), but the t
doesn’t have to be the same for both lines (think about why this is).

14. Here are the parametric equations for two lines in R3:
x = 3t
y = 2− t
z = −1 + t

;


x = 1 + 4t
y = −2 + t
z = −3− 3t

Show that these two lines do not intersect.

15. Two airplanes fly along straight lines. At time t, plane 1 is at (75, 50, 25) +
t(5, 10, 1) and plane 2 is at (60, 80, 34) + t(10, 5− 1).

a) Do the flight paths of these planes intersect? Explain.
b) Do the planes crash into one another? Explain.

16. Given each of the following vector spaces V and lists S of vectors, determine
whether or not S is a linearly independent set. Give a quick reason for your
answer.

a) V = R2; S = {(1, 3)}.
b) V = R2; S = {(2, 5), (−4,−10)}.
c) V = R2; S = {(−3, 7), (4,−10)}.
d) V = R4; S = {(1, 1, 1, 1), (2, 2, 2, 2), (1, 3, 5, 8), (0,−2, 5, 7)}.
e) V = R3; S = {(1, 2, 7), (−1, 7, 5), (10,−3, 6), (8, 4,−1)}.

17. Same directions as the previous problem:

a) V = R7; S = {(2, 3, 8,−5, 0, 0, 0)}.
b) V = R4; S = {(1, 2, 3, 4), (5, 6, 7, 8), (0, 0, 0, 0)}
c) V = R3; S = {(0, 1, 4), (0, 0, 1), (0, 7,−3)}.
d) V = R3; S = {(0, 1, 2), (0,−3,−6), (2, 5,−8)}.

18. Give an example of three vectors u, v and w, all belonging to the same vector
space, such that {u, v}, {u, w} and {v, w} are all linearly independent sets,
but the set {u, v, w} is linearly dependent.

19. Let V = C∞(R,R) be the vector space whose elements are functions from R
to R which are differentiable infinitely many times (this is a real vector space
since it is closed under addition and scalar multiplication and contains zero).
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a) In this vector space, is the set of functions {cos2 x, sin2 x, 1} linearly in-
dependent? Why or why not?
Hint: think of an identity relating cos2 x and sin2 x.

b) In this vector space, is the set of functions {sin 2x, sin x cos x} linearly
independent? Why or why not?
Hint: do a Google search to find an identity relating these functions.

c) In this vector space, is the set of functions {cos2 x, cos 2x, 1} linearly in-
dependent? Why or why not?
Hint: do a Google search to find an identity relating some of these func-
tions.

20. In this problem we will determine whether or not the set of functions

{ex, e−x, 1}

linearly independent.

Note: These functions are linearly independent if and only if no identity of
the form c1e

x + c2e
−x = 1 exists. Now, you’re probably not aware of such an

identity, but just because you aren’t aware of such an identity doesn’t mean
that one doesn’t exist. To prove that no such identity exists (i.e. to prove that
the functions are linearly independent), we will carry out the following steps:

a) Suppose we write 0 (the constant function 0) as a linear combination of
{ex, e−x, 1}:

c1e
x + c2e

−x + c31 = 0 (3.1)

Show that it must be the case that c1 + c2 + c3 = 0.
Hint: if the above equation holds as an equality between functions, then
it is supposed to hold for all particular values of x. Plug in x = 0 and
see what happens.

b) Differentiate both sides of equation (3.1) and subsequently (by plugging
in x = 0) show that c1 − c2 = 0.

c) Differentiate both sides of the equation again, and show that c1 + c2 = 0.

d) Solve the equations obtained in parts (a), (b) and (c) to explain why c1 =
c2 = c3 = 0 (and thus why the three functions {ex, e−x, 1} are linearly
independent).

Note: In Math 330, you learn a more general technique to prove that a col-
lection of functions is linearly independent: you compute the Wronskian of
those functions, and if there is any x where the Wronskian is nonzero, then
the functions are linearly independent. Essentially, what this problem is do-
ing is verifying that the Wronskian of {ex, e−x, 1} is nonzero when x = 0.
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21. Suppose f and g are functions such that f(17) = 2, f ′(17) = 1, g(17) = 3 and
g′(17) = 2. Are f and g linearly independent? Why or why not?

22. Given each of the vector spaces (or subspaces) W , find a basis of W , and
the dimension of W . (You may assume without proof that these are all sub-
spaces.)

a) W = R4

b) W = M42(R) (4× 2 matrices with real entries)

c) W = P3 (this is notation for the set of polynomials whose degree is ≤ 3).

23. Given each of the vector spaces (or subspaces) W , find a basis of W , and
the dimension of W . (You may assume without proof that these are all sub-
spaces.)

a) W = Span((2, 3), (12, 18), (−2,−3))
b) W = {(x, y, z) ∈ R3 : 2x + y − 3z = 0}.
c) W = the line in R4 with parametric equations x1 = 4t, x2 = −3t, x3 =

2t, x4 = 0.

24. Given each of the vector spaces (or subspaces) W , find a basis of W , and
the dimension of W . (You may assume without proof that these are all sub-
spaces.)

a) V = C(R,R); W is the subspace of V consisting of functions f satisfying
the differential equation f ′(x) = f(x).

b) W =


 2s− 5t

s
4t

 : s, t ∈ R


c) W = the set of 2× 2 matrices which are equal to their transpose
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Chapter 4

Dot products and orthogonality

4.1 Definitions and properties of dot products
GOALS OF THIS CHAPTER

Generalize geometric ideas like length, distance, angle, direction, perpendicularity, etc.
to vectors.

Definition 4.1 The dot product on Rn is the function Rn × Rn → R (where the
output associated to inputs v = (v1, ..., vn) and w = (w1, ..., wn) is written v · w or
vT w) defined by

v ·w =
n∑

j=1
vjwj = v1w1 + v2w2 + ... + vnwn.

QUICK EXAMPLE: (3,−2, 5) · (1, 0,−2) =

NOTE: v ·w is a scalar, not a vector.

Also note: Dot product is connected with matrix multiplication. Writing v and
w as column vectors, we see

This explains why we also denote the dot product v ·w by vT w.

91



4.1. Definitions and properties of dot products

Another note: Recall that matrix multiplication is defined by setting the (i, j)-
entry of AB equal to

(AB)ij =
n∑

k=1
aikbkj

So entries of the product matrix AB are the dot products of rows of A with
columns of B.

Dot product spaces

Spaces of functions also have a notion of dot product, which plays the same role
as the above dot product does for traditional vectors:

Definition 4.2 Let [a, b] be a closed, bounded interval in R. The dot product on
C([a, b],R) is the function C([a, b],R)×C([a, b],R)→ R (where the output associated
to f and g is written f · g) defined by

f · g =
∫ b

a
f(x)g(x) dx.

QUICK EXAMPLE

Let f(x) = x, g(x) = x2. Then f, g ∈ C([0, 1],R), and in this vector space,

f · g =

Definition 4.3 The dot product on Mn(R) (the space of n×n matrices) is the func-
tion Mn(R)×Mn(R)→ R (where the output associated to A and B is written A ·B)
defined by A ·B = tr(ABT ).
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4.1. Definitions and properties of dot products

Similarities between the various dot product formulas

Vector space Dot product formula

Rn v ·w =
n∑

j=1
vjwj

(traditional vectors) multiply coordinate-wise, then add

C([a, b],R) f · g =
∫ b

a
f(x)g(x) dx

(vectors are functions) multiply x-by-x, then integrate

Mn(R) A ·B = tr(ABT )

(vectors are matrices) matrix multiply, then add down the diagonal

Henceforth, we will call any vector space, together with its appropriate choice of
dot product, a dot product space. (There are other examples of such spaces.) This
is not standard mathematics notation; usually one would call such a thing an inner
product space, but this requires a discussion of generalizations of dot product that
will not be discussed in our course.

Properties of dot products

Theorem 4.4 (Properties of dot products) Let V be a dot product space. Then, for
any vectors v, v1, v2, w, w1, w2 ∈ V and any scalar r ∈ R, we have:

1. Dot product is symmetric, meaning v ·w = w · v.

2. Dot product is bilinear, meaning

(v1 + v2) ·w = v1 ·w + v2 ·w;
v · (w1 + w2) = v ·w1 + v ·w2;

r(v ·w) = (rv) ·w = v · (rw).

3. Dot product is positive, meaning v · v ≥ 0.

4. Dot product is definite, meaning v · v = 0 only when v = 0.
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4.1. Definitions and properties of dot products

Note: The bilinearity property extends to the following fact: if vi, wj ∈ V and
ri, sj ∈ R, then

(
m∑

i=1
rivi

)
·

 n∑
j=1

sjwj

 =
m∑

i=1

n∑
j=1

risj(vi ·wj).

PROOF We will prove the properties of dot product in the situation where V = Rn

(the other dot product spaces require their own proofs, which are similar).

Throughout this proof, let v = (v1, ..., vn), let v1 = (v1,1, ..., v1,n), and use similar
notation for any other vectors.

First, let’s prove statement 1 (symmetry): this is straightforward, as

v ·w =
n∑

j=1
vjwj =

n∑
j=1

wjvj = w · v.

Next, let’s verify the statements in 2 (bilinearity):

(v1 + v2) ·w =
n∑

j=1
(v1,j + v2,j)wj =

n∑
j=1

v1,jwj +
n∑

j=1
v2,jwj = v1 ·w + v2 ·w;

v · (w1 + w2) =
n∑

j=1
vj(w1,j + w2,j) =

n∑
j=1

vjw1,j +
n∑

j=1
vjw2,j = v ·w1 + v ·w2;

r(v ·w) = r
n∑

j=1
vjwj =

n∑
j=1

(rvj)wj = (rv) ·w

=
n∑

j=1
vj(rwj) = v · (rw).

Now, let’s prove statement 3 (positivity):

v · v = v1v1 + ... + vnvn =
n∑

j=1
v2

j ≥ 0.

Finally, we prove statement 4: if 0 = v · v = v1v1 + ... + vn =
n∑

j=1
v2

j , it must be

that v2
j = 0 for all j (otherwise this sum would be strictly positive).

That means vj = 0 for all j, i.e. v = (0, 0, ..., 0) = 0. □

94



4.2. Norms, distances and length

Dual relations

This last elementary result is very important. It will be used later when analyzing
matrices and studying systems of linear equations:

Theorem 4.5 (Dual relations) Let A ∈ Mmn(R). Then, for any x ∈ Rn and any
y ∈ Rm, we have

Ax · y = x · AT y.

(Similarly, for any B ∈Mnm(R), x ·By = BT x · y.)

PROOF This is a direct calculation:

Ax · y = (Ax)T y
= xT AT y (transpose of product = backwards product of transposes)

= xT (AT y)
= x · (AT y). □

4.2 Norms, distances and length
RECALL

The absolute value of a real number is its distance from 0:

|x| =
√

x2 =
{

x if x ≥ 0
−x if x < 0

We want to generalize the idea of absolute value to vectors:

Definition 4.6 Let V be a dot product space. For any vector v ∈ V , we define the
norm (a.k.a. length a.k.a. magnitude a.k.a. absolute value) of v to be

||v|| =
√

v · v.

Note: Since dot product is positive, we’ll never have to take the square root of
a negative number here.
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4.2. Norms, distances and length

Remark: It is also useful to keep in mind that since ||v|| =
√

v · v,

||v||2 = v · v.

This makes ||v||2 easier to work with than ||v||when writing arguments.

EXAMPLE 1
Compute ||v||, if v = (−4, 2, 5, 1, 0).

Solution: ||v|| =
√

v · v =
√

(−4)2 + 22 + 52 + 12 + 02 =
√

46 .

EXAMPLE 2

Let A =
(

2 −3
1 4

)
. Compute ||A||.

Solution:

||A|| =
√

A ·A =
√

tr(AAT ) =

√
tr

[(
2 −3
1 4

)(
2 1
−3 4

)]
=

√
tr

(
13 ∗
∗ 17

)
=
√

30 .

Theorem 4.7 (Properties of norms) Let V be a dot product space, let v, w ∈ V be
vectors and let r ∈ R be a scalar. Then:

1. Norms are positive, meaning ||v|| ≥ 0.

2. Norms are definite, meaning ||v|| = 0 if and only if v = 0.

3. Norms are multiplicative, meaning ||rv|| = |r| ||v||.

4. The Triangle Inequality holds, meaning ||v + w|| ≤ ||v||+ ||w||.

PROOF Statements (1) and (2) follow from statements (3) and (4) of Theorem 4.4
(properties of dot products). For property (3), observe

||rv|| =
√

rv · rv =
√

r2(v · v) =
√

r2
√

v · v = |r| ||v||.

We’ll prove property (4) in Section 4.6. □

Why is ||v + w|| ≤ ||v||+ ||w|| called the “Triangle Inequality”?

w

v
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4.2. Norms, distances and length

Distance

The norm of a vector should be thought of as its distance from 0. More generally:

Definition 4.8 Let V be a dot product space and let v, w ∈ V . Then the distance
from v to w is

dist(v, w) = ||v−w||.

v

w

Observation: By the multiplicative property of norms, ||v − w|| = ||w − v||
since

||v−w|| = ||(−1)(w− v)|| = | − 1| ||w− v|| = ||w− v||.

Therefore distance is symmetric: dist(v, w) = dist(w, v).

Theorem 4.9 (Properties of distance) Let V be a dot product space and let u, v, w
be vectors in V and let r ∈ R be a scalar. Then:

1. Distances are positive, meaning dist(v, w) ≥ 0.

2. Distances are definite, meaning dist(v, w) = 0 if and only if v = w.

3. Distances are symmetric, meaning dist(v, w) = dist(w, v).

4. Distances are multiplicative, meaning dist(rv, rw) = |r| dist(v, w).

5. The Triangle Inequality holds, meaning dist(v, w) ≤ dist(v, u)+dist(u, w).

PROOF For statement 1, notice dist(v, w) = ||v−w|| ≥ 0.

For statement 2, suppose dist(v, w) = 0.
Then ||v−w|| = 0 so v−w = 0 so v = w.

Statement 3 was proven in the blue box before Theorem 4.9.

Statement 4 follows from the fact norms are multiplicative.

Statement 5 follows from the earlier triangle inequality in Theorem 4.7
(admittedly, that version hasn’t been proven yet):

dist(v, w) = ||v−w|| = ||v− u + u−w||
= ||(v− u) + (u−w)||
≤ ||v− u||+ ||u−w||
= dist(v, u) + dist(u, w). □
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Unit vectors and normalization

Definition 4.10 Let V be a dot product space. A vector v ∈ V is called a unit vector
if ||v|| = 1.

EXAMPLE 3
Describe all the unit vectors in R2.

x

y

Theorem 4.11 Let V be a dot product space. Given any nonzero vector v ∈ V , there
is a unit vector in the same direction as v. This unit vector is called a normalized
version of v.

PROOF Given v ̸= 0, define u = 1
||v||

v . This vector is clearly in the same direction

as v;

||u|| =
∣∣∣∣∣
∣∣∣∣∣ 1
||v||

v
∣∣∣∣∣
∣∣∣∣∣ = 1
||v||
||v|| = 1

so u is a unit vector. □

EXAMPLE 4
Find a unit vector in the same direction as (2,−3, 5, 1).
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4.3. Orthogonality

4.3 Orthogonality
GOAL

Extend the notion of perpendicularity in R2 to arbitrary vector spaces.

To get started, think about what makes v = (v1, v2) and w = (w1, w2) ⊥ in R2?

x

y

v

w

v1w1

v2

w2

Definition 4.12 Let V be a dot product space. Two vectors v, w ∈ V are called
orthogonal (a.k.a. perpendicular) if v ·w = 0, in which case we write v ⊥ w.

Note: The zero vector 0 is orthogonal to every vector (since 0 · v = 0 for any
v ∈ V ).

EXAMPLE 5
Determine whether or not the vectors v = (2,−3, 1,−4) and w = (0, 1, 7, 1) in R4

are orthogonal.

EXAMPLE 6
Determine whether or not the functions f(x) = sin x and g(x) = cos x are orthogo-
nal in C([0, π],R).
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4.3. Orthogonality

Theorem 4.13 (Pythagorean Theorem) Let V be a dot product space and let v, w ∈
V . Then

||v + w||2 = ||v||2 + ||w||2 ⇐⇒ v ⊥ w.

PROOF (⇐) Assume v ⊥ w. Then

||v + w||2 = (v + w) · (v + w)
= v · v + w · v + v ·w + w ·w
= v · v + 0 + 0 + w ·w
= ||v||2 + ||w||2.

(⇒) Assume ||v + w||2 = ||v||2 + ||w||2. That means

(v + w) · (v + w) = v · v + w ·w
v · v + v ·w + w · v + w ·w = v · v + w ·w

2v ·w = 0
v ·w = 0

⇒ v ⊥ w. □

Why is ||v + w||2 = ||v||2 + ||w||2 called the “Pythagorean Theorem”?

v

w
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4.4 Orthogonal complements and projections
Definition 4.14 Let V be a dot product space and let W be a subspace of V . Define
the orthogonal complement of W , denoted W ⊥ and pronounced “W perp”, to be
the set of vectors orthogonal to every w ∈ W ; that is,

W ⊥ = {v ∈ V : v ·w = 0∀w ∈ W}.

Theorem 4.15 Let V be a dot product space and let W be a subspace of V spanned by
w1, ..., wn. Let v ∈ V . Then

v ∈ W ⊥ ⇐⇒ v ·wj = 0 ∀j = 1, 2, ..., n.

PROOF (⇒) follows from the definition of W ⊥, since wj ∈ W for all j.

(⇐) Let w ∈ W . Since the wj span W , w =
∑

j

cjwj so

v ·w = v ·

∑
j

cjwj

 =
∑

j

cj(v ·wj) =
∑

j

cj0 = 0.

This means v ⊥ w for all w ∈ W , so v ∈ W ⊥ as desired. □

EXAMPLE 7
Let V = R2 and let W = Span((1, 2)). What is W ⊥?

-3 -2 -1 1 2 3
x

-3

-2

-1

1

2

3

y
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4.4. Orthogonal complements and projections

EXAMPLE 8
Let V = R3 and let W = Span((0, 0, 1)). What is W ⊥?

y

x

z

OBSERVATIONS IN EXAMPLES 7 AND 8

A.

B.

C.

D. Orthogonal Decomposition: every v ∈ V can be written as

v = πW (v) + πW ⊥(v),

where πW (v) ∈ W and πW ⊥(v) ∈ W ⊥:

E. Basis Union Property: if B is a basis of W and B⊥ is a basis of W ⊥, then B∪B⊥

forms a basis of V .

Our next goal is to establish that Observations A-E hold in general (for any sub-
space W of any vector space V ).

102



4.4. Orthogonal complements and projections

Theorem 4.16 (Orthogonal complements are subspaces) Let V be a dot product
space and let W be a subspace of V . Then W ⊥ is also a subspace of V .

PROOF We verify the three essential characteristics of a subspace.
Keep in mind that a generic element of W ⊥ is a vector v such that v ·w = 0 for

all w ∈ W .

• 0 ∈ W ⊥ since 0 ·w = 0 for any w ∈ V , hence any w ∈ W .

• Let v1, v2 ∈ W ⊥.

Then v1 ·w = 0 and v2 ·w = 0 for any w ∈ W .

Therefore (v1 + v2) ·w = v1 ·w + v2 ·w = 0 + 0 = 0 for any w ∈ W .

This means v1 + v2 ∈ W ⊥.

• Let v ∈ W ⊥ and r ∈ R.

Then v ·w = 0 for any w ∈ W .

Therefore (rv ·w) = r(v ·w) = r(0) = 0 for any w ∈ W .

This means rv ∈ W ⊥.

Therefore W ⊥ is a subspace of V . □

Theorem 4.17 Let V be a dot product space and let W be a subspace of V . Then
W ∩W ⊥ = {0}.

PROOF Clearly 0 ∈ W ∩W ⊥, since 0 is in every subspace.

Now suppose w ∈ W ∩W ⊥. Then w ⊥ w, so w ·w = 0.
By definiteness, this implies w = 0. □

Projections

Theorem 4.18 (Orthogonal Decomposition Theorem (dimension 1)) Let V be
a dot product space; let w ̸= 0 be a vector in V and let W = Span(w) (so that W is a
one-dimensional subspace of V ). Then for any v ∈ V , we can write

v = πw(v) + πw⊥(v)

where πw(v)||w (i.e. πw(v) ∈ W ) and πw⊥ ⊥ w (i.e. πw⊥(v) ∈ W ⊥).
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4.4. Orthogonal complements and projections

PROOF Given v, w, set

πw(v) = v ·w
w ·w

w and πw⊥(v) = v− πw(v) .

Clearly πw(v)||w, since it is a multiple of w.

It is also clear that πw(v) + πw⊥(v) = v.

So, we are left to verify πw⊥(v) ⊥ w:

πw⊥(v) ·w = (v− πw(v)) ·w =
(

v− v ·w
w ·w

w
)
·w

= v ·w− v ·w
w ·w

w ·w

= v ·w− v ·w = 0.

Therefore πw⊥(v) ⊥ w as desired. □

Definition 4.19 Let V be a dot product space, and let v, w ∈ V with w ̸= 0. The
projection of v onto w, denoted πwv or projwv (and sometimes vw), is the vector

πw(v) = πwv = projwv = v ·w
w ·w

w.

EXAMPLE 9
Compute the projection of (−3, 5) onto (1, 2).

-3 1
x

2

5

y
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4.4. Orthogonal complements and projections

EXAMPLE 10
Compute the projection of f(x) = x2 onto g(x) = x in C([0, 1],R).

GENERAL PICTURE

w

Span(w)

v
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4.4. Orthogonal complements and projections

Theorem 4.20 (Properties of projections) Let V be a dot product space, and let
v, w ∈ V with w ̸= 0. Then:

1. Alternate formulas: πwv = v ·w
||w||2

w = v ·w
||w||

u = (v · u)u, where u is a

normalized version of w.

2. Projection onto orthogonal vector is zero: v ⊥ w if and only if πwv = 0.

3. Projection onto parallel vector is itself: v||w if and only if πwv = v.

4. Projection ⊥what’s leftover: πwv ⊥ (v− πwv).

5. Projecting twice is redundant: πw(πwv) = πwv.

PROOF These are all calculations using the definitions. □

Theorem 4.21 (Orthogonal Decomposition Theorem (general case)) Let V be
a dot product space and let W be a finite-dimensional subspace of V . Then for any
v ∈ V , we can write

v = πW (v) + πW ⊥(v),

where πW (v) ∈ W and πW ⊥(v) ∈ W ⊥. The πW (v) in this theorem is called the
projection of v onto W and the πW ⊥(v) is the component of v orthogonal to W .

PROOF First, let {x1, x2, ..., xn} be a basis of W with two properties:

1. ||xj|| = 1 for all j (i.e. xj · xj = 1 for all j); and

2. xj ⊥ xk for all j ̸= k (i.e. xj · xk = 0 for all j ̸= k).

Note: It is not clear that such a basis exists. We will prove in the next section
that such a basis (called an orthonormal basis) always exists.

Given such a basis, and given v, define

πW (v) =
n∑

j=1
(v · xj)xj = (v · x1)x1 + (v · x2)x2 + ... + (v · xn)xn.

Since πW (v) is a combination of the xj , it is in W = Span(x1, ..., xn) as desired.

Next, define
πW ⊥(v) = v− πW (v) .
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4.4. Orthogonal complements and projections

This ensures that v = πW (v) + πW ⊥(v).
All that is left to prove is that πW ⊥(v) ∈ W ⊥.
To verify this, we will check that πW ⊥(v) is orthogonal to all the xk (which is

sufficient since the xk span W ):

πW ⊥(v) · xj = (v− πW (v)) · xk

=
v−

n∑
j=1

(v · xj)xj

 · xk

= v · xk −
n∑

j=1
(v · xj)(xj · xk)

= v · xk − [(v · x1)0 + ... + (v · xk−1)0 + (v · xk)1
+(v · xk+1)0 + ... + (v · xn)0]

= v · xk − v · xk = 0.

Therefore πW ⊥(v) is orthogonal to all the xj , hence is in W ⊥ as desired. □

Theorem 4.22 (Uniqueness of orthogonal decompositions) The πW (v) and the
πW ⊥(v) described in Theorem 4.21 are unique (in other words, you don’t get to choose
between more than one possible πW (v)s or more than one possible πW ⊥(v)s).

PROOF Suppose there are two vectors, say πW (v) and π̂W (v) which are “both” the
projection of v onto subspace W . That means:

πW (v) ∈ W π̂W (v) ∈ W v− πW (v) ∈ W ⊥ v− π̂W (v) ∈ W ⊥

Since W is a subspace, πW (v)− π̂W (v) ∈ W , and since W ⊥ is a subspace,

(v− πW (v))− (v− π̂W (v)) = πW (v)− π̂W (v) ∈ W ⊥.

Combining these statements, we see πW (v)− π̂W (v) ∈ W ∩W ⊥.

But by Observation B (Theorem 4.17), that means πW (v)− π̂W (v) = 0.

In other words, πW (v) = π̂W (v). This means we didn’t really have two different
projections of v onto W ; we only had one. □

107



4.4. Orthogonal complements and projections

Corollary 4.23 Let V be a finite-dimensional inner product space and let W be a
subspace of V . Given any basis B of W and any basis B⊥ of W ⊥, B ∪ B⊥ is a basis of
V .

PROOF Write B = {w1, ..., wm} and write B⊥ = {v1, ..., vn}.

Claim 1: B ∪ B⊥ spans V .
Proof of Claim 1: Let v ∈ V . Then by the Orthogonal Decomposition Theorem,

v = πW (v) + πW ⊥(v) =
m∑

i=1
cjwj +

n∑
j=1

bjvj.

Thus v can be written as a linear combination of vectors in B∪B⊥, so B∪B⊥

is a spanning set for V .

Claim 2: B ∪ B⊥ is lin. ind.

Proof of Claim 2: Suppose
m∑

i=1
ciwi +

n∑
j=1

bjvj = 0.

Therefore
m∑

i=1
ciwi = −

n∑
j=1

bjvj.

Since the left-hand side of this equation is in W and the right-hand side is
in W ⊥, both sides must belong to W ∩W ⊥, hence both sides are 0.

But since B and B⊥ are bases, they are lin. ind., so all the bj and ci must be
zero, hence B ∪ B⊥ is lin. ind. set.

By Claims 1 and 2, B ∪ B⊥ is a basis of V . □

Corollary 4.24 (Dimension Formula) Let V be a finite-dimensional inner product
space and let W be a subspace of V . Then

dim V = dim W + dim(W ⊥).

PROOF Let B be a basis of W and B⊥ be a basis of W ⊥. By the previous theorem,
B ∪ B⊥ (which must have dim W + dim W ⊥ vectors) is a basis of V , so

dim V = #(vectors in B ∪ B⊥)
= #(vectors in B) + #(vectors in B⊥)
= dim W + dim W ⊥.

as wanted. □
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4.4. Orthogonal complements and projections

Corollary 4.25 Let V be a finite-dimensional inner product space and let W be a
subspace of V . Then (W ⊥)⊥ = W .

PROOF First, dim(W ⊥)⊥ + dim W ⊥ = dim V , so

dim(W ⊥)⊥ = dim V − dim W ⊥ = dim W.

Now let w ∈ W ; w ⊥ v for all v ∈ W ⊥, so w ∈ (W ⊥)⊥. Thus W ⊆ (W ⊥)⊥.

But since these subspaces have the same dimension, they must be equal by an
earlier theorem (Theorem 3.36). □

WARNING: If dim V =∞, the preceding corollary is false! It turns out that in
this situation, (W ⊥)⊥ can contain more vectors than W .

Distance to a subspace

Definition 4.26 Let V be a dot product space and let W be a subspace of V . Given
any v ∈ V , let the distance from v to W , denoted by dist(v, W ), be the minimum
distance from v to any vector in W .
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4.4. Orthogonal complements and projections

Theorem 4.27 (Distance to a subspace) Let V be a dot product space and let W be
a finite-dimensional subspace of V . Given any v ∈ V , dist(v, W ) = ||πW ⊥(v)|| .

PROOF Let w ∈ W . Then πW (v)−w ∈ W , since it is the difference of two vectors
in W and W is a subspace. Thus (πW (v)−w) ⊥ πW ⊥(v) since πW ⊥(v) ∈ W ⊥.

Claim 1: ||πW ⊥(v)|| ≤ dist(v, W ).
Proof of Claim 1: So by the Pythagorean Theorem,

||πW (v)−w||2 + ||πW ⊥(v)||2 = ||(πW (v)−w) + πW ⊥(v)||2,

i.e.
||πW (v)−w||2 + ||πW ⊥(v)||2 = ||v−w||2,

so
||πW ⊥(v)||2 ≤ ||v−w||2.

Take the square root of both sides of this inequality to get

||πw⊥(v)|| ≤ dist(v, w).

Since this holds for any w ∈ W , we have ||πW ⊥(v)|| ≤ dist(v, W ).

Claim 2: ||πW ⊥(v)|| ≥ dist(v, W ).
Proof of Claim 2: Observe ||πW ⊥(v)|| = ||v− πW (v)|| = dist(v, πW (v)).

Since πW (v) ∈ W , this must be at least dist(v, W ).
So ||πW ⊥(v)|| ≥ dist(v, W ).

The two claims put together imply the result. □
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4.5. Orthonormal bases and the Gram-Schmidt procedure

4.5 Orthonormal bases and the Gram-Schmidt procedure
EXAMPLE 11

Let V = R4 and let W = Span((1, 2, 1,−1), (0, 2, 1,−2)). Let v = (2,−1, 0, 0). Com-
pute πW (v).

Theoretical solution: We know (from the proof of the Orthogonal Decomposition
Theorem) that if we had a basis {x1, x2} of W with the properties that ||xj|| = 1 for
all j and xj ⊥ xk for j ̸= k, then

πW (v) = (v · x1)x1 + (v · x2)x2 .

Question: How do you find {x1, x2}?

Definition 4.28 Let V be a dot product space. A set {x1, ..., xn} of vectors in V is
called (pairwise) orthogonal if xj ⊥ xk for all j ̸= k. The set is called orthonormal
if it is orthogonal and if ||xj|| = 1 for all j.

EXAMPLES

• {(2, 3), (−3, 2)} is an orthogonal set of vectors in R2 which is not orthonormal.

• {
(

1√
2 , 1√

2

)
,
(

−1√
2 , 1√

2

)
} is an orthonormal set of vectors in R2.

• {e1, e2, ..., en} is an orthonormal set of vectors in Rn where

ej = (0, 0, ..., 0, 1, 0, 0, .., 0)

(the 1 is in the jth position).

We are especially interested in bases that are orthonormal. This is because we can
easily write a vector as a linear combination of vectors coming from an orthonor-
mal basis. For example, consider R3 which has orthonormal basis {e1, e2, e3}where
e1 = (1, 0, 0); e2 = (0, 1, 0); e3 = (0, 0, 1).
Now, let v = (2,−3, 6). Then v =
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This generalizes:

Theorem 4.29 Let {x1, ..., xn} be an orthonormal basis of dot product space V . Then
for every v ∈ V , we have

v =
n∑

j=1
(v · xj)xj.

PROOF By the unique decomposition theorem, we know that we can write

v =
n∑

k=1
ckxk

uniquely. Now for each j,

v · xj =
n∑

k=1
ckxk · xj =

n∑
k=1

ck(xk · xj).

Since the xj are orthonormal, we have xk · xj = 0 if xj ̸= xk and
xj · xj = ||xj||2 = 12 = 1, so the above expression reduces to

v · xj = cj.

Thus v =
n∑

k=1
ckxk =

n∑
k=1

(v · xk) xk as desired. □

From the proof of the Orthogonal Decomposition Theorem, we get the following
formula:

Corollary 4.30 (Projection Formula) Let V be an inner product space and let {x1,
x2, ..., xn} be an orthonormal basis of a finite-dimensional subspace W . Then for every
v ∈ V , we have

πW (v) =
n∑

j=1
(v · xj)xj .

So we now have a theoretical procedure to compute projections of vectors onto
subspaces:

1. Find an orthonormal basis of the subspace; then

2. apply the Projection Formula.

Problem: How do we find orthonormal bases?

Solution: Use a procedure called Gram-Schmidt.
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4.5. Orthonormal bases and the Gram-Schmidt procedure

Theorem 4.31 (Gram-Schmidt Theorem) Given a basis {v1, ..., vn} of a dot prod-
uct space V (V could be a subspace of some other dot product space), there is a basis
{x1, ..., xn} of V such that

1. {x1, ..., xn} is an orthonormal basis, and

2. Span(x1, ..., xk) = Span(v1, ..., vk) for all k ≤ n.

PROOF The orthonormal basis {x1, ..., xn} is constructed by the Gram-Schmidt
procedure described below. □

The following corollary fills in the gap in the proof of the Orthogonal Decomposi-
tion Theorem:

Corollary 4.32 Every finite-dimensional dot product space has an orthonormal basis.

Gram-Schmidt procedure

This series of steps constructs an orthonormal basis {x1, ..., xn} from a given basis
{v1, ..., vn}:

Step 1: Define

w1 = v1

w2 = v2 − πw1v2

w3 = v3 − πw1v3 − πw2v3

...
...

wn = vn − πw1vn − πw2vn − ...− πwn−1vn

This produces an orthogonal set {w1, ..., wn}which is a basis.

Step 2: convert the orthogonal set to an orthonormal set by normalizing each
vector: for each j, set xj = wj

||wj||
.

BACK TO EXAMPLE 11
Let V = R4 and let W = Span((1, 2, 1,−1), (0, 2, 1,−2)). Let v = (2,−1, 0, 0). How
can we write v as πW (v) + πW ⊥(v) where πW (v) ∈ W ; πW ⊥(v) ∈ W ⊥?
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4.5. Orthonormal bases and the Gram-Schmidt procedure

Step 1: Use Gram-Schmidt to find orthonormal basis of W .

Recall W = Span(v1, v2) where
{

v1 = (1, 2, 1,−1)
v2 = (0, 2, 1,−2) .

“v’s 7→ w’s”:

“w’s 7→ x’s”:

Step 2: Use projection formula to find πW (v) (recall v = (2,−1, 0, 0)).

From Step 1, here’s our orthonormal basis of W :

{x1, x2} = {
(

1√
7

,
2√
7

,
1√
7

,
−1√

7

)
,

(
−1√

2
, 0, 0,

−1√
2

)
}

Step 3: Find πW ⊥(v) by setting πW ⊥(v) = v− πW (v).

114



4.6. Angles and the Cauchy-Schwarz inequality

This gives us a (not very nice) method to compute projections of vectors onto sub-
spaces. A less messy way to carry out (Step 1 of) the Gram-Schmidt procedure is
to use the following command in Mathematica:

Orthogonalize[{{1,2,1,-1}, {0,2,1,-2}}]

Later in the course we will see another method of computing projections by hand
that is less terrible.

4.6 Angles and the Cauchy-Schwarz inequality
Theorem 4.33 (Cauchy-Schwarz Inequality) Let V be a dot product space. Then
for any v, w ∈ V , |v ·w| ≤ ||v|| ||w|| .

PROOF If w = 0, then both sides of the C-S inequality are zero, so it is trivally true.
Henceforth, assume w ̸= 0. Then

0 ≤ ||v− πwv||2 = (v− πwv) · (v− πwv)
= v · v− 2πwv · v + πwv · πwv

= ||v||2 − 2
( v ·w

w ·w
w
)
· v +

( v ·w
w ·w

w
)
·
( v ·w

w ·w
w
)

= ||v||2 − 2(v ·w)2

w ·w
+ (v ·w)2

(w ·w)2 w ·w

= ||v||2 − 2(v ·w)2

w ·w
+ (v ·w)2

w ·w

= ||v||2 − (v ·w)2

w ·w

= ||v||2 − (v ·w)2

||w||2
.

Therefore

(v ·w)2

||w||2
≤ ||v||2 ⇒ (v ·w)2 ≤ ||v||2 ||w||2 ⇒ |v ·w| ≤ ||v|| ||w||.□
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Using the C-S Inequality, we are now able to prove the following result, which
was mentioned earlier but not proven:

Theorem 4.34 (Triangle Inequality) Let V be a dot product space. Then for all
v, w ∈ V , ||v + w|| ≤ ||v||+ ||w|| .

PROOF

v ·w ≤ ||v|| ||w|| (C-S Inequality)
⇒ 2v ·w ≤ 2||v|| ||w||

⇒ v · v + 2v ·w + w ·w ≤ ||v||2 + 2||v|| ||w||+ ||w||2

⇒ (v + w) · (v + w) ≤ (||v||+ ||w||)2

⇒ ||v + w||2 ≤ (||v||+ ||w||)2 .

Take the square root of both sides to get the desired result. □

Corollary 4.35 (Generalized Triangle Inequality) Let V be a dot product space.
Then for all v1, v2, ..., vn ∈ V , ∣∣∣∣∣∣

∣∣∣∣∣∣
n∑

j=1
vj

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

n∑
j=1
||vj||.

Definition 4.36 Let V be a dot product space. Given nonzero vectors v, w ∈ V , the
angle between v and w is

θ = arccos
(

v ·w
||v|| ||w||

)
.

Note:
v ·w
||v|| ||w||

is guaranteed to be between −1 and 1 by the C-S Inequality.

Rewritten, this definition says cos θ = v ·w
||v|| ||w||

.

Rewritten further, this says v ·w = ||v|| ||w|| cos θ . (This formula should look
familiar if you have already taken Calculus III or have seen vectors in physics.)
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EXAMPLE 12
Compute the angle between the vectors (0, 1) and (1, 1) in R2.

4.7 Hyperplanes
Definition 4.37 Let V be a real vector space of dimension n <∞. A hyperplane is
an affine subspace of V whose dimension is n− 1.

EXAMPLES

• In R (dimension 1), hyperplanes

• In R2 (dimension 2), hyperplanes

• In R3 (dimension 3), hyperplanes

Theorem 4.38 Let V be a finite-dimensional dot product space and let H be a hyper-
plane. Then there is a nonzero vector n ∈ V , called a normal vector to the hyperplane,
and a scalar d ∈ R such that

x ∈ H ⇐⇒ n · x = d.

The equation n · x = d is called a normal equation or standard equation of the
hyperplane.
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PROOF Let W be the subspace of V associated to H .
Then dim W ⊥ = dim V −dim W = n− (n−1) = 1, so W ⊥ is spanned by a single

nonzero vector. Call such a vector n.

H

W

Span(n)=W⟂

Next, select x0 ∈ H (so that H = W + x0) and let d = n · x0.
We claim that for this choice of n and d, x ∈ H ⇐⇒ n · x = d.

(⇒) Suppose x ∈ H .
Then x− x0 ∈ W so (x− x0) ⊥ n.
Thus (x− x0) · n = 0 so x · n = x0 · n = d.

(⇐) Suppose n · x = d.
Then n · (x− x0) = d− d = 0 so x− x0 ∈ W .
Thus x ∈ W + x0 = H . □

EXAMPLE 13
Let V = R2 and let H be the hyperplane y = −2x + 4.
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EXAMPLE 14
Let V = R3 and let H be the hyperplane passing through (0, 1, 4), (−2,−3, 8) and
(2, 2,−1). Write a normal equation of H .

EXAMPLE 15
Find a normal equation of the plane passing through (3,−1, 2) and containing the
line whose parametric equations are x = 2t + 1, y = t− 5, z = −7t + 4.
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4.7. Hyperplanes

EXAMPLE 16
The two planes with equations x + y + z = 3 and 2x − 3y + 4z = 9 intersect in a
line. Find parametric equations of this line.
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Cross products

Definition 4.39 Let a = (a1, a2, a3) and b = (b1, b2, b3) be two vectors in R3. The
cross product of a and b, denoted a × b, is the vector

a × b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

EXAMPLE: (1, 4,−3)× (2,−1, 3) =

Some of you may know an alternate formula for cross product using determinants.
You may use that formula if you know it (we’ll get to it later in this course).

Theorem 4.40 (Properties of cross product) Let a, b, c ∈ R3. Then:

1. (a × b) ⊥ a and (a × b) ⊥ b ;

2. a||b if and only if a × b = 0;

3. a × b = −b× a;

4. (a + b)× c = (a × c) + (b× c) and a × (b + c) = a × b + a × c;

5. ra × b = r(a × b) = a × rb for any r ∈ R;

6. If a and b are not parallel, then (Span(a, b))⊥ = Span(a × b);

7. ||a × b|| = ||a|| ||b|| sin θ, where θ is the angle between a and b.

PROOF These are all direct calculations using the definition; the important fact in
linear algebra is statement (1), so we will prove the first part of that statement here:

(a × b) · a = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) · (a1, a2, a3)
= a1(a2b3 − a3b2) + a2(a3b1 − a1b3) + a3(a1b2 − a2b1)
= a1a2b3 − a1b2a3 + b1a2a3 − a1a2b3 + a1b2a3 − b1a2a3

= 0. □
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EXAMPLE 14, REVISITED

Let V = R3 and let H be the hyperplane passing through (0, 1, 4), (−2,−3, 8) and
(2, 2,−1). Write a normal equation of H .
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4.8 Summary of Chapter 4
1. The dot product of two vectors is a scalar. Each vector space has its own

formula for dot product; examples of dot product include:

• if v, w ∈ Rn, v ·w = vT w =
n∑

j=1
vjwj .

• if f, g ∈ C([a, b],R), f · g =
∫ b

a
f(x)g(x) dx.

• if A, B ∈Mn(R), A ·B = tr(ABT ).

There are vector spaces with no dot product, but if V has a dot product for-
mula, then we call V a dot product space.

2. Dot products are useful because they lead to geometric descriptions of vec-
tors. In particular, if V is a dot product space we can define:

a) The norm (length) of a vector v ∈ V is the scalar ||v|| =
√

v · v.
(In other words, v · v = ||v||2.)

b) The distance between two vectors v, w ∈ V is the scalar dist(v, w) =
||v−w||.

c) A unit vector is a vector whose norm is 1.
Given any nonzero v, there is always a unit vector u in the same di-
rection as v, called a normalized version of v, which is computed by

setting u = 1
||v||

v.

d) Two vectors v and w are called orthogonal (written v ⊥ w) if v ·w = 0.
Orthogonality generalizes the idea of “perpendicularity” from planar
geometry.

e) The angle θ between nonzero vectors v and w is θ = arccos
(

v ·w
||v|| ||w||

)
.

(In other words, v ·w = ||v|| ||w|| cos θ.)
The reason we can define angles this way is because of the Cauchy-
Schwarz Inequality, which says that for any v, w ∈ V ,

|v ·w| ≤ ||v|| ||w||.

3. Dot product in Rm and Rn satisfies the important dual relation: if A ∈Mmn(R),
x ∈ Rn and y ∈ Rm, then

Ax · y = x · AT y.
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4. A basis {x1, ..., xn} of dot product space (or subspace) V is called orthonor-
mal if the vectors in the basis are pairwise orthogonal, and if every vector in
the basis is a unit vector.

a) If {x1, ..., xn} is an orthonormal basis of V , then every v ∈ v satisfies

v =
n∑

j=1
(v · xj)xj.

b) To find an orthonormal basis of V , start with any basis {v1, ..., vn} of V
and apply the Gram-Schmidt procedure to convert this basis into an or-
thonormal basis.

5. Given a dot product space V and a subspace W of V , define the orthogonal
complement W ⊥ to be the set of vectors which are orthogonal to every w ∈
W .

• W ⊥ is a subspace of V , and dim V = dim W + dim W ⊥.

• W ∩W ⊥ = {0}.
• (W ⊥)⊥ = W if V is finite dimensional.

• v ∈ W ⊥ if and only if v is orthogonal to every vector in a spanning set
(or basis) of W .

• Given any v ∈ V , we can write v = πW (v) + πW ⊥(v) where πW ⊥(v) ∈ W
and πW (v) ∈ W ⊥.
The πW (v) so obtained is called the projection of v onto W .

a) If dim W = 1, then W = Span(w) for some nonzero w; in this case

πW (v) = πwv = v ·w
w ·w

w.

b) In general, πW (v) can be computed by taking a basis {w1, ..., wn} of
W , converting that basis into an orthonormal basis {x1, ..., xn} via
Gram-Schmidt, and then using the Projection Formula:

πW (v) =
n∑

j=1
(v · xj)xj.

c) To compute πW ⊥(v), first compute πW (v) and then set

πW ⊥(v) = v− πW (v).

d) dist(v, W ), the minimum distance from vector v to subspace W , sat-
isfies dist(v, W ) = ||πW ⊥(v)||.
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6. A hyperplane in vector space V is an affine subspace whose dimension is 1
less than the dimension of V .

a) If V is a dot product space, then every hyperplane has a normal equa-
tion n · x = d.
n is a called a normal vector to the hyperplane.

b) If V = R2, hyperplanes are lines, and the normal equation of a line is
ax + by = d. (Here, the normal vector is n = (a, b).)

c) If V = R3, hyperplanes are planes, and the normal equation of a plane
is

ax + by + cz = d

(here, the normal vector is n = (a, b, c)).
Given two nonparallel vectors a and b in R3, the normal vector n to the
plane containing a and b is n = a × b.
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4.9 Homework exercises for Chapter 4
1. Let x and y be vectors in R4; let v and w be vectors in R3, and let A be a 4× 3

matrix. Determine whether each of the following quantities are a scalar, a
vector (in which case you should say if it belongs to R3 or R4), a matrix (in
which case you should give its size), or nonsense.

Note: For the purposes of this problem, matrices with a single column should
be called vectors.

a) x · x
b) x · x · x
c) (x · x) · x
d) (x · x)x

e) (x + 2y) · y
f) v · Ax
g) Av · Aw
h) x · AT y

2. Same directions as the previous problem (where v, w, A, x and y are the same
types of objects as in the previous problem):

a) (v ·w)Ax
b) A((x · y)Aw · y)
c) dist(x, x)
d) ||2y + x||

e) ||y||y
f) ||w||x
g) dist(w, 2v)A
h) dist(x, w)y · x

3. Let v = (−2, 2,−1), let w = (0, 1, 2) and let x = (3,−1,−1). Compute the
following:

a) v ·w
b) x · 2w
c) x · (v− x)
d) dist(v, w)

e) ||v||
f) ||v + 2w− x||
g) v

||v||

h) dist(3v, 2x−w)

4. Suppose v, w, x are vectors in some dot product space V such that v ·w = 4,
||v|| = 5, v · x = −3 and x · x = 20. Compute the following:

a) −x · 2v
b) v · (4x− 3w)
c) v · v
d) w · 1

||w||2 w

e) ||x||
f) (v + x) · (v + x)
g) 2x ·w− x · 2w
h) v · ||v||v

5. Consider the dot product space C([−1, 1],R), and let f(x) = x and g(x) = x2.
Compute the following:
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a) f · g
b) f · f
c) ||f ||

d) ||f + g||
e) dist(f, g)
f) dist(f, 2)

6. Find all real numbers k such that the vectors (1, 2, k) and (2, 4, 3) are distance
3 apart.

7. Let a, b ∈ R3. Suppose that for some nonzero v ∈ R3, v · a = v · b. Is it
necessarily the case that a = b? Justify your answer (this means prove the
result if it is true, and provide a counterexample if it is false).

8. Let a, b ∈ R3. Suppose that for every v ∈ R3, v · a = v · b. Prove that a = b.

Hint: Write a = (a1, a2, a3) and b = (b1, b2, b3). Make some clever choices of
v and use the hypothesis of this problem to show that a1 = b1, a2 = b2 and
a3 = b3 (which means a = b).

9. Let v = (−2, 0, 1, 3) and w = (1, 5,−2, 3).

a) Find πw(v), the projection of v onto w.

b) Find the projection of w onto v.

c) Find πw⊥(v), the component of v orthogonal to w.

d) Find the cosine of the angle between v and w.

e) Find a unit vector in the same direction as w.

f) Find a vector of length 8 in the same direction as w.
Hint: Start with the answer to part (e).

g) Determine whether the vectors v and (1, 1, 5,−1) are orthogonal.

h) If (3, 1, 4x, 2x) ⊥ v, find the value of x.

10. Without using any methods from calculus, find the point on the line y = 3x
which is closest to the point (8, 3).
Hint: This has something to do with projections. Draw a picture and identify
some vectors to help you figure out what to compute.

11. Use the Gram-Schmidt procedure to convert each of the following sets of
vectors into an orthonormal basis of the space they span:

a) {(3,−4, 5), (−3, 14,−7)}
b) {(1,−4, 0, 1), (7,−7,−4, 1), (6, 3, 6,−3)}
c) {(1,−1, 0, 1, 1), (3,−3, 2, 5, 5), (5, 1, 3, 2, 8)}

12. Let v = (1, 3, 5) and let W = Span((1, 3,−2), (5, 1, 4)).
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a) Compute the projection of v onto W .

b) Compute the component of v orthogonal to W .

c) Find the distance between v and W .

d) Find the element of W which is closest to v.

13. Let V = C([0, 1],R). Consider the subspace W of V consisting of functions of
the form f(x) = mx + b, where m and b are constants.

a) Find a basis of W .

b) Use the Gram-Schmidt procedure to convert your answer to part (a) into
an orthonormal basis of W .

c) Let g(x) = x2. Find the projection of g onto W .
Note: The answer to part (c) should be thought of as the linear function
which best approximates the function g(x) = x2 on the interval [0, 1].

14. Find the linear function which best approximates the function f(x) = x3− x2

on the interval [0, 1].

15. Find the linear function which best approximates the function f(x) = x3 −
4x2 + 4x on the interval [0, 3].

16. Suppose an object sits on the plane in R3 that is described as the set of points
satisfying the equation 8x − 5y + z = 0. If a force is applied to the object in
the direction f = (2,−1,−3), in what direction will the object move? (Ignore
the effect of friction, and assume that the force is sufficiently large to move
the object.)

Hint: This has something to do with projections.

17. In each part of this problem, you are given a vector space V and a subspace
W of V . Describe the orthogonal complement W ⊥ (by “describe”, I mean
give the dimension of W ⊥ and write down a basis of W ⊥).

a) V = R2; W = Span((3, 5))
b) V = R2; W = the y−axis

c) V = R2; W = {(x, y) : 3x− 7y = 0}
d) V = R3; W = Span((2, 1,−3), (0, 2,−5))
e) V = R3; W = Span((2, 1,−3))
f) V = R3; W = {(x, y, z) : 2x + 3y + z = 0}

Hint: First, find a basis of W .

18. In each part of this problem, you are given a vector space V and a subspace
W of V . Describe the orthogonal complement W ⊥.
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a) V = R4; W = Span((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1))
b) V = R4; W = Span((0, 3, 0, 0))
c) V = R4; W = Span((1,−2, 5, 2))
d) V = R4; W = Span((1, 0,−1, 0), (−4,−1, 0, 1))

19. Prove (using vectors and dot products) that the diagonals of a rhombus are
perpendicular.

Hint: Draw a rhombus and think of the sides as vectors; give them names like
v and w. (You should only need use two letters for the sides, even though
there are four sides.) Since the shape you drew is a rhombus, what is assumed
to be true about v and w? Draw the diagonals of the rhombus, figure out
what they are in terms of v and w, and then show they are orthogonal.

20. Prove (using vectors and dot products) that if the diagonals of a parallelo-
gram have the same length, then the parallelogram is a rectangle.

21. Let S = {v1, ..., vn} be a set of nonzero vectors in an inner product space such
that for all i ̸= j, vi ⊥ vj . Prove that S is a linearly independent set of vectors.

Hint: Suppose c1v1 + c2v2 + ... + cnvn = 0. Now take the dot product of both
sides of this equation with v1, and use the hypothesis of orthogonality (and
some other stuff) to explain why c1 = 0. Proceed from there.

22. a) Write the normal equation of the plane in R3 passing through the points
(2, 1,−3), (4,−3, 2) and (1,−5, 1).

b) The line in R3 passing through (1, 0, 2) and (3,−1, 5) intersects the plane
described in part (a) in one point. Find the coordinates of this point.
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Chapter 5

Linear transformations

5.1 Introduction
RECALL

In Chapter 1 we discussed the problem of solving a system of several equations in
several variables. Here is an example:

3w + 2x− y + 5z = 8
2w − x + 4y − z = −3
w + 5x + 2y + 6z = 17

We are interested in the following questions about this system:

1. Is there a solution?

2. If so, how many solutions are there?

3. What are the solutions?

BIG PICTURE

Think of the left hand side of this system as a single function called T and we
think of the four variables (w, x, y, z) as a single variable x. Last, we group the
right-hand side of the equation (8,−3, 17) into a single vector called b. Then the
system above becomes a single equation

T (x) = b.

130



5.1. Introduction

At this point in the course, we know quite a bit about x and b:

• x = (w, x, y, z) is a vector in R4;

• b = (8,−3, 17) is a vector in R3.

In Chapters 3 and 4 we studied vector spaces (and subspaces, and dimension, and
orthogonality, etc.) in detail, so we have a good idea of how to think about the x
and the b. What we don’t know much about yet is the T . All we know about T is
that

It turns out that this T is something called a linear transformation. We will see that:

• every linear transformation has four subspaces associated to it which deter-
mine the answers to the three questions above (thus the need to fully under-
stand subspaces), and

• these four subspaces come in two pairs of orthogonal complements (thus the
need to understand dot products and orthogonality).

Developing an understanding of linear transformations and these associated sub-
spaces is the content of this chapter. For now, we start with a definition:

Definition 5.1 Let V1 and V2 be real vector spaces. A function T : V1 → V2 is called
a linear transformation if, for every v, w ∈ V1 and every r ∈ R,

1. T preserves addition, meaning T (v + w) = T (v) + T (w), and

2. T preserves scalar multiplication, meaning T (rv) = rT (v).

Theorem 5.2 (Linear transformations preserve zero) If T : V1 → V2 is a linear
transformation, then T (0) = 0.

PROOF Let v ∈ V1 be arbitrary. Then T (0) = T (0v) = 0T (v) = 0. □
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5.2 The standard matrix of a linear transformation
EXAMPLE 1

Suppose T : R→ R is a linear transformation. What must be true about T ?

Theorem 5.3 Every linear transformation from R to R is of the form T (x) = ax,
where a ∈ R is a constant.

132



5.2. The standard matrix of a linear transformation

EXAMPLE 2
What are all the linear transformations from R2 to R3?

Solution: Proceeding as in Example 1, suppose T : R2 → R3 is linear.
Let (a, c, e) = T (1, 0) and let (b, d, f) = T (0, 1).
Then for any (x, y) ∈ R2,

T (x, y) = T (x, 0) + T (0, y)
= x T (1, 0) + y T (0, 1)
= x(a, c, e) + y(b, d, f)
= (ax, cx, ex) + (by, dy, fy)
= (ax + by, cx + dy, ex + fy).

This shows that every linear transformation T : R2 → R3 is of the form

T (x, y) = (ax + by, cx + dy, ex + fy)

for suitable constants a, b, c, d, e and f .

There is another way to think about this solution that is useful:

The work we did above generalizes:
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5.2. The standard matrix of a linear transformation

Definition 5.4 The standard basis of Rn is the basis {e1, e2, ..., en} (written in
that order) of Rn where

e1 = (1, 0, 0, ..., 0), e2 = (0, 1, 0, ..., 0), · · · en = (0, 0, ..., 0, 1)

In general, ej is a vector that has a 1 in the jth position and 0s in all other positions.

Note: the standard basis {e1, ..., en} is an orthonormal basis of Rn.

Theorem 5.5 Let T : Rn → Rm be a linear transformation. Then there is a matrix
A ∈Mmn(R), called the standard matrix of T such that T (x) = Ax for all x ∈ Rn.
Furthermore, the columns of A are, in order, T (e1), T (e2), ..., and T (en).

PROOF Let {e1, ..., en} be the standard basis of Rn. Let

A =

 ↑ ↑ ↑
T (e1) T (e2) · · · T (en)
↓ ↓ ↓

 .

Now let x = (x1, ..., xn) ∈ Rn; we claim T (x) = Ax. To check this, just compute:

Ax = x1T (e1) + x2T (e2) + ... + xnT (en) (by def’n of matrix multiplication)
= T (x1e1) + T (x2e2) + ... + T (xnen) (since T preserves scalar ·)
= T (x1e1 + x2e2 + ... + xnen) (since T preserves +)
= T (x). □

Important Consequence: Every linear transformation from Rn to Rm is really
matrix multiplication, once you write down the standard matrix (which will
be m× n).
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EXAMPLE 3
In each part of this example, you are given a linear transformation (take my word
that these are all actually linear transformations). Find its standard matrix A, and
then compute T (2,−1).

a) T : R2 → R2 rotates the plane by angle θ radians counterclockwise about the
origin.

b) T : Rn → Rn defined by T (x) = x (the identity transformation).

Solution: T (e1) = T (1, 0) = (1, 0) and T (e2) = T (0, 1) = (0, 1), so the standard
matrix of T is

A =

 ↑ ↑
T (e1) T (e2)
↓ ↓

 =
(

1 0
0 1

)
.

Therefore T (2,−1) =
(

1 0
0 1

)(
2
−1

)
=

(
2
−1

)
= (2,−1) .
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c) T : R2 → R2 which projects vectors onto the subspace spanned by (4, 1).

Solution:

Similarly, T (e2) = T (0, 1) = π(4,1)(0, 1) = (0,1)·(4,1)
(4,1)·(4,1)(4, 1) = 1

17(4, 1) =
(

4
17 , 1

17

)
.

Therefore the standard matrix of T is

A =
 16

17
4
17

4
17

1
17



and T (2,−1) =
 16

17
4
17

4
17

1
17

 2
−1

 =
 28

17
7
17

 =
(28

17 ,
7
17

)
.

d) T : R2 → R4 defined by T (x, y) = (3x + y, 5x− 2y,−y,−4x + 7y).

Solution: T (e1) = T (1, 0) = (3, 5, 0,−4) and T (e2) = T (0, 1) = (1,−2,−1, 7),
so the standard matrix of T is

A =


3 1
5 −2
0 −1
−4 7

 .

Therefore T (2,−1) =


3 1
5 −2
0 −1
−4 7


(

2
−1

)
=


5
12
1
−15

 = (5, 12, 1,−15) .
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e) T : R2 → R2 where T reflects points through the line y = 2x.

y=2x

e1 1
x

2

y
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More examples with standard matrices
EXAMPLE 4

Suppose T : R3 → R2 is a linear transformation such that T (1, 0, 0) = (2,−3),
T (0, 1, 0) = (−2, 5) and T (0, 0, 1) = (1, 4). Compute T (2,−1, 4).

EXAMPLE 5
Suppose T : R2 → R2 is a linear transformation such that T (1, 5) = (3,−7) and
T (2,−1) = (−5,−3). Compute T (3, 2).

Now that we know T (x) = Ax =
(
−2 1
−2 −1

)(
x
y

)
, we see that

T (3, 2) = A

(
3
2

)
=
(
−2 1
−2 −1

)(
3
2

)
=

(
−4
−8

)
= (−4,−8) .
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Linear transformations and pictures
EXAMPLE 6

Below, you are given sketches of T (e1) and T (e2) for some linear transformation
T : R2 → R2. On that picture, sketch the relative position of the vectors T (2, 0),
T (1

2 , 3) and T (−2,−1).

T(e )
1

T(e )
2

EXAMPLE 7
Below, you are given sketches of T (v), T (w) and T (x) for some linear transforma-
tion T . On that picture, sketch the relative position of the vectors T (3

2x), T (v + x),
T (w− 2v) and T (2v + w + x).

T(v) T(w)

T(x)
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Examples 6 and 7 demonstrate how linear transformations preserve grids. For
example, if you have a linear transformation T : R2 → R3 with T (e1) and T (e2) as
indicated, then the rest of the plane gets mapped as follows:

e1

e2

-2 -1 1 2
x

-2

-1

1

2

y

T−→
T(e )1

T(e )2

Sometimes, however, you get a picture like this:

e1

e2

-2 -1 1 2
x

-2

-1

1

2

y

T−→
T(e )1

T(e )2

The starting grid doesn’t have to be orthonormal:

v w T−→
T(w)

T(v)

These ideas enable us to revisit one of the motivating problems from Chapter 1:
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EXAMPLE 8 (THIS WAS EXAMPLE 6 FROM SECTION 1.1)
Here is a picture of Emmet from the LEGO movie, which is 225 pixels by 225 pixels:

50 100 150 200

50

100

150

200

Suppose you warp the image of Emmet so that it fits in this parallelogram:

150 222 372

142

320

462

a) If a pixel was at position (x, y) in the old picture, what will its location be in
the original picture? In other words, what “formula” is needed to distort the
image so that it fits in the right space?

b) Suppose that the left corner of Emmet’s mouth is the pixel that was originally
at position (110, 170). At what position will the left corner of Emmet’s mouth
end up in the warped image?
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Compositions of linear transformations
RECALL

To compose two functions means to do one, then the other:

Theorem 5.6 (Compositions of linear transformations are linear) Let T1 : V1 →
V2 and T2 : V2 → V3 be linear transformations. Then the transformation T2◦T1 : V1 →
V3 is linear as well.

PROOF First, we show T2 ◦ T1 preserves addition: let v, w ∈ V1; then

(T2 ◦ T1)(v + w) = T2(T1(v + w))
= T2(T1(v) + T1(w)) (since T1 preserves +)
= T2(T1(v)) + T2(T1(w)) (since T2 preserves +)
= (T2 ◦ T1)(v) + (T2 ◦ T1)(w).

Next, we show T2 ◦ T1 preserves scalar ·: let v ∈ V1 and r ∈ R; then

(T2 ◦ T1)(rv) = T2(T1(rv))
= T2(rT1(v)) (since T1 preserves scalar ·)
= rT2(T1(v))
= r (T2 ◦ T1)(v).

Thus T2 ◦ T1 is linear, since it preserves + and scalar ·. □

Theorem 5.7 (Standard matrix of composition is matrix product) Let T1 : Rn →
Rm and T2 : Rm → Rp be linear transformations with standard matrices A1 ∈
Mmn(R) and A2 ∈Mpm(R), respectively.

Then the standard matrix of T2 ◦ T1 : Rn → Rp is A2A1 ∈Mpn(R).

PROOF Let {ej} represent standard basis elements of Rn,Rm,Rp, etc.

Let the entries of A1 be denoted by as and the entries of A2 be denoted by bs.

Then the (i, j)−entry of A2A1, by the definition of matrix multiplication, is
m∑

l=1
bilalj.

Now, the ith entry of the vector (T2 ◦ T1)(ej) is

[(T2 ◦ T1)(ej)]i = [T2(T1(ej))]i =
[
T2(jth column of A1)

]
i

= [T2(a1j, a2j, ..., amj)] i

=
[
T2

(
m∑

l=1
aljel

)]
i
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From the previous page,

[(T2 ◦ T1)(ej)]i =
[
T2

(
m∑

l=1
aljel

)]
i

=
[

m∑
l=1

aljT2(el)
]

i

(since T2 is linear)

=
[

m∑
l=1

aljT2(el)
]

i

=
m∑

l=1
alj

[
lth column of A2

]
i

=
m∑

l=1
alj [(i, l)− entry of A2]

=
m∑

l=1
bilalj.

= (i, j)− entry of matrix A2A1.

This proves that for all i and j, [(T2 ◦ T1)(ej)]i is the (i, j)−entry of A2A1.

Therefore the jth column of the standard matrix of T2 ◦ T1 is the jth column of
A2A1, i.e. the standard matrix of T2 ◦ T1 is A2A1. □

Importance: This theorem further explains why matrix multiplication has the
complicated definition that it does.

EXAMPLE 9
Find the standard matrix of the linear transformation T : R2 → R2 that first multi-

plies vectors by
(

2 −1
3 0

)
and then rotates the plane by

π

4 clockwise.
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5.3 Proving whether a transformation is linear
RECALL

By definition, T : V1 → V2 is a linear transformation if

• T preserves addition, meaning

• T preserves scalar multiplication, meaning

We also proved a theorem in Section 5.1 which says that for any linear T ,

• T preserves 0 (i.e. T (0) = 0).

These three facts give you a good mechanism to decide whether a given function is
a linear transformation. If you are given a function T : V1 → V2, ask the following
questions (this is called the brute-force method for determining whether or not T
is a linear transformation):

START
Does

T (0) = 0?

Does
T (v + w) =

T (v) + T (w)?

Does
T (rv) =
r T (v)?

T is
linear

T is not
linear

T is not
linear

T is not
linear

Yes Yes Yes

No No No

This should remind you of the procedure we used in Chapter 4 to prove whether
or not a subset of a vector space is a subspace.

To prove that a transformation T : V1 → V2 is linear, you need to do both of
these things:

1. Take two generic elements of V1, say v and w. Work out T (v + w) and
T (v) + T (w) separately, and show they come out to the same thing.

Be careful not to write T (v + w) = T (v) + T (w) until you know that is a
true statement. (Don’t assume what you want to prove!)

2. Take a generic element of V1, say v and a generic scalar r. Work out T (rv)
and r T (v) separately, and show they come out to the same thing.

Be careful not to write T (rv) = r T (v) until you know that is true.
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To prove that a transformation T : V1 → V2 is NOT linear, you need to do one
of these three things:

1. Explain why T (0) ̸= 0.

2. Alternatively, write down two specific elements of V1 (i.e. with numbers),
say v and w, and explain why T (v + w) ̸= T (v) + T (w).

3. Alternatively, write down a specific element of V1 (i.e. with numbers),
say v, and a specific scalar (i.e. a number), say r, and explain why
T (rv) ̸= r T (v).

EXAMPLE 10
In each part, you are given a function T : V1 → V2, where V1 and V2 are real vector
spaces. Determine, with justification, whether or not T is a linear transformation.

a) V1 = V2 = R3. T (x1, x2, x3) = (3x1 + x2 − x3, 0, x2).

b) V1 = V2 = R2. T (x, y) = (5x− 1, y + x).
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c) V1 = V2 = M3(R). T (A) = AT .

Solution:

• T (0) = T (03×3) = (03×3)T = 03×3 = 0
• T (A + B) = (A + B)T

T (A) + T (B) = AT + BT

• T (rA) = (rA)T

• r T (A) = r AT

Therefore T is linear .

d) V1 = C(R,R); V2 = R2. T (f) = (f(2), 3f(0)).

e) V1 = V2 = R; T (x) = |x|.
Solution:

• T (0) = |0| = 0.

• T (3 + (−2)) = T (1) = |1| = 1, but
T (3) + T (−2) = |3|+ | − 2| = 3 + 2 = 5.

Therefore T is not linear .
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f) V1 = M4(R); V2 = R4. T (A) = the 3rd column of A.

Solution: Let A ∈M4(R). We can write A =
 a11 a12 a13 a14

...
...

...
...

a41 a42 a43 a44

. That makes

T (A) = (a13, a23, a33, a43), and if we use similar notation for B ∈ M4(R), then
T (B) = (b13, b23, b33, b43). Therefore:

g) V1 = V2 = R2. T (x) is the reflection of point x through the line x = 3.

h) V1 = the space of differentiable functions from R to R; V2 = R. T (f) = f ′(0).
Solution:

• T (0) = T (the constant function f(x) = 0) = (0)′(0) = 0.

• T (f + g) = (f + g)′(0)
T (f) + T (g) = f ′(0) + g′(0)

• T (rf) = (rf)′(0)
r T (f) = r f ′(0)

Therefore T is linear .
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5.4 Prototypical examples of linear transformations
1. Matrix multiplication (the most important example)

Every matrix A ∈ Mmn(R) defines a linear transformation T : Rn → Rm by
T (x) = Ax.

REASON:

2. Projection

Let V be any vector space and let w ∈ V be nonzero. Then the map T : V → V

defined by T (v) = πwv is linear. (Recall that T (v) = πw(v) = v ·w
w ·w

w.)

REASON: • T (0) = πw0 = 0
• T (v1 + v2) = πw(v1 + v2) = πw(v1) + πw(v2) = T (v1) + T (v2)
• T (rv1) = πw(rv1) = r πw(v1) = rT (v1).

Projection onto a subspace (i.e. the map πW : v 7→ πW (v) for W ⊆ V ) is also linear.

3. Dot product by a fixed vector

Fix a vector v ∈ Rn. Then the transformations T (x) = v · x and T (x) = x · v are
both linear transformations from Rn to R (the same kind of thing works for the
other dot product spaces).

4. Differentiation

Let V = C∞(R,R), the space of functions which are infinitely differentiable. Then
T : V → V defined by T (f) = f ′ is linear.

REASON: • T (0) = 0′ = 0
• T (f + g) = (f + g)′ = f ′ + g′ = T (f) + T (g)
• T (rf) = (rf)′ = r f ′ = rT (f).
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5. Definite integration

Let V = C([a, b],R), the space of continuous functions from [a, b] to R. Then T :
V → R, defined by T (f) =

∫ b

a
f(x) dx is linear.

REASON: • T (0) =
∫ b

a
0 dx = 0

• T (f + g) =
∫ b

a
[f(x) + g(x)] dx =

∫ b

a
f(x) dx +

∫ b

a
g(x) dx = T (f) + T (g)

• T (rf) =
∫ b

a
rf(x) dx = r

∫ b

a
f(x) dx = rT (f).

6. Evaluation

Let V be some vector space of functions and fix a ∈ R. Then T : V → R, defined
by T (f) = f(a), is linear.

REASON: • T (0) = 0(a) = 0
• T (f + g) = (f + g)(a) = f(a) + g(a) = T (f) + T (g)
• T (rf) = (rf)(a) = r f(a) = rT (f).

EXAMPLE: If a = 0, then T (f) = f(0).
That means T (ex) = e0 = 1; T (x3) = 0; T (x2 + 5) = 5; etc.

7. Certain geometric transformations

like rotations about the origin, reflections, etc.

8. Compositions of linear transformations

If T1 : V1 → V2 and T2 : V2 → V3 are linear, then T2 ◦ T1 : V1 → V3 is linear as well
(this was proven earlier).
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9. Sums of other linear transformations

Theorem 5.8 Let T1 : V1 → V2 and T2 : V1 → V2 be linear transformations. Then
the transformation T1 + T2 : V1 → V2, defined by setting

(T1 + T2)(v) = T1(v) + T2(v)

for all v ∈ V1, is linear.

PROOF First, we show T1 + T2 preserves addition: let v, w ∈ V1; then

(T1 + T2)(v + w) = T1(v + w) + T2(v + w) (by definition of T1 + T2)
= T1(v) + T1(w) + T2(v) + T2(w) (since T1 and T2 are linear)
= (T1 + T2)(v) + (T1 + T2)(w) (by definition of T1 + T2).

Next, we show T1 + T2 preserves scalar multiplication: let v ∈ V1 and r ∈ R; then

(T1 + T2)(rv) = T1(rv) + T2(rv) (by definition of T1 + T2)
= rT1(v) + rT2(v) (since T1 and T2 are linear)
= r [T1(v) + T2(v)]
= r(T1 + T2)(v) (by definition of T1 + T2).

10. Scalar multiples of other linear transformations

Theorem 5.9 Let T : V1 → V2 be a linear transformation and let c ∈ R. Then the
transformation cT : V1 → V2, defined by setting

(cT )(v) = c T (v)

for all v ∈ V1, is linear.

PROOF HW (as a hint, this is similar to the proof of Theorem 5.8... you need to
show cT preserves addition and scalar multiplication).

Remark: Theorems 5.8 and ?? prove that for fixed vector spaces V1 and V2, the
set of all linear transformations from V1 to V2 is itself a vector space! This vector
space is denoted L(V1, V2).
Associated Notation: Therefore, to say “T ∈ L(V1, V2)” means that T is a linear
transformation from V1 to V2.
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5.5 Kernels and images
CONCEPT

A linear transformation T : V1 → V2 determines some subspaces of V1 and V2. Un-
derstanding these subspaces tells us a lot about the linear transformation, and will
tell us something about the solution of equations T (x) = b.

Kernels

Definition 5.10 Let T : V1 → V2 be a linear transformation. The kernel of T ,
denoted ker(T ), is the subset of V1 defined by

ker(T ) = {v ∈ V1 : T (v) = 0}.

What this means in English: the kernel of a linear transformation is the set of vec-
tors in the domain which get mapped to 0 under the transformation.

Theorem 5.11 (Kernels are subspaces) Let T : V1 → V2 be a linear transforma-
tion. Then ker(T ) is a subspace of V1.

PROOF We show that ker(T ) has the essential characteristics of subspaces:

• Let v, w ∈ ker(T ). Thus T (v) = 0 and T (w) = 0.

Then T (v + w) = T (v) + T (w) = 0 + 0 = 0 so v + w ∈ ker(T ).
Therefore ker(T ) is closed under +.

• Let v ∈ ker(T ) and let r ∈ R.

Then T (rv) = rT (v) = r0 = 0 so rv ∈ ker(T ).
Therefore ker(T ) is closed under scalar ·.

Thus ker(T ) is a subspace of V1. □

Images

Definition 5.12 Let T : V1 → V2 be a linear transformation. The image of T ,
denoted im(T ) or Im(T ), is the subset of V2 defined by

im(T ) = {w ∈ V2 : ∃v ∈ V1 such that T (v) = w}.

What this means in English: the image of a linear transformation is its range, i.e. is
the set of outputs of the linear transformation.
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Theorem 5.13 (Images are subspaces) Let T : V1 → V2 be a linear transforma-
tion. Then im(T ) is a subspace of V2.

PROOF We show that im(T ) has the essential characteristics of subspaces:
• Let w1, w2 ∈ im(T ).

Thus there are vectors v1, v2 ∈ V1 such that T (v1) = w1 and T (v2) = w2.
Then T (v1 + v2) = T (v1) + T (v2) = w1 + w2 so w1 + w2 ∈ im(T ).
Therefore im(T ) is closed under +.

• Let w ∈ im(T ) and let r ∈ R.
Then there is a vector v ∈ V1 such that T (v) = w.
Now, notice that T (rv) = rT (v) = rw, so rw ∈ im(T ).
Therefore, im(T ) is closed under scalar ·.

Thus im(T ) is a subspace of V2. □

Definition 5.14 Let T : V1 → V2 be a linear transformation. The rank of T , denoted
r or r(T ), is the dimension of the image of T :

r(T ) = dim(im(T )) .

The key picture associated to linear transformations

A linear transformation T : V1 → V2 always suggests the following picture:

V1 V2
dim V1 = n dim V2 = m
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Why do we care about kernels and images?

Suppose you have an equation of the form

T (x) = b

where T : V1 → V2 is linear (the goal is to find x ∈ V1, given T and b ∈ V2).

What’s the relevance of the image im(T )?

What’s the relevance of the kernel ker(T )?

Theorem 5.15 (Solution of T (x) = b) Suppose T : V1 → V2 is a linear transfor-
mation. Then the equation T (x) = b...

... has no solution if b /∈ im(T ).

... has exactly one solution if b ∈ im(T ) and ker(T ) = {0}.

... has infinitely many solutions if b ∈ im(T ) and ker(T ) ̸= {0}.
Furthermore, if b ∈ im(T ), then the solution set of the equation T (x) = b is the affine
subspace xp + ker(T ), where xp is any particular solution of the equation.

PROOF First, if b /∈ im(T ), then T (x) = b has no solution (by def’n of image).

Henceforth, we assume b ∈ im(T ).
By definition of image, there is xp ∈ V1 such that T (xp) = b.
Let S be the set of solutions of T (x) = b.
We claim S = xp + ker(T ) and will prove this statement by showing each set is

a subset of the other:
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To show S ⊆ xp + ker(T ):
Let x ∈ S. Then T (x) = b. Thus

T (x− xp) = T (x)− T (xp) = b− b = 0

so x− xp ∈ ker(T ). Thus x = xp + (x− xp) ∈ xp + ker(T ).

To show xp + ker(T ) ⊆ S:
Let x ∈ xp + ker(T ). Thus x = xp + k where T (k) = 0.
Therefore

T (x) = T (xp + k) = T (xp) + T (k) = b + 0 = b

so x ∈ S.

At this point, we’ve shown that if b ∈ im(T ), the solution set S of T (x) = b is
the affine subspace xp + ker(T ).

If ker(T ) = {0}, then this affine subspace is a point, so there is one solution.
Otherwise, this affine subspace has dimension ≥ 1, so it is infinite, so there are

infinitely many solutions. □

Theorem 5.16 (Image-Kernel Theorem) Let V1 and V2 be vector spaces where V1
is finite-dimensional. If T : V1 → V2 is any linear transformation, then

dim(im(T )) + dim(ker(T )) = dim(V1).

.

PROOF Let T : V1 → V2 be linear and suppose dim(ker(T )) = k and dim(V1) = n.
Since ker(T ) is a subspace of V1, k ≤ n.

Case 1: k = n. In this case, since dim(ker(T )) = dim(V1) and ker(T ) ⊆ V1, we
can conclude that ker(T ) = V1.

This means that T (x) = 0 for all x ∈ V1.
Thus im(T ) = {0} and dim(im(T )) = 0, so

dim(im(T )) + dim(ker(T )) = 0 + n = n = dim(V1), as desired.

Case 2: k < n. In this case, dim((ker(T ))⊥) = n− k > 0.
Write down a basis of (ker(T ))⊥ and call this basis {v1, ...vn−k}.
Let {x1, ..., xk} be a basis of ker(T ), so that {v1, ..., vn−k, x1, ..., xk} forms a basis

of V1.

We claim that {T (v1), ..., T (vn−k)} is a basis of im(T ).
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• To show {T (v1), ..., T (vn−k)} spans im(T ):
Let w ∈ im(T ). Then there exists v ∈ V1 such that T (v) = w.

v = c1v1 + ... + cn−kvn−k + d1x1 + ... + dkxk

⇒ w = T (v) = c1T (v1) + ... + cn−kT (vn−k) + d1T (x1) + ... + dkT (xk)
= c1T (v1) + ... + cn−kT (vn−k) + 0 + ... + 0

(since xj ∈ ker(T ))
= c1T (v1) + ... + cn−kT (vn−k).

• To show {T (v1), ..., T (vn−k)} is linearly independent:

Suppose c1T (v1) + ... + cn−kT (vn−k) = 0. Then

T (c1v1 + ... + cn−kvn−k) = 0

so
c1v1 + ... + cn−kvn−k ∈ ker(T ) ∩ (ker(T ))⊥.

Therefore c1v1 + ... + cn−kvn−k = 0.

Since the vj are lin. ind., all the cj are 0.

Therefore {T (v1), ..., T (vn−k)} is lin. ind.

Since {T (v1), ..., T (vn−k)} spans im(T ) and is linearly independent, this list
forms a basis for im(T ) so dim(im(T )) = n− k, the number of vectors in this
basis.

To conclude, we have

dim(im(T )) + dim(ker(T )) = (n− k) + k = n = dim(V1)

as desired. □

Corollary 5.17 (Rank-Nullty Theorem, version 1) Suppose T : V1 → V2 is a lin-
ear transformation with dim V1 = n < ∞ and dim V2 = m < ∞. Suppose also that
T has rank r(T ). Then

dim(im(T )) = r(T ) and dim(ker(T )) = n− r(T ) .
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5.6 Injectivity, surjectivity, bijectivity and inverses
Definition 5.18 Let X and Y be sets and let f : X → Y be a function.

1. f is called injective (or 1− 1 or one-to-one) if whenever f(x) = f(y), it must
be the case that x = y.

2. f is called surjective (or onto) if for every y ∈ Y , there is an x ∈ X such that
f(x) = y.

3. f is called bijective if it both injective and surjective.

4. f is called invertible if there is a function f−1 : Y → X such that f−1(f(x)) =
x for all x ∈ X and f(f−1(y)) = y for all y ∈ Y . In this setting the function
f−1 is called an inverse of f .

This vocabulary can be restated in the language of solving equations:

1. To say f is injective means that for every y ∈ Y , the equation f(x) = y has at
most one solution x.

2. To say f is surjective means that for every y ∈ Y , the equation f(x) = y has
at least one solution x.

3. Thus f is bijective if and only if for every y ∈ Y , the equation f(x) = y has
exactly one solution x.

Theorem 5.19 A function is invertible if and only if it is bijective.

PROOF (⇐) Suppose f is bijective. Then for every y ∈ Y , the equation f(x) = y has
exactly one solution x; define f−1 : Y → X by setting f−1(y) to be the solution x of
f(x) = y. It is easy to see that f−1(f(x)) = x and f(f−1(y)) = y, so f is invertible
with inverse f−1.

(⇒) Now suppose f is invertible. Then the equation f(x) = y has exactly one
solution, namely x = f−1(y), so f is bijective. □

Putting all this together, we have the following results:
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Theorem 5.20 (Equivalent properties to injectivity) Let T : V1 → V2 be a linear
transformation. Then the following are equivalent (if any one of these is true, they are
all true; if any one is false, then they are all false):

1. T is injective.

2. The equation T (x) = b always has at most one solution, no matter what b ∈ V2
is.

3. ker(T ) = {0}.

Moreover, it is possible for T to be injective only if dim V1 ≤ dim V2.

PROOF (1)⇔ (2) based on the remark on the previous page.
(2)⇔ (3) by Theorem 5.15 (which describes the solutions of T (x) = b).
To prove the last statement, by the Image-Kernel Theorem,

dim(ker(T )) + dim(im(T )) = dim(V1)
0 + dim(im(T )) = dim(V1) (since T is injective)

Therefore dim(im(T )) = dim(V1). Since im(T ) is a subspace of V2, we have

dim(V2) ≥ dim(im(T )) = dim(V1). □

Theorem 5.21 (Equivalent properties to surjectivity) Let T : V1 → V2 be a lin-
ear transformation. Then the following are equivalent:

1. T is surjective.

2. The equation T (x) = b always has at least one solution, no matter what b ∈ V2
is.

3. im(T ) = V2.

Moreover, it is possible for T to be surjective only if dim V1 ≥ dim V2.

PROOF (1)⇔ (2) based on the remark on the previous page.
(2)⇔ (3) by Theorem 5.15.
To prove the last statement, by the Image-Kernel Theorem,

dim(ker(T )) + dim(im(T )) = dim(V1)
dim(ker(T )) + dim(V2) = dim(V1) (since T is surjective)

Therefore dim V2 ≤ dim V1. □

If T is bijective (both injective and surjective), we can say quite a bit more:
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Theorem 5.22 (Equivalent properties to bijectivity) Let T : V1 → V2 be a linear
transformation. Then the following are equivalent:

1. T is bijective.

2. T is invertible.

3. The equation T (x) = b always has exactly one solution, no matter what b ∈ V2
is.

4. im(T ) = V2 and ker(T ) = {0}.

Moreover, this situation is only possible if dim V1 = dim V2. In this situation, the
inverse T −1 : V2 → V1 is always a linear transformation, and the one and only solution
of equation T (x) = b is x = T −1(b).

PROOF (1)⇔ (2) from Theorem 5.19; (2)⇔ (3) by the remark two pages ago; and
(3)⇔ (4) by Theorem 5.15; so statements (1)-(4) are equivalent.

Now, suppose T is bijective.
Since T is injective, dim V1 ≤ dim V1 by Theorem 5.20.
Since T is surjective, dim V1 ≥ dim V2 by Theorem 5.21.
Therefore dim V1 = dim V2.

Next, we show that if T is invertible, then T −1 is linear.
We show this by brute-force:

• Let w1, w2 ∈ V2 be such that T −1(w1) = v1 and T −1(w2) = v2.

Then T (v1) = w1 and T (v2) = w2.

Since T is linear, T (v1 + v2) = w1 + w2 so

T −1(w1 + w2) = v1 + v2 = T −1(w1) + T −1(w2).

Therefore T −1 preserves addition.

• Let w ∈ V2 be such that T −1(w) = v and let r ∈ R.

Since T is linear, T (rv) = rw so T −1(rw) = rv = rT −1(v).
Therefore T −1 preserves scalar multiplication.

By the brute-force method, T −1 is linear.

Last, suppose T is bijective and consider the equation T (x) = b.
Apply the transformation T −1 to both sides to get

T −1(T (x)) = T −1(b)
x = T −1(b). □
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EXAMPLE 11
For each of these linear transformations T : V1 → V2 (you don’t need to prove they
are linear), your directions are:

1. Find the dimension of, and a basis for, ker(T ).
2. Find the dimension of, and a basis for, im(T ).
3. Sketch the key picture associated to the transformation T .
4. Determine whether or not T is injective, surjective, bijective or neither.
5. Determine the possible number of solutions to T (x) = b for various b ∈ V2.

a) Let T : R3 → R2 be the transformation defined by

T (x1, x2, x3) = (x1, x3).
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b) Let T : R2 → R2 be the transformation defined by T (x) = Ax where

A =
(

0 −1
1 0

)
.
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c) Let V = P3 be the space of polynomials with degree ≤ 3 and let T : P3 → P3

be defined by T (f) = f ′.
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5.7 Fundamental Theorem of Linear Algebra
EXAMPLE 11

Given a m × n matrix A, the transformation T : Rn → Rm defined by T (x) = Ax
is an important example of a linear transformation. In this setting the kernel and
image of T have synonyms:

Definition 5.23 Let A ∈Mmn(R) (i.e. A is an m× n matrix of real numbers).

1. The null space of A, denoted N(A), is the set of vectors x ∈ Rn such that
Ax = 0. (In other words, N(A) = ker(T ) where T : Rn → Rm is defined by
T (x) = Ax.)

2. The column space of A, denoted C(A), is the span of the columns of A. (In
other words, C(A) = im(T ) where T : Rn → Rm is defined by T (x) = Ax.)

3. The row space of A, denoted R(A), is the span of the rows of A.

4. The left null space of A is the null space of AT , i.e. is the set of vectors y ∈ Rm

such that AT y = 0. (In other words, N(AT ) = ker(T ∗) where T ∗ : Rm → Rn

is defined by T ∗(y) = AT y.)

Collectively, these four spaces are called the four fundamental subspaces associated
to the matrix A.

EXAMPLE 12

Describe the four fundamental subspaces associated to A =
(

2 4 −3
1 2 1

)
.
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.

OBSERVE

Given an m× n matrix A:

• R(A) = C(AT )

• C(A) = R(AT )

• If T : Rn → Rm is defined by T (x) = Ax, then N(A) = ker(T ).

• If T : Rn → Rm is defined by T (x) = Ax, then C(A) = im(T ).

• N(A) and R(A) are subspaces of Rn.

• N(AT ) and C(A) are subspaces of Rm.

Why do we know these sets are subspaces? R(A) and C(A) are defined as spans
(hence automatically subspaces), and N(A) and N(AT ) are kernels of linear trans-
formations (hence automatically subspaces).

It turns out that these subspaces are two pairs of orthogonal complements:

Theorem 5.24 (Fundamental Theorem of Linear Algebra) Let A ∈Mmn(R) (i.e.
A is an m× n matrix of real numbers). Then

1. [R(A)]⊥ = N(A); and

2. [C(A)]⊥ = N(AT ).

PROOF To prove statement (1), notice

x ∈ N(A) ⇐⇒ Ax = 0
⇐⇒ x ⊥ (any row of A)

⇐⇒ x ∈ [R(A)]⊥.

To prove statement (2), apply the same argument to matrix AT :

[C(A)]⊥ = [R(AT )]⊥ = N(AT ). □
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Corollary 5.25 (Rank Theorem) Let A ∈ Mmn(R). Then the following numbers
are all equal to the same number, called the rank of A and denoted r or r(A):

1. dim(C(A))

2. dim(R(A))

3. the number of linearly independent columns of A

4. the number of linearly independent rows of A

5. the rank of T where T : Rn → Rm is defined by T (x) = Ax.

PROOF It is clear that (1) and (3) are equal, and that (2) and (4) are equal.
Since C(A) = im(T ), (1) and (5) are equal.
Last, we will show (1) and (2) are equal.

Define T : Rn → Rm by T (x) = Ax. By the Image-Kernel Theorem,

dim(im(T )) + dim(ker(T )) = n

dim(C(A)) + dim(N(A)) = n

dim(C(A)) = n− dim(N(A)).

But at the same time, by the FTLA [N(A)]⊥ = R(A) so

dim(R(A)) = n− dim(N(A))

Therefore dim(R(A)) = dim(C(A)), proving (1) and (2) are equal. □

Corollary 5.26 (Dimensions of fundamental subspaces) Let A ∈Mmn(R) have
rank r = r(A). Then:

1. C(A) is a r-dimensional subspace of Rm.

2. R(A) is a r-dimensional subspace of Rn.

3. N(A) is an (n− r))-dimensional subspace of Rn.

4. N(AT ) is an (m− r)-dimensional subspace of Rm.

PROOF (1) and (2) follows from the Rank Theorem; (3) and (4) follow from the
Rank-Nullty Theorem. □
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EXAMPLE 13

Describe the four fundamental subspaces associated to A =
(

2 −1 3 1
6 −3 9 3

)
.

EXAMPLE 14

Describe the four fundamental subspaces associated to A =

 1 3 −1 0
2 −5 4 0
0 1 4 −2

.
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5.8 More on invertibility
RECALL

T is invertible ⇐⇒ T is bijective ⇐⇒
{

ker(T ) = {0} and
im(T ) = V2

Later, we’ll be able to say more about when these conditions hold. As a preview,
suppose T : Rn → Rm has standard matrix A. Then, on the one hand,

T is invertible ⇐⇒
{

N(A) = {0} ⇐⇒ r(A) = n
C(A) = Rm ⇐⇒ r(A) = m

and this can only hold if r(A) = m = n (i.e. A is a square matrix). But at the same
time, by definition,

T is invertible ⇐⇒ T −1 : Rm → Rn exists

and T −1 ◦ T (x) = x for all x; T ◦ T −1(x) = x for all x.

Let B be the standard matrix of T −1. Then, since T ◦ T −1 and T −1 ◦ T are both
the identity transformation, the standard matrix of both T ◦ T −1 and T −1 ◦ T is I .
Therefore B is some matrix such that

Such a matrix B has another name. It is called the inverse of A and is denoted by
A−1 (pronounced “A inverse”).

Definition 5.27 A matrix A ∈ Mmn(R) is called invertible if there is another ma-
trix A−1 ∈Mnm(R) and called an inverse (matrix) of A, such that

AA−1 = Im and A−1A = In.

Theorem 5.28 A linear transformation T : Rn → Rm is invertible if and only if its
standard matrix is invertible. (This can only happen if n = m, based on previous
results.)

As a consequence, if a matrix is invertible, then it must be square and have full
rank (i.e. r(A) = m = n). Conversely, any square matrix with full rank must be
invertible.

PROOF (⇒) was proven above.

(⇐) If T has standard matrix A, and A is invertible with inverse A−1, define
T −1 : Rm → Rn by T −1(x) = A−1x.

It’s easy to check that T and T −1 are inverses:
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Theorem 5.29 (Properties of inverses) Let A, B ∈Mn(R) be invertible. Then

1. A has only one inverse.

2. (A−1)−1 = A.

3. (AB)−1 = B−1A−1.

4. AT is invertible and (AT )−1 = (A−1)T .

PROOF To prove (1), suppose B and C are both inverses of A. Then

AB = I and AC = I, so

AB = AC (from above)
BAB = BAC (by multiplying both sides on the left by B)

IB = IC (since B is an inverse of A)
B = C.

So A cannot have two different inverses.

(2) follows from the definition of inverse.

To prove (3), notice

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I.

To prove (4), start with AA−1 = I and take the transpose of both sides to get

[AA−1]T = IT = I, i.e. (A−1)T AT = I.

By definition of inverse, (A−1)T = (AT )−1. □

Inverses of 1× 1 and 2× 2 matrices
QUESTION

When is a 1× 1 matrix invertible? What is the inverse of a 1× 1 matrix?
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Theorem 5.30 (1 × 1 inverses) Let A =
(

a
)
. Then A is invertible ⇐⇒ a ̸= 0,

in which case
A−1 =

(
1
a

)
.

QUESTION

When is a 2× 2 matrix invertible? What is the inverse of a 2× 2 matrix?

Answer: Let A =
(

a b
c d

)
and suppose A is invertible. Write A−1 =

(
w x
y z

)
.

Theorem 5.31 (2 × 2 inverses) Let A =
(

a b
c d

)
. Then A is invertible ⇐⇒

ad− bc ̸= 0, in which case

A−1 = 1
ad− bc

(
d −b
−c a

)
.

EXAMPLE 15

Compute the inverse of A =
(

3 2
7 8

)
, if the inverse exists. If the inverse does not

exist, say so.
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QUESTION

When is a 3× 3 or larger matrix invertible?

Theoretical answer:
an n× n matrix A

is invertible ⇐⇒ A has full rank ⇐⇒ N(A) = {0} ⇐⇒ C(A) = Rn.

Practical answer: coming in Chapter 6.
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5.9 Summary of Chapter 5
1. A transformation T : V1 → V2 is called a linear transformation if T preserves

addition and scalar multiplication. Any such T must also preserve the zero
vector.

Typical examples of linear transformations include matrix multiplication, dif-
ferentiation, integration, evaluation, projection, geometric transformations
like rotations and reflections, and dot product by a fixed vector.

Sums, scalar multiples and compositions of linear transformations are also
linear transformations.

2. The kernel of a linear transformation is the set of vectors in V1 which are
mapped to 0 under the transformation. ker(T ) is always a subspace of V1.

3. The image of a linear transformation is the set of vectors in V2 which are
actual outputs of the transformation.

4. If T is a linear transformation, then the equation T (x) = b...
... has no solution if b /∈ im(T );
... has exactly one solution if b ∈ im(T ) and ker(T ) = {0};
... has infinitely many solutions if b ∈ im(T ) and ker(T ) ̸= {0}.
When b ∈ im(T ), the solution set of T (x) = b is the affine subspace xp +
ker(T ) where xp is any particular solution of T (x) = b.

5. T is called injective if any of these equivalent conditions hold:

• ker(T ) = {0};
• T takes different inputs to different outputs;
• the equation T (x) = b has at most one solution for every b ∈ V2.

It is possible for T to be injective only if dim V1 ≤ dim V2.

6. T is called surjective if any of these equivalent conditions hold:

• im(T ) = V2;
• the equation T (x) = b has at least one solution for every b ∈ V2.

It is possible for T to be surjective only if dim V1 ≥ dim V2.

7. A transformation T is called bijective if it is both injective and surjective. The
following are equivalent:

• T is bijective;
• T is invertible (in which case T −1 is linear);
• the equation T (x) = b always has exactly one solution which is x =

T −1(b).
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It is possible for T to be bijective only if dim V1 = dim V2.

8. The dimensions of the kernel and image of a linear transformation always
add to the dimension of the domain of the transformation:

dim(ker(T )) + dim(im(T )) = dim V1.

9. Every m × n matrix A has four subspaces associated to it: the null space,
column space, row space and left nullspace. There is a number r = r(A)
called the rank of the matrix such that

• the column space C(A) is a r-dimensional subspace of Rm;
• the row space R(A) is a r-dimensional subspace of Rn;
• the null space N(A) is an (n− r)-dimensional subspace of Rn;
• the left nullspace N(AT ) is an (m− r)-dimensional subspace of Rm.
• [R(A)]⊥ = N(A) and [C(A)]⊥ = N(AT ) (this is the Fundamental Theo-

rem of Linear Algebra)

10. Every linear transformation T : Rn → Rm is of the form T (x) = Ax where
A is an m × n matrix called the standard matrix of T . The columns of A are,
from left to right, T (e1), T (e2), ..., T (en). In this setting,

• im(T ) is the same thing as C(A), the span of the columns of A.
• ker(T ) is the same thing as N(A), the null space of A.

11. A matrix A is called invertible if there is another matrix A−1 (called the in-
verse of A) such that AA−1 = I and A−1A = I . The following are equivalent:

• A is invertible.
• the linear transformation T (x) = Ax is invertible.
• A is square and has full rank (i.e. r = m = n).

A 1 × 1 matrix A = (a) is invertible if and only if a ̸= 0, in which case
A−1 =

(
1
a

)
.

A 2× 2 matrix A =
(

a b
c d

)
is invertible if and only if ad− bc ̸= 0, in which

case A−1 = 1
ad− bc

(
d −b
−c a

)
.
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5.10 Homework exercises for Chapter 5
1. a) Suppose A is a 7×3 matrix whose entries are real numbers. Let T be the

linear transformation defined by T (x) = Ax. What vector space is the
domain of T ? To what vector space do the outputs of T belong?

b) How many rows and columns must a matrix A have in order to define
a linear transformation from R4 into R5 by the formula T (x) = Ax?

2. Suppose T : R2 → R3 is a linear transformation such that T (1, 0) = (−1, 3, 7)
and T (0, 1) = (0,−2,−2).

a) What is T (x, y) for an arbitrary vector (x, y) ∈ R2?

b) Find T (2, 3) and T (−4, 1).

3. Find the standard matrix of each of the following linear transformations.

a) T : R3 → R3 where T is projection onto the vector (2, 1,−2);
b) T : R4 → R2 where T (x1, x2, x3, x4) = (x1 − 5x3 + x4, 0).

4. Find the standard matrix of each of the following linear transformations.

a) T : R2 → R2 where T rotates vectors by an angle of 2π/3 radians clock-
wise;

b) T : R3 → R3 described by T (1, 0, 0) = (1, 2, 3); T (0, 2, 0) = (4, 4, 8);
T (0, 0, 1) = (0, 0, 1);

c) T : R3 → R3 where T reflects points in R3 through the xy−plane.

5. Suppose T : R3 → R2 is a linear transformation where T (e1), T (e2) and T (e3)
are as indicated below:

T(e )1 T(e )3

T(e )2

-6 -4 -2 2

-6

-4

-2

2

4

a) Compute T (5, 3,−1). b) Compute T (−2, 0, 5).
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6. Suppose v, w and x are linearly independent vectors in a vector space V1.
Suppose also that T : V1 → R2 is a linear transformation, and that T (v), T (w)
and T (x) are as shown below:

T(w) T(v)

T(x)
-6 -4 -2 2 4 6

-2

2

4

a) Compute T (−3v).
b) Compute T (1

2w− 3x).
c) Compute T (2v− 5w + 4x).
d) Find a vector a ∈ V1 so that T (a) = (3, 6).

(Your formula for a should be in terms of v, w and/or x.)

e) Find a nonzero vector b ∈ V1 so that T (b) = 0.
(Your formula for b should be in terms of v, w and/or x.)

7. Suppose T : V1 → V2 is a linear transformation, and let v1, v2, v3, v4 ∈ V1.
Suppose that T (v1), T (v2) and T (v3) are as indicated in the abstract picture
below, and that T (v4) = 0. Copy this picture and sketch each of the vectors
indicated in parts (a)-(f) on the picture, labelling which is which.

1T(v )

T(v )
2

T(v )3

a) T (−1
2v1)

b) T (2v3 − 3v2)
c) T (v2 + v1)

d) T (3v4 + 2v2)
e) T (−2v3 − v1)
f) T (4

3v3 + 1
5v4)
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8. Suppose T : V1 → V2 is a linear transformation. Let v, w ∈ V1 be as indicated
in the picture below at left, and suppose T (v) and T (w) are as indicated in
the picture at right. Copy these pictures and indicate your answers to each
of these questions on the relevant picture.

v
w

E
F

x

z

y

T−→

T(v)

T(w)

b

c

a) Sketch the approximate location of T (x) on the right-hand picture.

b) Sketch the approximate location of T (y) on the right-hand picture.

c) Sketch the approximate location of T (z) on the right-hand picture.

d) Sketch the approximate location of some vector v1 satisfying T (v1) = b
on the left-hand picture.

e) Sketch the approximate location of some vector v2 satisfying T (v2) = c
on the left-hand picture.

f) Let F be the parallelogram shown in the right-hand picture. Sketch the
set T (F ) = {T (x) : x ∈ F} on the right-hand picture.

g) Let E be the triangular region shown in the left-hand picture. Sketch the
set T (E) = {T (x) : x ∈ E} on the right-hand picture.

9. A transformation T : Rn → Rn is called an orthogonal transformation if T
“preserves dot product”, i.e. T (x) · T (y) = x · y for every x, y ∈ Rn.

a) Prove that if A ∈ Mn(R) is such that AT A = I , then the linear transfor-
mation defined by T (x) = Ax is orthogonal. Hint: The dual relations
from Chapter 4 may be helpful.

b) Prove that if A is the standard matrix of orthogonal transformation T ,
then AT A = I .
Note: This means that one can define a square matrix A to be orthogonal
if AT A = I .

c) Prove that a rotation in R2 (by any angle θ) is an orthogonal transforma-
tion.

10. a) Prove that if T : Rn → Rn is orthogonal, and if x ⊥ y, then T (x) ⊥ T (y).
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b) Prove that “orthogonal transformation preserve norms”, i.e. if T : Rn →
Rn is orthogonal, then ||T (x)|| = ||x|| for all x ∈ Rn.

c) Prove that “orthogonal transformation preserve angles”, i.e. if T : Rn →
Rn is orthogonal, then the angle between x and y is the same as the angle
between T (x) and T (y).

11. Suppose T : R2 → R2 is a linear transformation such that T (−1, 2) = (2, 1)
and T (1, 3) = (−2, 4).

a) Give a formula for T (x, y), for any (x, y) ∈ R2.

b) Compute T (2, 5).

12. Consider the picture below, which occupies the region [0, 200]× [0, 240] in R2:

100 200

120

240

a) Suppose you stretch the picture by a factor of 3 vertically, and then ro-
tate the picture 145◦ counterclockwise about the origin (the lower-left
corner). At what position (x, y) will the center of the dog’s nose end up
at, if it is currently at (78, 196)? (I’m looking for a decimal approximation
here.)

b) Suppose you took the original picture and rotated it 110◦ clockwise about
the center of the picture. Now, at what position will the center of the
dog’s nose end up at? (I’m looking for a decimal approximation here.)

c) Suppose you needed to distort this picture so that it fit in the parallelo-
gram shown below:

104 120

-48

-88

At what position will the center of the dog’s nose end up in this picture?

175



5.10. Homework exercises for Chapter 5

13. Suppose T : R2 → R2 is the linear transformation that stretches vectors by
a factor of 2, then rotates the plane π/3 radians counterclockwise about the
origin. Compute the standard matrix of T .

14. Let T : R3 → R2 be a linear transformation such that T (1, 0, 0) = (1,−1),
T (0, 1, 0) = (2, 0) and T (0, 0, 1) = (0, 1). Let S : R2 → R2 be projection onto
the vector (3, 4), and let R : R2 → R3 be the linear transformation R(x, y) =
(x+2y, y,−x−y). Find the standard matrix of the linear transformation RST .

15. Suppose T : R2 → R2 is a linear transformation that first reflects points
through the x−axis, then reflects points through the y−axis.

a) Find the standard matrix of T .

b) Show that T is a rotation, and find the angle T rotates points by.

16. Let V be a vector space and define T : V → V by T (v) = 3v. Determine, with
proof, whether or not T is a linear transformation.

17. Let T : R2 → R be defined by T (x) = ||x||. Determine, with proof, whether
or not T is a linear transformation.

18. Let T : C(R,R) → C(R,R) be the function which sends the function f(x) to
the function xf(x). For example, T (sin x) = x sin x; T (x4) = x5; etc. Deter-
mine, with proof, whether or not this T is a linear transformation.

19. Let T : C([0, 1],R) → R be the function which sends the function f to its
maximum value on [0, 1]. Determine, with proof, whether or not this T is a
linear transformation.

20. Prove Theorem 5.9 from the notes, which says that if T : V1 → V2 is a linear
transformation and c ∈ R, then the transformation cT : V1 → V2 defined by
(cT )(v) = cT (v) is linear.

21. For each of the following linear transformations T : V1 → V2:

• Find the dimension of the kernel of T , and give a basis of ker(T );
• Find the dimension of the image of T , and give a basis of im(T ).

You do not need to prove that these transformations T are linear.

a) V1 = V2 = R3; T (x, y, z) = (x− y, 0, 0).
b) V1 = R3; V2 = R2; T (x, y, z) = (x + y + 2z, y − 2z).
c) V1 = V2 = R2; T reflects points through the line y = x.

d) V1 = R2; V2 = R4; T (x, y) = (x + 3y,−2x− 6y, 6x + 18y, 0).
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22. Same directions as the previous question:

a) V1 = V2 = P3 (the space of polynomials of degree ≤ 3); T (f) = f ′′.

b) V1 = P3; V2 = R; T (f) = f(0) + f(1).
c) V1 = V2 = M2(R); T is defined by

T

(
a b
c d

)
=
(

a + b 0
0 c + d

)
.

d) V1 = M32(R); V2 = R2; T (A) is the first row of A.

23. Let T : V1 → V2 be a linear transformation.

Prove that if T is injective, then for any linearly independent set {v1, .., vn}
of vectors in V1, the set {T (v1), ..., T (vn))} is a linearly independent set of
vectors in V2.

Hint: Start by assuming that there are scalars c1, ..., cn such that

c1T (v1) + c2T (v2) + ... + cnT (vn) = 0.

Show that the scalars must all be equal to zero. Use the fact that T is linear,
and use the fact that T is injective (make it clear in your proof where you use
these facts).

24. Let T : V1 → V2 be a linear transformation.

Prove that if T is surjective, then for any set {v1, .., vn} of vectors which span
V1, the set {T (v1), ..., T (vn))} spans V2.

Hint: Let w ∈ V2 (the goal is to write w as a linear combination of the vectors
T (vj)). First, use the fact that T is surjective to find a v ∈ V1 such that T (v) =
w. Then, use the fact that the vectors vj span V1 to do something with v.
Proceed from there.

25. Suppose A is a 5× 8 matrix.

a) Which vector space is C(A) a subspace of? (I’m thinking of the answer
as being Rn for some n.)

b) Which vector space is R(A) a subspace of?
c) Which vector space is N(A) a subspace of?
d) Which vector space is N(AT ) a subspace of?

26. a) Suppose T : Rn → Rm is a linear transformation. Is it possible that for
every b, the equation T (x) = b has no solution? Give a specific example
if this is possible; if this is impossible, explain why not.
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b) Suppose T : Rn → Rm is a linear transformation. Is it possible that
for every b, the equation T (x) = b has exactly one solution x? Give a
specific example if this is possible; if this is impossible, explain why not.

c) Suppose T : Rn → Rm is a linear transformation. Is it possible that
for every b, the equation T (x) = b has exactly two solutions? Give a
specific example if this is possible; if this is impossible, explain why not.

d) Suppose T : Rn → Rm is a linear transformation. Is it possible that for
every b, the equation T (x) = b has infinitely many solutions? Give a
specific example if this is possible; if this is impossible, explain why not.

27. For each given matrix, find the dimension of, and bases for, each of the four
fundamental subspaces of the matrix.

a)
(

2 −3 6
3 0 9

)

b)


1 −2 5
−1 2 −5
2 −4 10
1 −2 5



c)
(

2 0 5 3 −1
)

d)


2 −1 3 0
0 0 0 0
4 −2 6 0
1 0 1 0


28. Let T (x) = Ax, where A is a 9×9 matrix with 6 linearly independent columns.

Note: Filling out the answer sheet on the next page is a convenient way to
answer Exercises 28-33.

a) What vector space is the domain of T ?
b) To what vector space do the outputs of T belong?
c) ker(T ) is a subspace of what vector space?
d) im(T ) is a subspace of what vector space?
e) Find the dimension of ker(T ).
f) Find the dimension of im(T ).
g) Is there a vector b such that the equation T (x) = b has no solution?
h) Is there a vector b such that the equation T (x) = b has exactly one

solution?
i) Is there a vector b such that the equation T (x) = b has infinitely many

solutions?
j) Is T injective? Explain.

k) Is T surjective? Explain.
l) Is T bijective? Explain.

m) Is T invertible? Explain.
n) Does A−1 exist? Explain.

29. Let T (x) = Ax, where A is a 9×9 matrix with 9 linearly independent columns.
Answer the same questions (a)-(n) that were asked in Exercise 28.
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30. Let T (x) = Ax, where A is a 4×8 matrix with 4 linearly independent columns.
Answer the same questions (a)-(n) that were asked in Exercise 28.

31. Let T (x) = Ax, where A is a 4×8 matrix with 2 linearly independent columns.
Answer the same questions (a)-(n) that were asked in Exercise 28.

32. Let T (x) = Ax, where A is a 10 × 7 matrix with 5 linearly independent
columns. Answer the same questions (a)-(n) that were asked in Exercise 28.

33. Let T (x) = Ax, where A is a 10 × 7 matrix with 7 linearly independent
columns. Answer the same questions (a)-(n) that were asked in Exercise 28.
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# 28 # 29 # 30 # 31 # 32 # 33
size of A 9× 9 9× 9 4× 8 4× 8 10× 7 10× 7

# lin. indep. cols 6 9 4 2 5 7

(a) Dom(T ) .
.

(b) outputs of T
are elements of...

(c) ker(T ) ⊆ ? .
.

(d) im(T ) ⊆ ? .
.

(e) dim ker(T ) .
.

(f) dim im(T ) .
.

(g)
∃b such that
T (x) = b has
no solution?

(h)
∃b such that
T (x) = b has
one solution?

(i)

∃b such that
T (x) = b has

infinitely
many solutions?

(j) Is T injective? .
.

(k) Is T surjective? .
.

(l) T bijective? .
.

(m) Is T invertible? .
.

(n) Does A−1 exist? .
.
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34. In this exercise, we prove the following result, which will be used in Chapter
8:

Theorem: Let V1, V2 and V3 be vector spaces; let S : V1 → V2 and T : V2 →
V3 be linear transformations. If ker(T ) ⊆ im(S), dim(ker(T ) < ∞) and
dim(ker(S) <∞), we have

dim(ker(T ◦ S)) = dim ker(T ) + dim ker(S).

To prove this theorem, let m = dim ker(T ) and n = dim ker(S). Let {x1, ..., xm}
be a basis of ker(T ), and let {y1, ..., yn} be a basis of ker(S). Since each xk ∈
ker(T ) ⊆ im(S), we know that there is a vector vk ∈ V1 such that S(vk) =
xk. The theorem follows (by counting basis elements) once you prove that
{v1, ..., vm, y1, ..., yn} is a basis of ker(T ◦ S), which requires two things you
have to do:

a) show {v1, ..., vm, y1, ..., yn} span ker(T ◦ S); and
b) show {v1, ..., vm, y1, ..., yn} are linearly independent.

35. Compute the inverse of each of the following matrices (if the matrix is not
invertible, say so and explain why):

a) (4) b) (0) c)
(

2 3
−5 −1

)
d)

(
1 5
2 0

)

36. Compute the inverse of each of the following matrices (if the matrix is not
invertible, say so and explain why):

a)
(

10 5
−6 −3

)
b)

 3 0 0
0 −5 0
0 0 −1

 c)

 3 0 0
0 −5 0
0 0 0


37. Consider the picture of the dog given in Exercise 12. If it is distorted as de-

scribed in part (c) of Exercise 12 and a pixel ended up at position (70,−55),
what was the original position of the pixel?
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Chapter 6

Systems of linear equations

6.1 Definitions and theory
RECALL

Several of the motivating examples we discussed in Chapter 1 reduced to systems
of linear equations. An example of such a system would be

3w − 2x + 5y − z = 12
5w + 3x− y + 7z = −19

8w − 11x + y + 4z = 6

where the goal would be to solve for (w, x, y, z).

In Section 1.1, we saw these examples that led to systems of linear equations:

• the Leontief input-output model (for the economist);

• bonus-malus systems (for the actuarial scientist);

• error correction (for the surveyer)

OTHER EXAMPLES OF PROBLEMS LEADING TO SYSTEMS OF LINEAR EQUATIONS

1. Determining the orthogonal complement of a subspace:

Example: Let V = R4; let W = Span((2, 4, 0,−1), (1,−1, 2, 3)). What is W ⊥?
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2. Determining whether a vector lies in the span of some other vectors:

Example: Let V = R3 and let W = Span((1,−1, 2), (2, 0,−3)). Is the vector
(−2,−8, 17) in W ?

3. Word problems:

Example 1: Dan has some 32-cent stamps, some 29-cent stamps, and some
3-cent stamps. The number of 29-cent stamps is 10 less than the number of
32-cent stamps, while the number of 3-cent stamps is 5 less than the number
of 29-cent stamps. The total value of the stamps is $9.45. How many of each
stamp does Dan have?

Solution: Let x = the number of 32-cent stamps; y = the number of 29-cent
stamps; z = the number of 3-cent stamps. Then:

Example 2: A cashier has 25 coins, all of which are nickels, dimes and quar-
ters. If the total value of her coins is $4.90, how many of each type of coin
might she have?

Solution: Let n = the number of nickels; d = the number of dimes; q = the
number of quarters. Then we have:{

n + d + q = 25
.05n + .1d + .25q = 4.90
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4. Fitting data to a model:

Example: Find the equation of the plane which best fits the following six
points:

(1, 2, 5) (2, 3, 4) (2, 2, 6)
(1, 3, 4) (1, 4, 5) (3, 3, 3)

Solution: We know from Chapter 4 that every plane in R3 has the normal
equation

ax + by + cz = d.

Assuming c ̸= 0, we can solve the normal equation for z to get

z = α + βx + γy

where α, β, γ are constants.

Now, we can plug in the given data points to the equation α + βx + γy = z:
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Definition of a linear system

Definition 6.1 A linear equation in n variables is an equation which can be
rewritten as

a1x1 + a2x2 + ... + anxn = b

where a1, a2, ..., an, b ∈ R.

Definition 6.2 A linear system of m equations in n variables (a.k.a. m × n
linear system) is a set of m linear equations in the same n variables:

(∗)


a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

... . . . ... = ...
am1x1 + am2x2 + · · · + amnxn = bm

A solution of system (∗) is a vector x = (x1, x2, ..., xn) =

 x1
...

xn

 ∈ Rn which

satisfies all the equations in (∗).
A system is called consistent if it has a solution, and is called inconstent otherwise.

The solution set of a system is the set of all solutions; this set is a subset of Rn.

Two m× n linear systems are called equivalent if they have the same solution set.

EXAMPLE

4x = 8 is equivalent to 25x = 50, since both equations have solution set {2}.

EXAMPLE

The systems
{

2x + 2y = 9
4x + 4y = 14 and

{
x− y = 3
2x− 2y = −4 are equivalent, because both of

their solution sets are ∅ (neither system has a solution).

Fundamental questions associated to linear systems:

Given an m× n linear system,

1. Is the system consistent? (In other words, is there a solution?)

2. If the system is consistent, how many solutions does it have?

3. If the system is consistent, what is the solution set?

To approach these questions, we need to view a linear system in several different
ways:
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Ways to think about a linear system

1. As a system of linear equations:

This means the way the system (∗) is written in the definition.

2. As a matrix equation:

Given (∗) on the previous page,

3. As a vector equation:

Given (∗) on the previous page, write it as

(∗) is consistent ⇐⇒ b ∈ Span(columns of A) ⇐⇒ b ∈ C(A)
(∗) is inconsistent ⇐⇒ b /∈ C(A)

4. As a functional equation involving a linear transformation:

Define T : Rn → Rm by T (x) = Ax, where A is as above.

That means (∗) becomes
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EXAMPLE 1
Consider the system

(∗)


3w −2x +y −4z = 8
w +x +7y = 2
−w +y −3z = −3

Describe this system as a matrix equation, as a vector equation, and as a functional
equation.
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Summarizing some of what we discussed when talking about linear transforma-
tions and fundamental subspaces, we have the following theorem, which gives a
complete theoretical description of the solution set of a linear system:

Theorem 6.3 (Solution set of a linear system) Let (∗) be an m× n linear system
which is Ax = b as a matrix equation, and which is T (x) = b as a functional equation
(meaning T : Rn → Rm is the linear transformation T (x) = Ax). Then:

1. (∗) is consistent ⇐⇒ b ∈ C(A) ⇐⇒ b ∈ im(T ).
(∗) is inconsistent ⇐⇒ b /∈ C(A) ⇐⇒ b /∈ im(T ).

2. If (∗) is consistent, then the solution set of the system is the affine subspace
xp + ker(T ) = xp + N(A) where xp is any one “particular” solution of the
system.

3. If (∗) is consistent, then

(∗) has
exactly

one solution
⇐⇒ N(A) = ker(T ) = {0} ⇐⇒ T is injective ⇐⇒ r = n.

and

(∗) has
infinitely

many solutions
⇐⇒ N(A) = ker(T ) ̸= {0} ⇐⇒ T is not

injective ⇐⇒ r ̸= n.

The essential content of this theorem is in the following four facts:

1. A system Ax = b has no solution if and only if b /∈ C(A).

2. A system Ax = b has exactly one solution if and only if b ∈ C(A) and
N(A) = {0}.

3. A system Ax = b has infinitely many solutions if and only if b ∈ C(A)
and N(A) ̸= {0}.

4. If the system Ax = b is consistent, then its solution set is the affine sub-
space xp + N(A).
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THE KEY PICTURE

T (x) = Ax (rank r)

ker(T)=N(A)
(dimension n-r)

im(T)=C(A)
(dimension r)

b∉C(A)

b∈C(A)

Rn Rm

Let’s see how this works in a very simple setting. Suppose we have one equation
in one variable, i.e. the entire linear system is just

Ax = b

where A and b are constants.

Compare this with Theorem 1.1, all the way back in Section 1.2.
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Now let’s try this with two equations in two variables. Suppose we have a system

(∗)
{

a11x + a12y = b1
a21x + a22y = b2

i.e.
Ax = b, where

A =
(

a11 a12
a21 a22

)
; b =

(
b1
b2

)
; x =

(
x
y

)
.
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6.2 Rank and dimension issues
RECALL FROM THE PREVIOUS SECTION

If A ∈Mmn(R) and T (x) = Ax, then...

1. the system Ax = b has no solution if and only if b /∈ C(A).

2. the system Ax = b has exactly one solution if and only if b ∈ C(A) and
N(A) = {0}.
(This is equivalent to b ∈ im(T ) and T being injective.)

3. the system Ax = b has infinitely many solutions if and only if b ∈ C(A)
and N(A) ̸= {0}.
(This is equivalent to b ∈ im(T ) and T being not injective.)

4. if the system Ax = b is consistent, then its solution set is the affine sub-
space xp + N(A).

Adding to this, suppose T is surjective (r = m). Then im(T ) = C(A) = Rm, so
every b ∈ Rm lies in im(T ). Then

Now suppose T is injective (r = n). Then ker(T ) = N(A) = {0}, and then

Even further, suppose T is bijective (r = m = n). Then T is both surjective and
injective, so

To summarize:
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Theorem 6.4 (Equivalent properties to surjectivity) Let A ∈ Mmn(R) and sup-
pose T : Rn → Rm is defined by T (x) = Ax. Then the following are equivalent (and
none of them are possible unless m ≤ n):

1. r(A) = m;

2. im(T ) = Rm;

3. T is surjective;

4. C(A) = Rm;

5. N(AT ) = {0};

6. the rows of A are linearly independent;

7. T “maps spanning sets to spanning sets”, i.e. given any set {v1, ..., vn} which
spans Rn, the set {T (v1), .., T (vn)} spans Rm;

8. Ax = b has at least one solution for every b ∈ Rm.

PROOF (1)⇔ (4) : By definition, r(A) = dim C(A).
Since C(A) is a subspace of Rm, C(A) equals all of Rm if and

only if dim C(A) = m.
(2)⇔ (4) because C(A) = im(T ).
(2)⇔ (3)⇔ (8) by definition of surjectivity.
(4)⇔ (5) by the FTLA (which says N(AT ) = [C(A)]⊥).
(1)⇔ (6) by the Rank Theorem.
(3)⇒ (7) was Homework Exercise 23 in Chapter 5.
(7)⇒ (3): Let {v1, ..., vn} be a basis of Rn. Let w ∈ Rm.

By (7), {T (v1), ..., T (vn)} span Rm, so we can write

w = c1T (v1) + ... + cnT (vn)
= T (c1v1 + ... + cnvn).

Therefore w = T (v) where v = c1v1 + ... + cnvn,
meaning T is surjective. □

Corollary 6.5 Let A ∈ Mmn(R) where m > n (i.e. A has more rows than columns,
i.e. the system has more equations than variables). Then there must be some b ∈ Rm

such that the equation Ax = b has no solution.
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Theorem 6.6 (Equivalent properties to injectivity) Let A ∈ Mmn(R) and sup-
pose T : Rn → Rm is defined by T (x) = Ax. Then the following are equivalent (and
none of them are possible unless m ≥ n):

1. r(A) = n;

2. R(A) = Rn;

3. N(A) = {0};

4. T is injective;

5. ker(T ) = {0};

6. the columns of T are linearly independent;

7. T “maps linearly independent sets to linearly independent sets”, i.e. given any
lin. ind. set {v1, ..., vk} in Rn, {T (v1), .., T (vk)} is a lin. ind. set in Rm;

8. Ax = b has at most one solution for every b ∈ Rm.

PROOF (1)⇔ (2): By the Rank Theorem, r(A) = dim R(A).
Since R(A) is a subspace of Rn, R(A) equals all of Rn if and

only if dim R(A) = n.
(2)⇔ (3) by the FTLA (which says N(A) = [R(A)]⊥).
(3)⇔ (5) because N(A) = ker(T ).
(4)⇔ (5)⇔ (8) by definition of injectivity.
(1)⇔ (6) by the definition of rank.
(4)⇒ (7) was Homework Exercise 22 in Chapter 5.
(7)⇒ (4): Suppose T (x) = 0.

If x ̸= 0, then {x} is a linearly independent set of one vector in Rn.
By hypothesis, {T (x)} is linearly independent in Rm, so T (x) ̸= 0.
But this is a contradiction! Therefore x = 0.
Therefore ker(T ) = {0}, proving that T is injective. □

Corollary 6.7 1. Let A ∈ Mmn(R) where m < n (i.e. A has more columns than
rows). Then the equation Ax = b never has exactly one solution.

2. A linear system with more variables than equations never has exactly one solu-
tion.
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Theorem 6.8 (Equivalent properties to bijectivity) Let A ∈ Mn(R) be an n× n
square matrix (i.e. m = n) and suppose T : Rn → Rn is defined by T (x) = Ax.
Then Properties 1-28 below are all equivalent:

Properties of the entire matrix A:
1. A is invertible;
2. There is a matrix B ∈Mn(R) such that AB = I ;
3. A is row equivalent to the identity matrix I ; ←− DISCUSSED LATER
4. A has n pivots; ←− DISCUSSED LATER
5. rref(A) = I . ←− DISCUSSED LATER

Properties of the rows of A:
6. rank(A) = n;
7. R(A) = Rn;
8. the rows of A form a basis of Rn;
9. the rows of A are linearly independent;

10. the rows of A span Rn.

Properties of the columns of A:
11. C(A) = Rn;
12. N(A) = {0};
13. the columns of A form a basis of Rn;
14. the columns of A are linearly independent;
15. the columns of A span Rn.

Properties of the system Ax = b:
16. Ax = 0 has only the solution x = 0;
17. there is a single b ∈ Rn such that the equation Ax = b has exactly one solution;
18. for every b ∈ Rn, the equation Ax = b has exactly one solution (namely x =

A−1b).

Properties of the transformation T :
19. T is bijective;
20. T is invertible (i.e. the function T −1 : Rn → Rn exists);
21. T is injective;
22. ker(T ) = {0};
23. T is surjective;
24. im(T ) = Rn;
25. T maps linearly independent sets to linearly independent sets;
26. T maps spanning sets to spanning sets;
27. T maps bases to bases, meaning that for any basis B of Rn, T (B) is also a basis

of Rn;
28. given any one single basis B of Rn, T (B) is a basis of Rn.
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6.3 Gaussian elimination
GOAL

We know what the solution to a system of linear equations looks like theoretically.
What we want now is to develop a practical method that will find the solution of a
system of linear equations. Ideally, this method will

1.

2.

3.

EXAMPLE 2

Suppose N(A) = Span((2,−1, 3), (1, 0, 5)) and that A

 1
1
4

 =
 2

0
3

. What are all

the solutions x of the system Ax =
 2

0
3

?

BASIC STRATEGY

Start with some system and replace it with an equivalent system (i.e. one that has
the same solution set as the original system) that is easier to solve.

Philosophy: We can

1.

2.

3.

without changing the solution set of the system.
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6.3. Gaussian elimination

More philosophy: the “names” of the variables don’t matter, i.e.{
7x− 2y = 5
4x + 7y = 11 is the same as

{
7s− 2t = 5
4s + 7t = 11 .

Definition 6.9 Given a m×n system of linear equations, the augmented matrix of
the system is the m× (n + 1) matrix

(A |b) =


a11 · · · a1n b1

... . . . ...
...

am1 · · · amn bm

 .

EXAMPLE 3
Write the augmented matrix of the following system:{

3x1 + 2x2 = −7
−x1 − 3x2 = 4

EXAMPLE 4
Write the corresponding system of equations for each augmented matrix. Solve
the system if it is “easy”:

a) (A|b) =
(

4 −1 2 6 0
1 0 2 −1 5

)

b) (A|b) =

 1 0 1 0 1
0 1 2 0 −1
0 0 0 1 2
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c) (A|b) =

 1 0 0 4
0 1 0 7
0 0 1 −3



d) (A|b) =

 1 0 0 2
0 1 2 3
0 0 0 1



HOW TO IMPLEMENT THE BASIC STRATEGY

Given a system of linear equations,

1. Write the augmented matrix (A|b) of the system.

2. Do some “operations” on (A|b) to produce an augmented matrix of an “easy”
system, equivalent to the original one.

What “operations” are allowed here?

i.
ii.

iii.

3. Solve the “easy” system.

EXAMPLE 4
In each example, you are given a matrix and an indicated row operation (or oper-
ations). Perform the indicated operations:

a) Swap the first and third row, then multiply the third row by 3. 2 1
0 4
3 −2


b) Multiply the third row by −2, then add 4 times the first row to the third row: 1 0 −3

2 1 −5
−1 2 1
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Definition 6.10 Two matrices are called row equivalent if one can be produced from
the other by a sequence of operations of types (i), (ii) and/or (iii) above.

Theorem 6.11 If two systems of equations have row equivalent augmented matrices,
then the systems are equivalent (they have the same solution set).

Note: The allowable row operations are all reversible:

• To “undo” the swapping of two rows, swap the rows again.
• To “undo” the multiplying of a row by nonzero constant c, multiply the

same row by 1
c
.

• To “undo” the adding of c times Row i to Row j, add −c times Row i to
Row j.

Thus the definition of “row equivalent” is symmetric: if A is row equivalent to
B, then B is row equivalent to A.

QUESTION

Looking back at Example 4, why were some of these systems easier to study than
others?

Definition 6.12 A matrix is in (row-)echelon form (ref ) if

1. all rows of zeros are at the bottom of the matrix, and

2. defining the pivot (a.k.a. leading entry) of each row to be the left-most nonzero
entry in that row, the pivot of every row is to the right of the pivot of any above
row. (This implies, among other things, that all entries directly below any pivot
are zero.)

Definition 6.13 A matrix is in reduced (row-)echelon form (rref ) if

1. it is in row echelon form , and

2. all pivots are equal to 1, and

3. each pivot is the only nonzero entry in its column.

FACT: A matrix may have several row echelon forms, but it has one and only
one rref . So we can talk about the rref of A or (A|b), rather than an rref of A
or (A|b).
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Definition 6.14 Given a matrix A, the pivot columns of A are the columns which
have a pivot in the rref of A. The free columns of A are the columns which are not
pivot columns.

Note: If the matrix is augmented (A|b), then the last column (the b) is not a
pivot nor a free column. It “doesn’t count”.

Now for the key idea which ties the theory to the practice:

Theorem 6.15 If A and B are row equivalent matrices, then R(A) = R(B).

PROOF If A and B are row equivalent, then you can convert one to the other by a
sequence of row operations. But none of the three types of elementary row opera-
tions changes the row space of a matrix. □

Consequence:

dim(R(A)) = dim(R(ref(A))
= # of nonzero rows in ref(A)
= # of pivots of A

= rank of A

= r.

This proves:

Theorem 6.16 (Rank Theorem II) Let A ∈Mmn(R). Then

r(A) = # of pivots of A = # of nonzero rows in ref(A).

199



6.3. Gaussian elimination

EXAMPLE 5
For each matrix, determine whether or not it is in row echelon form. Determine
whether or not it is in reduced row echelon form. Write down all the pivots, the
pivot columns and the free columns. Find the rank of A, and the dimension of the
four fundamental subspaces associated to A.

a) A =


1 5 −1 6 0 1
0 1 4 2 1 −3
0 0 0 5 4 5
0 0 0 0 −1 6
0 0 0 0 0 0


pivots: rank r(A) =

row echelon form? x dim C(A) =

rref? dim R(A) =

pivot columns: dim N(A) =

free columns: dim N(AT ) =

b) A =


1 2 0 0 1
0 0 1 0 2
0 0 0 1 3
0 0 0 0 1


pivots: rank r(A) =

row echelon form? x dim C(A) =

rref? dim R(A) =

pivot columns: dim N(A) =

free columns: dim N(AT ) =
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Algorithm for putting a matrix in ref or rref form by hand

Suppose you are given a matrix (it can be an augmented matrix (A |b), or just a
coefficient matrix A, or any other matrix) and you want to put it into echelon form.
Here’s a formulaic way called Gaussian elimination or row reduction which al-
ways works (this is not the only method, however).

Note: No one does this by hand if they have a computer or graphics calculator
available. See Section 6.7.

Part 1 (Downward reduction): Transforming a matrix into row-echelon form
1. Place an imaginary cursor at the upper-left entry of the matrix.
2. If the cursor entry and all entries below the cursor entry are zero, move the

cursor one column to the right. Repeat this step if necessary.
3. The cursor should now be in a position such that there is a nonzero entry

either in the cursor position or directly below the cursor. If necessary, switch
the cursor row with a row beneath the cursor row to put a nonzero entry in
the cursor position.

4. Add multiples of the cursor row to each of the rows beneath the cursor row
to create zeros in all entries beneath the cursor.

5. Move the cursor one row down and one column to the right. If the cursor
is not on the bottom row, return to step 2. If you reach the last nonzero row,
you are done and the matrix is in row-echelon form.

These steps are called downward reduction because the cursor is always moving
down (from the upper-left corner downward and to the right).

Part 2 (Upward reduction): Transforming a row-echelon form into a rref
1. If necessary, carry out downward reduction as in Part 1 to place the matrix in

row-echelon form.
2. Multiply each pivot row by the reciprocal of its pivot, so that all the pivots

become 1.
3. Place the cursor on the right-most pivot position.
4. If necessary, add multiples of the cursor row to every row above the cursor

row so that all entries above the cursor become zero.
5. Once all entries above the cursor are zero, move the cursor up one row and

to the left until you reach a pivot position.
6. If the cursor is on the first row, you are done. The matrix is in rref form.

Otherwise, return to step 4.
These steps are called upward reduction because the cursor is always moving up
(from the bottom pivot row up and to the left).
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EXAMPLE 6

Let A =

 0 6 4 −12
3 3 0 9
2 0 −3 10

. Find rref(A).

Downward reduction
Current Subsequent Row

Matrix Step Thought Process Operation 0 6 4 −12
3 3 0 9
2 0 −3 10

 1,2
Cursor column contains nonzero

entries below cursor.
Proceed to step 3. 0 6 4 −12

3 3 0 9
2 0 −3 10

 3 I need a nonzero entry
at the cursor position. Swap rows 1 and 2 3 3 0 9

0 6 4 −12
2 0 −3 10

 4 I need to make all entries
at below the cursor zero.

Add −
( 2

3
)

times
row 1 to row 3 3 3 0 9

0 6 4 −12
0 −2 −3 4

 5 Move the cursor down and
right. Return to step 2. 3 3 0 9

0 6 4 −12
0 −2 −3 4

 2

Cursor column contains nonzero
entries below cursor; cursor

entry is nonzero.
Proceed to step 4. 3 3 0 9

0 6 4 −12
0 −2 −3 4

 4 I need to make all entries
at below the cursor zero.

Add 1
3 times

row 2 to row 3 3 3 0 9
0 6 4 −12
0 0 − 5

3 0

 5
Move the cursor down and
right. It’ll be on the bottom

row, so I’m done.

This matrix is in row-echelon form. What you would typically write down on your
sheet of paper is something like this: 0 6 4 −12

3 3 0 9
2 0 −3 10

 R1↔R2−−−−→

 3 3 0 9
0 6 4 −12
2 0 −3 10


−( 2

3)R1+R2
−−−−−−−→

 3 3 0 9
0 6 4 −12
0 −2 −3 4


1
3 R2+R3−−−−−→

 3 3 0 9
0 6 4 −12
0 0 −5

3 0

 .
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Upward reduction
Current Subsequent Row

Matrix Step Thought Process Operation 3 3 0 9
0 6 4 −12
0 0 − 5

3 0

 1,2 Matrix is in ref form.
Need to make pivots 1.

Multiply row 1 by 1
3 ;

multiply row 2 by 1
6 ;

multiply row 3 by −
( 3

5
)
. 1 1 0 3

0 1 2
3 −2

0 0 1 0

 3 Place cursor on right-
most pivot. 1 1 0 3

0 1 2
3 −2

0 0 1 0

 4 I need to make all entries
at above the cursor zero.

Add −
( 2

3
)

times
row 3 to row 2 1 1 0 3

0 1 0 −2
0 0 1 0

 5 Move the cursor up and
left. Return to step 4. 1 1 0 3

0 1 0 −2
0 0 1 0

 4 I need to make all entries
at above the cursor zero.

Add −1 times
row 2 to row 1 1 0 0 5

0 1 0 −2
0 0 1 0

 5
Move the cursor up and
left. It’ll be on the first

row, so I’m done.

Notice that this matrix is in its rref form. What you would typically write down on
your sheet of paper for the upward steps is something like this: 3 3 0 9

0 6 4 −12
0 0 −5

3 0

 1
3 ·R1, 1

6 ·R2,− 3
5 ·R3−−−−−−−−−−→

 1 1 0 3
0 1 2

3 −2
0 0 1 0


−( 2

3)R3+R2
−−−−−−−→

 1 1 0 3
0 1 0 −2
0 0 1 0


−1·R2+R1−−−−−−→

 1 0 0 5
0 1 0 −2
0 0 1 0

 .

P.S. The answer to the question that was asked (compute rref(A)) is

rref(A) =

 1 0 0 5
0 1 0 −2
0 0 1 0

 .
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Putting all this together
EXAMPLE 7

Solve the system


x +2y = 4
x +z = −3
x −y z = −4

.
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EXAMPLE 8

Solve the system
{

3x1 +x2 −6x3 = −10
2x1 +x2 −5x3 = −8 .
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EXAMPLE 9

Solve the system


x1 +x3 +x4 = 5
x1 +x2 +x3 +x4 = 6
x1 −x2 +x3 +x4 = 5

.
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EXAMPLE 11

Find C(A) and find a basis for C(A), if A =

 2 −1 1 −3
3 2 5 −8
1 6 7 −8

.

“Old” solution:

New solution: Perform Gaussian elimination on A.

A =

 2 −1 1 −3
3 2 5 −8
1 6 7 −8

 R1↔R3−→

 1 6 7 −8
3 2 5 −8
2 −1 1 −3



−3×R1+R2
−2×R1+R3−→

 1 6 7 −8
0 −16 −16 16
0 −13 −13 13



−13
16 ×R2+R3−→

 1 6 7 −8
0 −16 −16 16
0 0 0 0



−1
16 ×R2−→

 1 6 7 −8
0 1 1 −1
0 0 0 0
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Notice:

Therefore in any ref form of a matrix, the linearly independent columns are
the pivot columns, and the linearly dependent columns are the free columns.

WARNING: In general, C(A) ̸= C(ref(A)). These subspaces only have the
same dimension.

What about R(A)? From an earlier result, R(A) = R(ref(A)) = R(rref(A))
since A, ref(A) and rref(A) are row equivalent.

To summarize:

Theorem 6.17 (Bases for column space and row space) Let A ∈Mmn(R). Then:

1. A basis for C(A) consists of the pivot columns of A (not ref(A) or rref(A)).

2. A basis for R(A) consists of the nonzero rows in any echelon form of A.

Computing a basis of null space of a matrix

Let A ∈Mmn(R). Remember that x = (x1, ..., xn) ∈ N(A) ⇐⇒ Ax = 0.

(A|0) row ops−→ rref(A|0) =



1 ∗ ∗ ∗ 0
1 ∗ ∗ ∗ 0

1 ∗ ∗ ∗ 0
1 ∗ ...

1 ∗ ...

1 ...
. . . ...

. . . 0


Now write as a system of equations, and solve each equation for the left-most
variable. Then, write

N(A) = {(x1, ..., xn)}
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and substitute in for each pivot variable, separate and write as a span. In this
example, we would get

Remember that in general, dim N(A) = n− r = # of free columns.

EXAMPLE 12

Find a basis for N(A) if A =


1 1 −2 −5
2 0 2 2
3 0 3 3
4 0 4 4

.

Solution: Perform Gaussian elimination on (A|0):

A =


1 1 −2 −5 0
2 0 2 2 0
3 0 3 3 0
4 0 4 4 0

 −2R1+R2,−3R1+R3,−4R1+R4−→


1 1 −2 −5 0
0 −2 6 12 0
0 −3 9 18 0
0 −4 12 24 0


− 1

2 ·R2,− 1
3 ·R3,− 1

4 ·R4−→


1 1 −2 −5 0
0 1 −3 −6 0
0 1 −3 −6 0
0 1 −3 −6 0


−R2+R3,−R2+R4−→


1 1 −2 −5 0
0 1 −3 −6 0
0 0 0 0 0
0 0 0 0 0


−R2+R3,−R2+R4−→


1 0 1 1 0
0 1 −3 −6 0
0 0 0 0 0
0 0 0 0 0

 = rref(A|0)
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6.4 Summary so far
Let A ∈Mmn(R) have rank r (r is the number of pivots in any row echelon form of
A). Then:

1. The system Ax = 0 always has at least one solution (namely x = 0). There
are two possible situations, (a) or (b):

a) Ax = 0 has more than one solution. This is equivalent to all of the
following:

• N(A) ̸= {0}
• dim N(A) ≥ 1
• r < n (i.e. there is at least one free column) .

In this case, for any b ∈ Rn:
• Ax = b has no solution if and only if b /∈ C(A);
• Ax = b has infinitely many solutions if and only if b ∈ C(A) (in

this case the solution set of Ax = b is xp + N(A) where xp is any
particular solution of the system) (this case is assured if r = m < n);

• Ax = b never has exactly one solution.

b) Ax = 0 has exactly one solution (only x = 0). This is equivalent to all of
the following:

• N(A) = {0}
• dim N(A) = 0
• r = n (i.e. all the columns are pivot columns).

In this case, for any b ∈ Rn:
• Ax = b has no solution if and only if b /∈ C(A);
• Ax = b has exactly one solution if and only if b ∈ C(A) (this is

assured if r = m = n; see below);
• Ax = b never has infinitely many solutions.

Notice that if m < n (that is, there are fewer equations than variables),
case (b) above is impossible because r ≤ m (so r cannot be equal to n).

2. In the special case where r = m = n (i.e. A is square and has full rank),
then C(A) = R(A) = Rn and N(A) = N(AT ) = {0}. Furthermore, for every
b ∈ Rn, the system Ax = b has exactly one solution.

This situation is equivalent to many different things, which are described in
Theorem 6.8.

3. The system Ax = b has no solution ⇔ b /∈ C(A) ⇔ an echelon form of the
augmented matrix (A |b) contains a false row of the form (0 0 · · · 0 | z)
where z ̸= 0.
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6.5 Computing the inverse of a matrix
QUESTION

Suppose A ∈Mn(R) is an invertible matrix. How do you compute its inverse A−1?

Suppose A ∈ Mn(R) is invertible. Write A = (aij) and write A−1 = (bij). (The
object is to solve for the bijs.) Since AA−1 = I , we see by the way that matrix
multiplication works that 

b11 b12 · · · b1j · · · b1n

b21 b22 · · · b2j · · · b2n
...

... . . . ...
...

bn1 bn2 · · · bnj · · · bnn

← A−1

A→



a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
... . . . ...

...
...

...
an1 an2 · · · ann





1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
...

... . . . ...
...

...
... 1 ...

...
...

... . . . ...
0 0 · · · 0 · · · 1


← I

Now look at the jth column of this product. This produces the equation

A


b1j

b2j

...
bnj

 = ej,

which we could solve by Gaussian elimination to produce the vector


b1j

b2j

...
bnj

,

which is the jth column of A−1.

Theorem 6.18 Suppose A ∈Mn(R) is invertible. If bj is the jth column of A−1, then
bj is the solution of Abj = ej .

So to get all the columns of A−1, we solve the equations Ax = ej all at once. This is
called the Gauss-Jordan method of computing the inverse of a square matrix A.
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Gauss-Jordan method to compute the inverse of a matrix A:

1. Write the augmented matrix (A|I).
2. Perform Gaussian elimination to put A in rref form.

• If you get a row of zeros in the A part of the matrix at any point, A
is not invertible.

• Otherwise, you will end up with a matrix of the form (I |A−1).

Note: In practice, one uses a computer or calculator to compute the inverse of a
matrix that is 3× 3 or larger (see Section 6.7).

EXAMPLE 13

Compute the inverse of A =

 1 2 1
−1 0 2
0 1 4

.

Solution: (A|I) =

 1 2 1 1 0 0
−1 0 2 0 1 0
0 1 4 0 0 1
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6.6 Least-squares approximations
EXAMPLE 14

Find the equation of the plane in R3 passing through the following points:

(1, 1, 1) (2, 2, 2) (2, 1, 1) (1, 3, 4)

First attempt at a solution: We know every plane in R3 has the normal equation

n · x = d, a.k.a. ax + by + cz = d

so by solving for z, we see that every plane (with c ̸= 0) in R3 has equation

z =

To determine this equation, plug each of the given points in for x, y and z:
This translates into the matrix equation Ax = b where x = (α, β, γ);

A =


1 1 1
1 2 2
1 2 1
1 1 3

 ; b =


1
2
1
4

 .

Notice:

first column of A↔ a column of all ones
last column of A↔

second column of A↔
the column vector b↔
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We’d solve such a system by Gaussian elimination/row reductions:

(A |b) =


1 1 1 1
1 2 2 2
1 2 1 1
1 1 3 4

 row ops−→


1 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1

 = ref(A |b)

Therefore

EXAMPLE 14, RESTATED

Find the equation of the plane in R3 which best fits the following points:

(1, 1, 1) (2, 2, 2) (2, 1, 1) (1, 3, 4)

Solution: Start by repeating the work on the previous page to obtain the matrix
equation Ax = b where

A =


1 1 1
1 2 2
1 2 1
1 1 3


4×3

; b =


1
2
1
4


From the last page, we know there is no solution x to this system, which means
b /∈ C(A). This means we can think of a picture like this:

T (x)=Ax−→ im(T)=C(A)

b∉C(A)

R3 R4

The plane which best fits the data will be given by the x = (α, β, γ) which makes
Ax as close to possible to b. Thus

Ax should be equal to

QUESTION: How do you compute b̂?
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6.6. Least-squares approximations

QUESTION FROM THE PREVIOUS PAGE

How do you compute b̂, the projection of b onto C(A)?

Old method (from Chapter 4): C(A) is spanned by the columns of A.
So use Gram-Schmidt to convert the columns of A into an orthonormal basis
{x1, x2, x3} of C(A), and then use the projection formula.

This gives
b̂ = (b · x1)x1 + (b · x2)x2 + (b · x3)x3.

While this method always works, there are two big drawbacks: it is very
computationally intensive, and doesn’t tell you an x̂ that satisfies Ax̂ = b̂.

New method: Since b̂ ∈ C(A), the system Ax = b̂ has at least one solution.
Call this solution x̂. Therefore Ax̂ = b̂.

However, since b̂ is the projection of b onto C(A),

b− b̂ ∈ [C(A)]T = N(AT ).

That means AT (b− b̂) = 0. Now, substituting in Ax̂ for b̂, we see

0 = AT (b− Ax̂)
0 = AT b− AT Ax̂

AT Ax̂ = AT b
(AT A)−1AT Ax̂ = (AT A)−1AT b

Therefore
x̂ = (AT A)−1AT b

and since b̂ = Ax̂,
b̂ = A(AT A)−1AT b .

x̂ is called the least-squares approximation to the original equation Ax = b.

BACK TO EXAMPLE 14

A =


1 1 1
1 2 2
1 2 1
1 1 3

 ; b =


1
2
1
4
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The least-squares approximation is

x̂ = (AT A)−1AT b

=


 1 1 1 1

1 2 2 1
1 2 1 3




1 1 1
1 2 2
1 2 1
1 1 3




−1 1 1 1 1
1 2 2 1
1 2 1 3




1
2
1
4



=

 4 6 7
6 10 10
7 10 15


−1 8

11
18



=

 5 −2 −1
−2 11

10
1
5

−1 1
5

2
5


 8

11
18

 =


0

−3
10
7
5

 .

Since x̂ = (α, β, γ) = (0, −3
10 , 7

5), the plane best fitting the data points

(1, 1, 1) (2, 2, 2) (2, 1, 1) (1, 3, 4)

is

If you have access to Mathematica, implementing this entire process is easy:
type in the matrices A and b and then run the command

LeastSquares[A,b] //MatrixForm

This will compute and display x̂.

Potential problem: The only drawback to the least-square method is that it
requires the matrix AT A to be invertible to work. Fortunately, this is assured
in most situations because of the following fact:

FACT: Let A ∈Mmn(R). If the columns of A are linearly independent, then the
n× n matrix AT A is invertible.

In the context of Example 14, this is assured if the same x, y coordinates from the
original list of points are never repeated.
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To summarize:

Theorem 6.19 (Least-squares) Let A ∈ Mmn(R) and let b ∈ Rm. Then, assuming
the columns of A are linearly independent,

1. The projection of b onto the column space of A is

b̂ = πC(A)b = A(AT A)−1AT b

2. The least-squares solution of the system Ax = b is the vector x̂ ∈ Rn given
by

x̂ = (AT A)−1AT b

x̂ solves the equation Ax̂ = b̂, and is the closest approximation to any “solution”
of Ax = b. It isn’t generally a solution of Ax = b, however.

Theorem 6.20 Let A ∈ Mn(R) be an invertible square matrix and let b ∈ Rn. Then
the least-squares solution of the system Ax = b is x̂ = A−1b and is the same as the
actual solution of the original system.

PROOF If A is invertible, so is AT and (AT A)−1 = A−1(AT )−1. Therefore

x̂ = (AT A)−1AT b = A−1(AT )−1AT b = A−1Ib = A−1b

and Ax̂ = A(A−1b) = b. □

We wrap this material up by restating the already-proven facts in terms of projec-
tions:

Definition 6.21 Let A ∈ Mmn(R) be a matrix whose columns are linearly indepen-
dent. Then define the m×m matrix P to be

P = A(AT A)−1AT .

P is called the projection matrix for A.

Theorem 6.22 Let A ∈ Mmn(R) be a matrix whose columns are linearly indepen-
dent, and let P be its projection matrix. Then for any y ∈ Rm, Py = πC(A)y, the
projection of y onto the column space of A.
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EXAMPLE 15
Compute the projection of (2,−5, 1, 7) onto the subspace W spanned by (1, 3,−2, 1)
and (4,−1, 1, 3).

= 1
401


1 4
3 −1
−2 1
1 3


(
−286
541

)

= 1
401


1878
−1399
1113
1337


=

(1878
401 ,−1399

401 ,
1113
401 ,

1337
401

)
.
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6.7 Solving systems of equations using technology
Linear systems on Mathematica

Mathematica does each of the computations you need to be able to do with one
command line:

1. To solve a system of linear equations Ax = b using Mathematica:

a) Type in the matrix A (using the syntax from Section 2.4).

b) Type in the vector b (also using the syntax from Section 2.4).

c) Execute LinearSolve[A,b]. This will produce a particular solution xp (if
possible) and will tell you if there is no solution.

d) Execute NullSpace[A]. This will spit out a list of vectors which form a
basis of N(A).

e) The solution, as the theory tells us, is xp + N(A). Make sure you write it
correctly.

As an example, suppose we were trying to solve{
x + 2y − 3z = 4
2x + y − 5z = 1

In Mathematica, execute the following commands:

In: A = {{1,2,-3},{2,1,-5}}
In: b = {4,1}
In: LinearSolve[A,b]

Out:
{
{−2

3}, {
7
3}, {0}

}
← This is a particular solution xp.

In: NullSpace[A]

Out: {{7, 1, 3}} ← This is a basis for N(A)
The solution is therefore

xp + N(A) =
(−2

3 ,
7
3 , 0

)
+ t(7, 1, 3) =

(−2
3 + 7t,

7
3 + t, 3t

)
.
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2. Other things Mathematica can do:

a) To find the rref form of a matrix, type in the matrix (saving it as, say A)
and then execute RowReduce[A] //MatrixForm.

b) To find the rank of a matrix, type in the matrix and execute MatrixRank[A].
c) To find a basis for the null space of a matrix, type in the matrix and

execute NullSpace[A].
d) To find the inverse of a square matrix, type in the matrix and execute

Inverse[A].
e) To find the least-squares solution of a system, type in A and b and exe-

cute LeastSquares[A,b] //MatrixForm; the output is x̂.

Linear systems on TI-83/84 type calculators

1. To solve a system of linear equations Ax = b using such a calculator:

a) Type in the augmented matrix (A|b) and save it (as a single matrix) us-
ing the directions in Section 2.4.

b) Then hit [MATRX], go to the right to find MATH, then go down to rref(.
Hit [ENTER], then pull up the matrix you have saved by hitting [MA-
TRX] and scrollling down to the matrix you want. Then execute this
command; your calculator will spit out the reduced row-echelon form
of the augmented matrix.

c) Solve the system of equations corresponding to the rref using the proce-
dures described in Section 6.3.

As an example, if we were trying to solve{
x + 2y − 3z = 4
2x + y − 5z = 1

we would first save the matrix(
1 2 −3 4
2 1 −5 1

)

as [A], then ask the calculator to compute rref([A]). You will get (after convert-
ing the answer to fractions) (

1 1
2

−5
2

1
2

0 1 −1
3

7
3

)
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This translates back to the system{
x + 1

2y − 5
2z = 1

2
y − 1

3z = 7
3

which you solve by hand (as in Section 6.3) to get the solution.

2. Other things the graphics calculator will do:

a) To find the rref form of a matrix A, first type in the matrix and save it
using the directions of Chapter 2. Then hit [MATRX], go to the right to
find MATH, then go down to rref(. Hit [ENTER], then pull up the matrix
you have saved by hitting [MATRX] and scrollling down to the matrix
you want. Then execute this command; your calculator will spit out the
reduced row-echelon form of A.

b) To find the inverse of a matrix, first type in the matrix and save it using
the directions of Chapter 2. Then hit [MATRX] and scroll down to the
matrix you want to take the inverse of; hit [ENTER]. Then hit [x−1] and
execute this command; your calculator will spit out the inverse of A and
will give you an error if A is not invertible.

Using an online equation solver

1. To solve a system of linear equations Ax = b using a free online tool:

a) Open a web browser to http://www.quickmath.com
b) Type the equations in the box, separated by commas. Click “Solve”.

c) The solution will appear below (including cases of no solution or in-
finitely many solutions).

2. There are probably lots of other online tools which can be used to compute
bases of a null space or perform row reductions or compute inverses of ma-
trices; I’ll leave it to you to use Google to find them. (I don’t suggest using
WolframAlpha, because the output you get is a bit clunky.)
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6.8 Homework exercises for Chapter 6
1. Assume that the following chart shows the number of grams of nutrients per

ounce of food indicated:

BEEF POTATO CABBAGE
PROTEIN 20 5 1

FAT 4 7 12
CARBOHYDRATES 15 20 5

Suppose the army desires to use these three delectable foods to feed new
recruits a dinner providing 305 grams of protein, 365 grams of fat, and 575
grams of carbohydrates. Write a system of equations which, when solved,
will figure out how much of each food should be prepared for each recruit.
(Be sure to define any variables which are used in your problem.)

2. Consider the following system of linear equations:
x− 2y + 3z − w

2 − 2 = 5− 3x + z

−
√

3x + y + 5z + π2w = −4
2(x− 3z) = 6

a) Write the system as a matrix equation Ax = b (i.e. what is A? What is
x? What is b?)

b) Write the system as a vector equation.

c) Essentially, this system is asking whether some vector (say v) is in the
span of some other vectors (say w1, w2, ...). In this context, what is the
v? What are the w1, w2, ...?

3. Suppose A is some matrix with N(A) = Span((1, 3, 0,−2), (1, 0, 0,−2)). Sup-
pose also that A(1− 3, 0, 2) = (2, 0, 3, 1, 4).

a) How many equations, and how many variables are in the system Ax =
(2, 0, 3, 1, 4)?

b) What are the dimensions of the four fundamental subspaces of A?

c) Describe all solutions to the equation Ax = (2, 0, 3, 1, 4).

4. Suppose A is some matrix with N(A) = {0}. Suppose also that A(1−3, 0, 2) =
(8, 1,−2, 5).

a) How many equations, and how many variables are in the system Ax =
(8, 1,−2, 5)?

b) What are the dimensions of the four fundamental subspaces of A?
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c) Describe all solutions to the equation Ax = (8, 1,−2, 5).

5. Suppose A is some matrix with N(A) = {0}. Suppose also that A(2, 5) =
(1, 1, 1, 1, 1).

a) How many equations, and how many variables are in the system Ax =
(1, 1, 1, 1, 1)?

b) What are the dimensions of the four fundamental subspaces of A?

c) Describe all solutions to the equation Ax = (1, 1, 1, 1, 1).

6. Use Gaussian elimination to row reduce the following matrix to a row-echelon
form, then to a reduced row-echelon form. In this problem, and only in
this problem, you are required to perform Gaussian elimination by hand and
show all your steps.

A =

 1 2 −3 0
2 4 −2 2
3 6 −4 3


7. Find the reduced row-echelon form of the matrix below:

Note: Henceforth, to perform Gaussian elimination I recommend that you
use a calculator, or Mathematica, or an online row reducer like the ones at

http://www.math.purdue.edu/ dvb/matrix.html or
http://www.math.odu.edu/ bogacki/cgi-bin/lat.cgi?c=roc 2 2 −1 6 4

4 4 1 10 13
6 6 0 20 19


8. Solve this system: 

x − 2y + z = 7
2x − y + 4z = 17
3x − 2y + 2z = 14

9. Solve this system: 
x + 2y − z = 3
x + 3y + z = 5
3x + 8y + 4z = 17

10. Solve this system:
x1 + 2x2 − 5x3 = 1
x1 − 3x2 + 3x3 − x4 = −4

x2 2x4 = −5
−2x1 + 2x2 + 2x3 + 3x4 = −2
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11. Solve this system:
x1 − 2x2 + x3 + x4 = 7

2x2 − x3 − 7x4 = 6
− 3x3 + 2x4 = −6

12. Solve this system: 
x + 2y + 3z = 1
2x + 3y + 4z = 0
3x + 4y + 5z = 1

13. Solve this system:
x1 − 2x2 − 3x3 + 5x4 − 2x5 = 4

2x3 − 6x4 + 3x5 = 2
5x5 = 10

14. Solve three of these four problems:

a) Determine if the following three planes in R3 have at least one common
point of intersection: x + 2y + z = 4, y − z = 1 and x + 3y = 0.

b) Find the unique polynomial of degree at most 3 which goes through the
points (1, 1),(2, 3),(3, 6) and (4, 10).
Hint: write the polynomial as y = ax3+bx2+cx+d; substitute in the given
points to get a system of four equations in the four variables (a, b, c, d).

c) Express (1,−2, 5) as a linear combination of (1,−3, 2), (2,−4,−1) and
(1,−5, 7), if it can be done; if not, explain why this problem is impossi-
ble.

d) Let W be the subspace of R4 spanned by (1, 2,−5, 2) and (0, 1, 3,−1).
Find a basis of W ⊥.

15. Assume the matrices A and B given below are row equivalent. Find a basis
for C(A), a basis for R(A), and a basis for N(A).

A =

 1 −4 9 −7
−1 2 −4 1
5 −6 10 7

 ; B =

 1 0 −1 5
0 −2 5 −6
0 0 0 0


16. Assume the matrices A and B given below are row equivalent. Find a basis

for C(A), a basis for R(A), and a basis for N(A).

A =


1 1 −3 7 9 −9
1 2 −4 10 13 −12
1 −1 −1 1 1 −3
1 −3 1 −5 −7 3
1 −2 0 0 −5 −4

 ; B =


1 1 −3 7 9 −9
0 1 −1 3 4 −3
0 0 0 1 −1 −2
0 0 0 0 0 0
0 0 0 0 0 0
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17. In each of the following, determine (a) if the equation Ax = 0 has a nontriv-
ial solution (“nontrivial” means a solution other than x = 0) and (b) if the
equation Ax = b has at least one solution for every choice of b.

a) A is a 3× 3 matrix with 3 pivot columns.
b) A is a 2× 4 matrix with rank 2.
c) A is an 8× 6 matrix with 1−dimensional null space.
d) A is a 5× 3 matrix with 3 pivot columns.
e) A is a 4× 4 matrix with rank 3.

18. Consider the system of equations Ax = b where

A =


1 −2 4 0
−1 −1 −1 0
0 4 −4 3
3 2 4 −2
1 0 2 2

 and b =


4
2
−11
−2
−2

 .

For each j, let aj denote the jth column of A.

a) Find the solution set of this system.
b) Find bases for the column space of A, the row space of A, and the null

space of A.
c) Find the dimensions of R(A), C(A), N(A) and N(AT ).
d) Find the rank of A.
e) Let T : Ra → Rb be the linear transformation defined by T (x) = Ax.

What are a and b? Find bases for the kernel and image of T , and the
dimensions of the kernel and image of T .

f) Is b in the span of the columns of A? If so, write b as a linear combina-
tion of the columns of A. If not, explain why not.

g) Find a vector which is not in the column space of A.
h) Is there any vector v ∈ R5 for which Ax = v has exactly one solution? If

so, find such a vector v. If not, explain why not.
i) Is the set {a1, a2, a3, a4} linearly independent? Why or why not?
j) Is the set {a1, a2, a4} linearly independent? Why or why not?

k) Is the set {a1, a2, a3, a4, b} linearly independent? Why or why not?

19. Use the Gauss-Jordan method to find the inverse of this matrix (if the inverse
exists). In this problem, and only in this problem, you are required to perform
this method by hand and show all your steps. 0 1 1

1 0 1
1 1 0
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20. Use appropriate technology to find the inverse of this matrix (if the inverse
exists). 

3 10 3 8
3 −2 8 7
2 1 4 −5
5 11 7 3


21. Use appropriate technology to find the inverse of this matrix (if the inverse

exists). 
3 2 −1 4
3 0 −2 1
1 1 4 0
0 −3 1 −2


22. Find the least-squares solution (a decimal approximation is okay; keep at

least four decimal places) of the following system of equations:

w − 2x + y − 2z = 4
2w + x + 4z = 5

−3x − 2y + 5z = −2
−w − x − y + 3z = 0
w + 4y + z = 1

2x − y + 6z = −3

23. Suppose you obtain a bunch of data points (x, y, z) which are supposed to fit
a model of the form

z = α + βx2 + γy3

where α, β, γ are constants. Suppose that the eight data points you obtain
are:

(1, 2,−1) (0, 2, 0) (−2, 3,−1) (1, 5, 2)

(−1,−1,−3) (−4, 0,−6) (0,−2, 7) (2, 2, 7)

a) Write down the matrix equation Ax = b you would solve to find α, β, γ
(i.e. what is A? What is x? What is b?)

b) Write down a formula in terms of A and/or b which gives the least-
squares solution x̂.

c) Write down the formula in terms of A, b and/or x̂ which gives the cor-
responding b̂.

d) Compute the least-squares solution x̂ to the matrix equation of part (a)
(a decimal approximation is okay; keep at least four decimal places).

e) Compute the corresponding b̂.
f) Compute ||b− b̂||.
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g) What is the significance of the quantity you computed in part (f)? In
other words, if that quantity is small, what does that say about the least-
squares solution? If it is big, what does that say about the least-squares
solution?

h) What is the model that best fits the data?
i) Use the model of part (h) to predict the value of z when x = 4 and y = 5.

24. Suppose you are looking at a curve on an oscilloscope which for theoretical
reasons should be the graph of some function of the form

y = a cos x + b sin x + c cos 2x + d sin 2x

where a, b, c and d are constants. If you see the following (x, y) points on your
oscilloscope:

(0, 0) (.2,−1.6) (.7, 5.1) (1, 8) (1.3, 8.7) (1.8, 4.4) (2.2,−1.5)

use least-squares to compute (decimal approximations to) the values of a, b, c
and d which best fit this data.

25. Suppose you are looking at data which is supposed to fit an exponential
equation, i.e. a model of the form

y = Cekx

where C and k are constants. Suppose your data points are (2, 5), (3, 8) and
(4, 17). Use least-squares to find (decimal approximations to) the values of C
and k which best fit this model.

How to proceed: First, take the natural log of both sides of the model to obtain
what is called a “log-log” equation. Then, use log rules to rewrite the log-log
equation as a linear equation in terms of the variables ln C and k. Then use
least-squares to compute ln C and k; last, find C.

26. Find the projection of (2, 1,−2, 4,−1) onto the subspace spanned by the three
vectors (1, 2,−1, 0, 4), (1,−5,−1, 8, 2) and (0, 0, 2, 3,−2).
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Chapter 7

Determinants

7.1 Definition and properties
GOAL

Assign, to every square matrix, a real number which tells you something about the
matrix.

As motivation, consider a 2× 2 square matrix

A =
(

a b
c d

)
.

Treat the columns of A as vectors: let v = (a, c) and w = (b, d). Use those vectors
to make a parallelogram:

�
�

b a

c

d

b a a+b

c

d

c+d

QUESTION?
What is the area of this parallelogram?
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7.1. Definition and properties

Definition 7.1 Let A =
(

a b
c d

)
∈M2(R). The determinant of A, denoted det A,

is the number det A = ad− bc .

The determinant of A is also denoted |A|, but this a poor choice of notation that
should be avoided.

What we have shown is that if you have a parallelogram in R2, and you treat the
sides of the parallelogram as vectors, and put those vectors in as columns of a
matrix A, then

area of the parallelogram = | det A|.

EXAMPLE 1

Compute the determinant of
(

2 3
3 1

)
.

What is the signficance of the fact that this determinant is negative?

���� ������

������ ������

-1 1 2 3 4

-1

1

2

3

4

In general, the columns of an n × n matrix can be thought of as n vectors in Rn.
Those n vectors can be used to make a n−dimensional box called a parallelepiped.

If you take the same vectors and put them in as columns of a matrix, this makes
an n × n matrix A. The determinant of this matrix is either +1 or −1 times the
volume of this parallelepiped. Whether or not it is positive or negative depends
on the “orientation” of the column vectors, i.e. which order they are written in. In
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7.1. Definition and properties

R3, this goes like this:

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

⇒ det A = ± volume of

(a12,a22,a32)

(a11,a21,a31)

(a13,a23,a33)

Remark: There is a more rigorous definition of the determinant of a matrix,
but that requires mathematics beyond the scope of this course.

Note: If A is not square, then det A is undefined.

Theorem 7.2 (Properties of determinants) Let A, B ∈Mn(R). Then:

1. det A = det AT .

2. If B is obtained from A by swapping two columns of A, then det B = − det A.

3. If B is obtained from A by swapping two rows of A, then det B = − det A.

4. If two rows or columns of A coincide, then det A = 0.

5. det I = 1, where I is the identity matrix.

6. If B is obtained from A by multiplying one row (or column) of A by a constant
r, then det B = r det A.

7. det(rA) = rn det A.

8. det(AB) = det A · det B.

9. A is invertible if and only if det A ̸= 0, in which case det(A−1) = 1
det A

.

Fact: The only function Mn(R)→ R which satisfies (1), (2), (5) and (6) in the above
theorem is the determinant.
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JUSTIFICATION OF SOME OF THESE

(2): Swapping two columns of A doesn’t change the parallelepiped whose vol-
ume is being computed, but does change the order in which the columns are
written, causing the determinant to be multiplied by −1.

(4): If two columns of A coincide, then the parallelepiped is “degenerate”, i.e. has
no n-dimensional volume. Since the absolute value of det A is this volume,
we have | det A| = 0, i.e. det A = 0.

If two rows of A coincide, then two columns of AT coincide so by the above,
det AT = 0 so by (1) det A = 0.

(5): Treating the columns of I as the sides of a parallelepiped, we get a 1×1×1 · · · 1
box with the sides orthogonal. Such a box clearly has volume 1, so | det I| = 1.

det I = 1 (as opposed to −1) because the columns of I are written in “the
right order” (this is one part of the more rigorous definition of determinant).

(6): Multiplying one column of a matrix by r makes the parallelepiped “r times
as big” since one side of the parallelepiped is multiplied by r. Thus the de-
terminant is also multiplied by r, since the determinant of a matrix measures
(up to the sign) this volume.

(7): This follows from (6).

(9): (⇒) If A is invertible, then ∃ A−1 such that AA−1 = I . Then by taking deter-
minants of both sides and applying (5) and (8), we see

det A · (det A−1) = 1,

so det A ̸= 0 (and det A−1 = 1
det A

). □

Warning: Many of these arguments are only sketches of ideas; to formally
justify many of them one needs to define determinant more rigorously.
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7.2. Computing determinants

7.2 Computing determinants
1× 1 matrices

The determinant of a 1× 1 matrix is just the number in the matrix:

If A = (a), then det A = a.

2× 2 matrices

As we have seen, the determinant of a 2 × 2 matrix is given by the following for-
mula:

det
(

a b
c d

)
= ad− bc

EXAMPLE 2

det
(

7 12
3 5

)
= 7(5)− 12(3) = −1 .

3× 3 matrices

Theorem 7.3 Let A =

 a b c
d e f
g h i

 ∈M3(R). Then

det A = aei + cdh + bfg − bdi− ceg − afh.

The proof of this theorem is beyond the scope of this course.

The formula in Theorem 7.3 is difficult to remember, but there is a trick called the
Rule of Sarrus. To implement this rule, given a 3×3 matrix, first copy the first two
columns to the right of the matrix.

Then multiply along the diagonals, and add the “upper” and “lower” products.
The determinant is the bottom sum minus the top sum.

 a b c
d e f
g h i

 a b
d e
g h
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7.2. Computing determinants

WARNING: The Rule of Sarrus does not work for 4× 4 and larger matrices.

EXAMPLE 3

Compute the determinant of A =

 1 −2 3
2 4 −1
3 −1 1

.

4× 4 and larger matrices

The easiest and most efficient way to compute a determinant of a large matrix is
to use technology (see the appendix of this packet). However, there is a way to
compute determinants by hand called evaluation by minors.

Definition 7.4 Let A ∈Mn(R) where n ≥ 2 and let i, j ∈ {1, ..., n}.

The (i, j)−minor of A, denoted Ai,j , is the (n − 1) × (n − 1) matrix obtained by
deleting the ith row and jth column from A.

(Recall that ai,j is the (i, j)−entry of A.)

EXAMPLE 3

Let A =


1 3 5 7
2 −1 1 0
0 3 1 2
2 4 −2 −4

. Compute A1,1, a1,1 and A3,2.
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7.2. Computing determinants

Here are formulas that show you how to compute determinants of large matri-
ces, in terms of determinants of smaller matrices (the proofs of these theorems are
beyond the scope of this class):

Theorem 7.5 (Evaluation of determinants via minors along a row) Let A be an
n× n matrix. Then for any i ∈ {1, 2, ..., n},

det A =
n∑

j=1
(−1)i+jai,j det(Ai,j).

Theorem 7.6 (Evaluation of determinants via minors along a column) Let A ∈
Mn(R). Then for any j ∈ {1, 2, ..., n},

det A =
n∑

i=1
(−1)i+jai,j det(Ai,j).

Note: The values of (−1)i+j should be thought of as the following:

+ − + · · ·
− + − . . .

+ − . . .

− . . .
...


EXAMPLE 4

Compute the determinant of each matrix:

a) A =

 1 −2 3
2 4 −1
3 −1 1
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7.2. Computing determinants

b) A =


1 1 −2 3
2 0 4 −1
3 0 −1 1
3 2 0 1



c) A =


0 0 −1 0 3
1 0 2 4 1
0 1 −3 0 2
1 1 2 0 −2
0 1 0 0 1
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7.2. Computing determinants

d) A =


3 1 4 −2
0 2 1 5
0 0 −2 5
0 0 0 10



This example generalizes:

Theorem 7.7 If A is a triangular matrix, then det A is the product of its diagonal
entries.

Using technology to compute determinants

Determinants on Mathematica:

Type in the matrix (saving it as, say A) and then execute Det[A].

Determinants on TI-83/84 type calculators:

First type in the matrix and save it, following the directions of Chapter 2.

Then hit [MATRX], go to the right to find MATH, then go down to det(. Hit [ENTER],
then pull up the matrix you have saved by hitting MATRX] and scrollling down to
the matrix you want. Then execute this command; your calculator will spit out the
determinant of A.
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7.3 Determinants and cross products
RECALL FROM CHAPTER 4

If v and w are two vectors in R3, a vector n orthogonal to both v and w is given by
the cross product

n = v×w.

We learned a formula for cross products that is hard to memorize. Here is an easier
method to remember:

Theorem 7.8 Let v = (v1, v2, v3) and w = (w1, w2, w3) be two vectors in R3. Then

v×w = det

 e1 e2 e3
v1 v2 v3
w1 w2 w3

 .

PROOF Evaluating the determinant by minors across the top row, we see

det

 e1 e2 e3
v1 v2 v3
w1 w2 w3

 = e1(v2w3 − w2v3)− e2(v1w3 − w1v3) + e3(v1w2 − w1v2)

= (v2w3 − w2v3, 0, 0)− (0, v1w3 − w1v3, 0) + (0, 0, v1w2 − w1v2)
= (v2w3 − w2v3, w1v3 − v1w3, v1w2 − w1v2)

which is the same formula we already defined as v×w. □

Warning: Strictly speaking, the expression

 e1 e2 e3
v1 v2 v3
w1 w2 w3

 is gibberish, be-

cause it is a matrix with some entries that are vectors and some entries that are
numbers.

But if you use the Rule of Sarrus or some other determinant formula on this
gibberish, you get the correct cross product, so it’s “okay” to use.

EXAMPLE 5
Compute (2, 3,−1)× (1, 4,−3).
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7.3. Determinants and cross products

EXAMPLE 6
Write a normal equation of the plane containing the points (1, 3,−2), (0, 2, 1) and
(5,−1, 3).
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7.4 Homework exercises for Chapter 7
1. Find the determinant of each given matrix, if it exists (you can use a computer

or calculator, but you should be able to compute this by hand):

a)
(−3)

b) (
1 2

)
c) (

−5 2
8 −7

)

d)  3 0 4
2 3 2
0 5 −1


e)  −1 0 0

2 3 0
0 5 −4


2. Find the determinant of each given matrix, if it exists (you can use a computer

or calculator, but you should be able to compute this by hand):

a)

 −3 2 4
−1 5 2
1 −3 −2



b)


−3 1 1
−1 2 −1
4 0 −2
1 7 −3



c) 
1 2 0 1
0 2 1 0
−2 3 3 −1
1 0 5 2


d) 

0 0 −2 0 0 0
3 0 0 0 0 0
0 0 0 2 0 0
0 −3 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 5


3. Suppose that A, B and C are 4 × 4 matrices such that det A = 2, det B = −2

3
and det C = 0.

a) Find det(4A).
b) Find det(B−1).
c) Find 2 det(3A).
d) Find det(BAB).
e) Which one or ones of the matrices A, B and C are invertible?

f) Is the matrix AC invertible? Is the matrix CA invertible?
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4. Let A ∈ Mn(R) be an orthogonal matrix (see Problem 9 of Chapter 5). What
are the possible values of det A? Explain.

5. Suppose that A and B are n× n square matrices.

a) Prove that if A and B have rank n, then AB also has rank n.
Hint: use determinants.

b) Prove that if AB has rank n, then both A and B must both have rank n.
Hint: use determinants.

6. Use determinants to compute each cross product:

a) (4, 0,−3)× (2, 1, 7)
b) (−1,−5, 2)× (11,−3, 4)
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Chapter 8

Eigentheory

8.1 Motivation: a differential equation
RECALL

One of our motivating problems from Chapter 1 was the following differential
equation, modeling the charge q in an RLC electrical circuit at time t:

q′′(t) + 6q′(t) + 5q(t) = 2 sin t. (8.1)

Let’s relate this to linear algebra. First, define C∞(R,R) to be the set of functions
from R to R that are infinitely differentiable. This set C∞(R,R) forms a vector
space (it is closed under + and scalar ·).

Next, define T : C∞(R,R)→ C∞(R,R) by

T (f) = f ′′ + 6f ′ + 5f, e.g.

This T is a linear transformation (proof - HW).

So if we let b(t) = 2 sin t, then equation (8.1) above is of the form

T (q) = b,

which is exactly the kind of equation we have been studying this semester.

QUESTION

What do we know about the solution of such an equation?
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8.1. Motivation: a differential equation

FROM THE PREVIOUS PAGE

q′′(t) + 6q′(t) + 5q(t) = 2 sin t (8.1)

T (q) = b

This equation has as its solution q = ker(T ) + qp, where qp is any one particular
solution of the equation.

QUESTION A
How do you find a particular solution qp?

Since T (q) is supposed to be a sinusoidal function, it stands to reason qp might itself
be a trig function. Let’s try

qp(t) = A sin t

where A is a constant which I don’t yet know. Then, by plugging A sin t into the
formula for T , we get

T (qp) = (A sin t)′′ + 6(A sin t)′ + 5(A sin t)
= −A sin t + 6A cos t + 5A sin t

= 4A sin t + 6A cos t ← this is supposed to be b = 2 sin t

There is no choice of A which makes this expression equal b = 2 sin t (since it has a
cosine term in it), so this qp can’t be correct. But, if we try

qp(t) = A sin t + B cos t,

then

T (qp) = (A sin t + B cos t)′′ + 6(A sin t + B cos t)′ + 5(A sin t + B cos t)
= −A sin t−B cos t + 6A cos t− 6B sin t + 5A sin t + 4B cos t

= (4A− 6B) sin t + (6A + 3B) cos t ← supposed to be b = 2 sin t
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8.1. Motivation: a differential equation

This will work out to be b = 2 sin t = 2 sin t + 0 cos t exactly if{
4A− 6B = 2
6A + 3B = 0 ⇒ (A, B) =

(1
8 ,
−1
4

)
.

Thus a particular solution qp to our original equation T (q) = b is

qp(t) = 1
8 sin t− 1

4 cos t.

This finishes Question A, and tells us that the solution set of the differential equa-
tion

q′′(t) + 6q′(t) + 5q(t) = 2 sin t (8.1)

has the form
1
8 sin t− 1

4 cos t + ker(T )

where T (q) = q′′ + 6q′ + 5q.

QUESTION B
How do you find the kernel of T , where T (q) = q′′ + 6q′ + 5q?

Simpler motivating example: Let U : C∞(R,R) → C∞(R,R) be defined by
U(f) = f ′ − λf , where λ ∈ R is a constant. What is ker(U)?

y = f(x) ∈ ker(U) ⇐⇒ U(f) = 0

⇐⇒ dy

dx
− λy = 0
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8.2. Eigenvalues and eigenvectors

Theorem 8.1 Let λ ∈ R be a constant, and define U : C∞(R,R) → C∞(R,R) by
U(f) = f ′ − λf . Then

ker(U) = Span(eλt) = {Ceλt : C ∈ R}.

There is a way to rephrase this simpler example that is very useful.

Define D : C∞(R,R) → C∞(R,R) by D(f) = f ′ (“D” stands for derivative). This
D is a linear transformation. Any multiple of the function f(t) = eλt has a special
property:

In other words, applying the linear transformation D to f is the same as multi-
plying f by a constant.

Given any linear transformation (not just differentiation), identifying the vectors
for which the linear transformation is the same as multiplying those vectors by a
constant is key to understanding important behavior of that linear transformation.

8.2 Eigenvalues and eigenvectors
Definition 8.2 Let V be a vector space, and let T : V → V be a linear transformation.
If v ∈ V is a nonzero vector and λ ∈ R is a constant such that

T (v) = λv ,

then we say λ is an eigenvalue of T and that v is an eigenvector of T corresponding
to λ.
In the situation where T is given by matrix multiplication by A (i.e. T : Rn → Rn is
given by T (x) = Ax for an n × n matrix A), we say λ is an eigenvalue of A and v
is an eigenvector of A.
If the elements of V are functions, the word eigenfunction can be used interchange-
ably with eigenvector.
The spectrum of a linear transformation is the set of its eigenvalues.
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8.2. Eigenvalues and eigenvectors

Theorem 8.3 (Basic properties of eigenvalues and eigenvectors) Let V be a vec-
tor space, and let T : V → V be a linear transformation.

1. Let λ be any eigenvalue of T . The set of eigenvectors corresponding to λ, together
with the zero vector, forms a subspace of V . In particular:

a) If v, w ∈ V are both eigenvectors corresponding to λ, so is v + w;

b) If v ∈ V is an eigenvector corresponding to λ, so is cv for any c ∈ R.

2. If λ1, λ2, ..., λn are all different eigenvalues of T with respective eigenvectors
v1, ..., vn, then {v1, ..., vn} are linearly independent.

3. The maximum number of eigenvalues of T is dim V .

PROOF The proof of (1) is a homework exercise.

For (2), notice that for all j ∈ {1, ..., n}we have

T (vj) = λjvj.

To show {v1, ..., vn} are lin. ind., suppose not, i.e. that they are lin. dep.
Then let vk be the first dependent vector.
That means {v1, ..., vk−1} are lin. ind. and ∃ c1, ..., ck−1 such that

vk = c1v1 + ... + ck−1vk−1. (8.2)

Apply T to both sides of equation (8.2) to get

T (vk) = T (c1v1 + ... + ck−1vk−1)
T (vk) = c1T (v1) + ... + ck−1T (vk−1)

(since T is linear)
λkvk = c1λ1v1 + ... + ck−1λk−1vk−1

(since vjs are eigenvectors)
λk(c1v1 + ... + ck−1vk−1) = c1λ1v1 + ... + ck−1λk−1vk−1

(by the dependence relation (8.2))
c1λkv1 + ... + ck−1λkvk−1) = c1λ1v1 + ... + ck−1λk−1vk−1

0 = c1(λ1 − λk)v1 + ... + ck−1(λk−1 − λk)vk−1.

Thus v1, ..., vk−1 are lin. dep., contradicting the hypothesis.
Therefore {v1, ..., vn} are lin. ind.

Finally, statement (3) follows from (2) by applying the Exchange Lemma. □
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8.2. Eigenvalues and eigenvectors

EXAMPLE 1
Let D : C∞(R,R) → C∞(R,R) be D(f) = f ′. Then, every λ ∈ R is an eigenvalue,
with corresponding eigenvector

EXAMPLE 2

Let T : R2 → R2 be T (x) = Ax, where A =
(

4 −7
−2 −9

)
. Then:

T (1, 2) =
(

4 −7
−2 −9

)(
1
2

)
=

T (7,−1) =
(

4 −7
−2 −9

)(
7
−1

)
=

RETURN TO QUESTION B FROM EARLIER

T (q) = q′′ + 6q′ + 5q; ker(T ) =?

As above, let D : C∞(R,R)→ C∞(R,R) be D(q) = q′. Then notice

So if q is an eigenvector of D with eigenvalue λ (i.e. q(t) = ceλt), we have

T (q) =
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CONCLUSION

if λ2 +6λ+5 = 0, then any eigenvector of D corresponding to λ (those eigenvectors
are functions of the form ceλt) is in the kernel of T .

Notice {e−5t, e−t} are linearly independent, which means

Span(e−t, e−5t) ⊆ ker(T ), implying dim(ker(T )) ≥ 2.

LAST QUESTION

Is there anything else in ker(T ), other than Span(e−5t, e−t)?

To determine this, let U1, U5 : C∞(R,R) → C∞(R,R) be U1(q) = q′ + q and
U5(q) = q′ + 5q. We know (from the “simpler motivating example” in Section 8.1)
that

• ker(U1) =

• ker(U5) =

Now let f(t) = −1
4 e−5t. Observe

U1(f) = f ′ + f = 5
4e−5t − 1

4e−5t = e−5t,

so e−5t ∈ im(U1), meaning Span
(−1

4 e−5t
)

= Span(e−5t) = ker(U5) ⊆ im(U1).

Therefore, we can apply the result of Homework Exercise 34 of Chapter 6 to
conclude

dim(ker(U5 ◦ U1)) = dim(ker(U5)) + dim(ker(U1)) = 1 + 1 = 2.

But, notice that

(U5 ◦ U1)(q) = U5(U1(q)) =
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From our previous work, we have the following facts (for T (q) = q′′ + 6q′ + 5q):

• {e−5t, e−t} ⊆ ker T ;

• T = U5 ◦ U1 (where Uλ(f) = f ′ + λf );

• ker(T ) = ker(U5 ◦ U1);

• dim ker(U5 ◦ U1) = 2.

We can conclude:

and so we have finally answered Question B: if T (q) = q′′ + 6q′ + 5q, then

ker(T ) = Span(e−5t, e−t) = {C1e
−5t + C2e

−t : C1, C2 ∈ R}.

FINALLY!
After several pages of work, we have determined that the solution of

q′′ + 6q′ + 5q = 2 sin t (8.1)

is

q(t) = ker(T ) + qp

= Span(e−5t, e−t) + 1
8 sin t− 1

4 cos t

=
{

C1e
−5t + C2e

−t + 1
8 sin t− 1

4 cos t : C1, C2 ∈ R
}

.

All this machinery generalizes as indicated on the next page (although to prove
this rigorously, you need complex numbers... take MATH 330 to see proofs):
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Theorem 8.4 Let T : C∞(R,R)→ C∞(R,R) be

T (f) = cnf (n) + cn−1f
(n−1) + ... + c1f

′ + c0f

where c0, c1, ..., cn are all constants. (Such a T is called an nth-order constant-
coefficient, linear differential operator.) Then:

1. dim(ker(T )) = n.

2. For any λ ∈ R which is a root of the characteristic equation of T , which is

cnλn + cn−1λ
n−1 + ... + c1λ + c0 = 0,

we have eλt ∈ ker(T ).

EXAMPLE 1
Find all functions y(t) which satisfy the differential equation

y′′(t)− 4y′(t)− 21y(t) = −9et.
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8.3 Eigentheory of matrices
RECALL

We have seen that understanding the eigenvalues and eigenvectors of D(f) = f ′

helped us understand solutions to T (f) = b where T (f) = f ′′ + 6f ′ + 5f ′ = D ◦
D(f) + 6D(f) + 5f .

More generally, understanding the eigenvalues and eigenvectors of D(f) = f ′

gives us information about any transformation T : C∞(R,R) → C∞(R,R) of the
form

T (f) = cnDn(f) + cn−1D
n−1(f) + ... + c1D(f) + c0f

where c0, ..., cn are constants and by Dr, we mean D ◦D ◦D ◦ · · · ◦D (r times).

NEW SETTING

Consider the linear transformation T : Rn → Rn given by T (x) = Ax for some
square matrix A ∈ Mn(R). To study the transformation T r = T ◦ T ◦ T ◦ · · ·T ,
which is given by matrix Ar, it therefore behooves us to study the eigenvalues and
eigenvectors of A.

Who cares? Suppose that at each time n ∈ {0, 1, 2, ...}, you are measuring regularly
two quantities xn and yn coming from some physical or biological process, or from
economics or actuarial science. For example, let xn and yn be the number of male
and female chipmunks in a certain region at time n. Initially (when n = 0), there
are x0 = 4 and y0 = 5 chipmunks of each sex. Suppose that{

xn+1 = 2xn + 3yn

yn+1 = xn + yn

This problem can be phrased in linear algebra language. For each n, let xn =(
xn

yn

)
. Our equations above can then be rewritten as

That means that, say at time 73, the number of chipmunks of each sex satisfies

Now for A =
(

2 3
1 1

)
, we see (by direct calculation) that

A2 = AA =
(

7 9
3 4

)
A3 = A2A =

(
23 30
10 13

)
A4 =

(
76 99
33 43

)
etc.
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The entries of these powers of A don’t seem to have anything to do with A. And
if you were asked to compute A73, for now, you’d be screwed (other than that the
numbers would be really large).

Diagonalization
EXAMPLE 2

Let Λ =

 2 0 0
0 −1 0
0 0 3

. (Λ is the Greek capital letter lambda.) Then

Λ2 =

 2
−1

3


 2

−1
3



Λ3 = Λ2Λ =

 2
−1

3


 4

1
9



Λr =

Example 2 shows that it is easy to compute the powers of a diagonal matrix:

Theorem 8.5 Let Λ =


λ1

λ2
. . .

λn

 be a diagonal n× n matrix.

Then for any r ∈ {0, 1, 2, ...}, Λr =


λr

1
λr

2
. . .

λr
n

.

Now, suppose that given a square matrix A ∈ Mn(R), you can (somehow) find a
diagonal matrix Λ ∈Mn(R) and an invertible matrix S ∈Mn(R) such that

A = SΛS−1.
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Then, we can compute powers of A as follows:

Ar = (SΛS−1)r =

This idea motivates the following definition and theorem:

Definition 8.6 A square n×n matrix A is called diagonalizable (a.k.a. similar to
a diagonal matrix) if there is an invertible matrix S ∈Mn(R) and a diagonal matrix
Λ ∈Mn(R) such that

A = SΛS−1 .

Writing A as SΛS−1 is called diagonalizing A.

Theorem 8.7 If A ∈Mn(R) is diagonalizable, then for any r ∈ {0, 1, 2, ...},

Ar = SΛrS−1 .

Therefore, to compute the powers of a diagonalizable matrix A, we could to find
the S and the Λ and apply the formula in the preceding theorem.

QUESTION

Given A ∈Mn(R), is A diagonalizable? If so, what are S and Λ?

To answer this question theoretically, we first assume we can diagonalize A:

SΛS−1 = A

Multiply both sides of this equation by S on the right to obtain

SΛ = AS. (8.3)

Write the columns of S as x1, x2, ...xn so that

S =

 ↑ ↑ · · · ↑
x1 x2 · · · xn

↓ ↓ · · · ↓

 .
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Since S is invertible, {x1, ..., xn}must be lin. ind.

On the previous page we found SΛ = AS. The left-hand side of this is

SΛ =


s11 s12 · · · s1n

s21 s22 · · · s2n
...

... . . . ...
sn1 sn2 · · · snn




λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn



=


λ1s11 λ2s12 · · · λns1n

λ1s21 λ2s22 · · · λns2n
...

... . . . ...
λ1sn1 λ2sn2 · · · λnsnn


=
(

λ1x1 λ2x2 · · · λnxn

)
.

The right-hand side of SΛ = AS is

AS =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann




s11 s12 · · · s1n

s21 s22 · · · s2n
...

... . . . ...
sn1 sn2 · · · snn



=


a11s11 + a12s21 + ... + a1nsn1 · · · · · · a11s1n + a12s2n... + a1nsnn

a21s11 + a22s21 + ... + a2nsn1 a21s1n + a22s2n + ... + a2nsnn
...

...
an1s11 + an2s21 + ... + annsn1 · · · · · · an1s1n + an2s2n + ... + annsnn


=
(

Ax1 Ax2 · · ·Axn

)
.

Equating the columns of the left- and right-hand sides of SΛ = AS, we see that

λjxj = Axj (8.4)

for all j. In other words:

We have proven:

Theorem 8.8 (Diagonalization Theorem) Let A ∈Mn(R) be a square matrix.

1. A is diagonalizable ⇐⇒ A has n linearly independent eigenvectors.

2. If A is diagonalizable, and A = SΛS−1 where Λ is diagonal, then
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• the diagonal entries of Λ are the eigenvalues of A, and

• the columns of S are the corresponding eigenvectors (written in the same
order as the eigenvalues are written in Λ).

Theorem 8.9 Let A ∈ Mn(R) be a square matrix. If A has n different eigenvalues,
then A is diagonalizable.

PROOF If A has n different eigenvalues, then A has n linearly independent
eigenvectors by statement (2) of Theorem 8.3. A is therefore diagonalizable by
the preceding theorem. □

8.4 Computing eigenvalues and eigenvectors
QUESTION

Given square matrix A, how do you compute eigenvalues and eigenvectors of A?

Answer # 1: use technology

If the size of a matrix is large (larger than 3 × 3, usually use a computer. In Math-
ematica, you can find the eigenvalues and eigenvectors of a matrix A by typing in
the matrix and saving it as A, then executing

Eigensystem[A]

For example, suppose A =
(

2 −5
−1 2

)
. After typing in this matrix, the command

Eigensystem[A] produces the output

{{2 +
√

5, 2 -
√

5}, {{-
√

5,1},{
√

5,1}}}

This means the eigenvalues of A are λ1 = 2 +
√

5 and λ2 = 2 −
√

5, and the corre-
sponding eigenvectors are v1 = (−

√
5, 1) and v2 = (

√
5, 1), i.e. A = SΛS−1 where

S =
(
−
√

5
√

5
1 1

)
Λ =

(
2 +
√

5 0
0 2−

√
5

)

254



8.4. Computing eigenvalues and eigenvectors

Answer # 2: factor the characteristic polynomial

Suppose λj is an eigenvalue of A. Then Avj = λjvj for some nonzero vector vj .
Rewriting this, we get

0 = Avj − λjvj =

Thus vj ∈ N(A − λjI). Since vj ̸= 0, that means N(A − λjI) ̸= {0} so A − λjI is
not invertible. That means det(A− λjI) = 0. We have shown:

Definition 8.10 Let A ∈ Mn(R). The characteristic polynomial of A is the ex-
pression

pA(x) = det(A− xI).

(This pA is a polynomial of degree n.)

Theorem 8.11 Let A ∈ Mn(R). λ is an eigenvalue of A if and only if it is a root of
the characteristic polynomial of A (i.e. det(A− λI) = 0).

Note: The characteristic equation of a differential equation was defined earlier.
That’s actually the same polynomial as this, but you first have to know how
to turn a differential equation into a matrix (which I teach you how to do in
MATH 330).

255



8.4. Computing eigenvalues and eigenvectors

The multiplicity of an eigenvalue

Remark: Suppose A is some matrix such that pA(x) factors as

pA(x) = (x + 1)(x− 2)(x− 3)2(x− 6)4.

Then (for example), λ = 3 is an eigenvalue of A. Since 3 is a “double root” of pA(x),
we say λ = 3 is an eigenvalue of multiplicity 2. Similarly, for this matrix A, its
eigenvalues are

The right way to list the eigenvalues of a matrix is to repeat them according to
their multiplicities, i.e. the eigenvalues of the A with the characteristic polynomial
as above are

Theorem 8.12 Assume the eigenvalues of a matrix A are listed according to their
multiplicities. Then:

1. The sum of the eigenvalues is tr(A).

2. The product of the eigenvalues is det(A).

The proof of this theorem is beyond the scope of this course.

EXAMPLE 3
For the A whose characteristic polynomial is

pA(x) = (x + 1)(x− 2)(x− 3)2(x− 6)4,

we have

tr(A) =

and

det(A) = = −23328 .
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EXAMPLE 4

Compute eigenvalues and eigenvectors for the matrix A =
(

13 −4
−4 7

)
.
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Putting all this together
EXAMPLE 5

Compute A45, if A =

 5 8 16
4 1 8
−4 −4 −11

.

EIGENVALUES:

pA(λ) = det(A− λI) = det

 5− λ 8 16
4 1− λ 8
−4 −4 −11− λ

 5− λ 8
4 1− λ
−4 −4

= (5− λ)(1− λ)(−11− λ)− 512 + 64(1− λ) + 32(5− λ)− 32(−11− λ)
= (5− λ)(1− λ)(−11− λ)− 512 + 64(1− λ) + 512

= (1− λ) [(5− λ)(−11− λ) + 64]
= (1− λ)(−55 + 6λ + λ2 + 64)
= (1− λ)(λ2 + 6λ + 9)
= (1− λ)(λ + 3)2

EIGENVECTORS: First, an eigenvector to go with λ = 1. Write the eigenvector v
as (x, y, z). Then Av = 1v gives 5x + 8y + 16z = 1x

4x + y + 8z = 1y
−4x− 4y − 11z = 1z

⇒

 x + 2y + 4z = 0
x + 2z = 0

x + y + 3z = 0

2y + 2z = 0
x = −2z ⇒

{
y = −z
x = −2z

Now for λ = −3: Av = −3v gives 5x + 8y + 16z = −3x
4x + y + 8z = −3y

−4x− 4y − 11z = −3z
⇒

 x + y + 2z = 0
x + y + 2z = 0
x + y + 2z = 0

So eigenvalues and eigenvectors of A are

λ = 1↔ (−2,−1, 1) λ = −3↔ (2, 0,−1) λ = −3↔ (0, 2,−1).

DIAGONALIZATION: A = SΛS−1 where

S =

 −2 2 0
−1 0 2
1 −1 −1

 Λ =

 1 0 0
0 −3 0
0 0 −3

 S−1 = −1
2

 2 2 4
1 2 4
1 0 2
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MATRIX POWER:

A45 = SΛ45S−1 =

 −2 2 0
−1 0 2
1 −1 −1


 1 0 0

0 (−3)45 0
0 0 (−3)45

 −1
2

 2 2 4
1 2 4
1 0 2



=

 2 + 345 2 + 2 · 345 4 + 4 · 345

1 + 345 1 2 + 2 · 345

−1− 345 −1− 345 −2− 3 · 345

 .

EXAMPLE 6
Compute the eigenvalues of the matrix

A =


3 0 1 4
0 −5 1 3
0 0 2 2
0 0 0 7

 .

Solution:

pA(λ) = det(A− λI) = det


3− λ 0 1 4

0 −5− λ 1 3
0 0 2− λ 2
0 0 0 7− λ


= (3− λ)(−5− λ)(2− λ)(7− λ)

This example generalizes:

Theorem 8.13 The eigenvalues of a triangular matrix are its diagonal entries.
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EXAMPLE 7
Find eigenvalues and eigenvectors for the matrix

A =

 −2 0 0
0 1 1
0 0 1

 .

EIGENVALUES:

EIGENVECTORS:
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EXAMPLE 8
The Fibonacci numbers {fn} are defined by setting f0 = 0, f1 = 1 and setting
fn = fn−2 + fn−1 for n ≥ 2. Find a formula for the 200th Fibonacci number.

All together,

f200 = − 1√
5
(
−σ200 + τ200) = σ200 − τ200

√
5

= 1√
5

[(
1 +
√

5
2

)200

−
(

1−
√

5
2

)200]
.
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8.5 Matrix exponentials
RECALL

In Calculus 2, you learn the following formula for the exponential function ex:

ex =
∞∑

n=0

xn

n! = 1 + x + 1
2x2 + 1

3!x
3 + 1

4!x
4 + ...

This formula can be used as the definition of the exponential of a square matrix A:

Definition 8.14 Let A ∈Mn(R) be a square matrix. The exponential of A, denoted
exp(A) or eA, is the n× n matrix

eA = exp(A) =
∞∑

n=0

1
n!A

n = I + A + 1
2A2 + 1

3!A
3 + 1

4!A
4 + ...

One can show that this series “converges” for every matrix A (but that is beyond
the scope of MATH 322).

Theorem 8.15 (Properties of matrix exponentials) 1. If Λ is diagonal with di-
agonal entries λ1, λ2, ..., λn, then

exp(Λ) =


eλ1 0 · · · 0
0 eλ2 0 0
... 0 . . . ...
0 · · · 0 eλn

 .

2. If A = SΛS−1, then exp(A) = S exp(Λ)S−1.

3. If t is a scalar, then exp(tA) = exp(At).

PROOF (1) If Λ =


λ1

λ2
. . .

λn

, then Λr =


λr

1
λr

2
. . .

λr
n

.

Therefore
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(2) Recall that if A = SΛS−1, then An = SΛnS−1 for all n. Therefore

eA = eSΛS−1

=
∞∑

n=0

(SΛS−1)n

n!

(3) Follows from the fact that tA = At. □

WARNING: eA+B ̸= eAeB in general (it is true eA+B = eAeB if AB = BA).

Theorem 8.15 suggests that to compute the exponential of a matrix, you should
diagonalize it (similar to how you would compute a power of a matrix).

EXAMPLE 9
Find exp(A) if

A =

 3 0 2
0 3 −2
2 −2 1


EIGENVALUES AND EIGENVECTORS: (work omitted)

det(A− xI) = (5− x)(3− x)(−1− x)⇒ λ = 5, λ = 3, λ = −1

λ = 5↔ (1,−1, 1)
λ = 3↔ (1, 1, 0)

λ = −1↔ (1,−1,−2)

DIAGONALIZATION:

A = SΛS−1 =

 1 1 1
−1 1 −1
1 0 −2


 5 0 0

0 3 0
0 0 −1


 1 1 1
−1 1 −1
1 0 −2


−1
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MATRIX EXPONENTIAL:

exp(A) = S exp(Λ)S−1

=

 1 1 1
−1 1 −1
1 0 −2


 e5 0 0

0 e3 0
0 0 e−1


 1 1 1
−1 1 −1
1 0 −2


−1

=


−1
2 e−1 + 1

2e3 + e5 1
2e−1 + 1

2e3 − e5 e−1 − e5

1
2e−1 + 1

2e3 − e5 −1
2 e−1 + 1

2e3 + e5 −e−1 + e5

−e−1 + e5 e−1 − e5 2e−1 − e5

 .

SAME EXAMPLE, SLIGHTLY MODIFIED

If you were asked to compute exp(At), you would start with the same eigenvalues
and eigenvectors as above. Then the diagonalization would be

At = S(Λt)S−1 =

 1 1 1
−1 1 −1
1 0 −2


 5t 0 0

0 3t 0
0 0 −t


 1 1 1
−1 1 −1
1 0 −2


−1

and the matrix exponential would be

exp(At) = S exp(Λt)S−1

=

 1 1 1
−1 1 −1
1 0 −2


 e5t 0 0

0 e3t 0
0 0 e−t


 1 1 1
−1 1 −1
1 0 −2


−1

=


−1
2 e−t + 1

2e3t + e5t 1
2e−t + 1

2e3t − e5t e−t − e5t

1
2e−t + 1

2e3t − e5t −1
2 e−t + 1

2e3t + e5t −e−t + e5t

−e−t + e5t e−t − e5t 2e−1 − e5t

 .

QUESTION

Why are we interested in computing the exponential of a matrix?

Answer:

EXAMPLE (FROM EARLIER IN THIS CHAPTER)
Suppose y is a function of t which satisfies y′(t) = λy(t) where λ is a constant.
Then y(t) is an eigenvalue of the transformation D(y) = y′ corresponding to λ, so
by repeating the argument we did in the first section of this chapter, we know
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EXAMPLE 10
Suppose y1 and y2 are functions of t such that

(∗)
{

y′
1(t) = a11y1(t) + a12y2(t)

y′
2(t) = a21y1(t) + a22y2(t)

.

for constants a11, a12, a21 and a22. Describe a method for finding y1(t) and y2(t).
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EXAMPLE 11
Suppose y1 and y2 are functions of t such that{

y′
1(t) = 2y1(t)− 4y2(t)

y′
2(t) = −y1(t)− y2(t)

.

Assuming that y1(0) = 2 and y2(0) = 1, find y1(t) and y2(t).

266



8.6. Homework exercises for Chapter 8

8.6 Homework exercises for Chapter 8
1. Let T : C∞(R,R)→ C∞(R,R) be defined by T (f) = f ′′ + 6f ′ + 5f .

a) Compute and simplify T (e2x).
b) Compute and simplify T (5e−3x).
c) Prove that T is a linear transformation.

2. Prove that for any scalars c0, ..., cn ∈ R, the function T : C∞(R,R)→ C∞(R,R)
defined by

T (f) = cnf (n) + cn−1f
(n−1) + ... + c2f

′′ + c1f
′ + c0f

is a linear transformation.

3. Prove statement (1) of Theorem 8.3.

4. Show that g(x) = x4/3e−x2/6 is an eigenfunction for the linear transformation
T : C∞(R,R) → C∞(R,R) defined by T (f) = 3xf ′(x) + x2f(x). Find the
eigenvalue to which g corresponds.

5. Find two linearly independent eigenfunctions corresponding to eigenvalue
λ = 1 for the linear transformation T : C∞(R,R) → C∞(R,R) defined by
T (f) = f ′′. Explain why your two functions are indeed linearly independent.

6. Find two linearly independent eigenfunctions corresponding to eigenvalue
λ = −1 for the linear transformation T : C∞(R,R) → C∞(R,R) defined by
T (f) = f ′′. Explain why your two functions are indeed linearly independent.

7. In a certain type of electrical circuit (containing a battery, resistor, inductor
and capicator in series), Kirchoff’s Law says that the charge on the capacitor
at time t is a function Q(t) which satisfies

L Q′′(t) + R Q′(t) + 1
C

Q(t) = E(t)

where L, R and C are constants and E(t) is a function. Suppose that L = 2,
R = 10, C = 1

12 and E(t) = 0. Find the general solution Q(t) of this equation.

8. Find all functions y = y(t) such that y′′ + 4y′ − 60y = 215 cos t− 476 sin t.

9. Find a function y = y(x) which satisfies y(0) = 2, y′(0) = −3, y′′(0) = 1 and

y′′′ − y′′ − 4y′ + 4y = 0.

10. (This problem must be done by hand.) Let A =
(

2 6
7 1

)
.
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a) Find the characteristic polynomial of this matrix.

b) Find the eigenvalues and eigenvectors of this matrix.

11. Find the eigenvalues and eigenvectors of the matrix

 2 −1 1
2 −1 −8
4 −2 −7

.

12. a) Suppose a 2× 2 matrix has trace −2 and determinant −15.

i. Find the eigenvalues of the matrix.
ii. Is the matrix diagonalizable? Why or why not?

b) Suppose a 3 × 3 matrix has determinant −32 and trace 6. If the ma-
trix has two eigenvalues, one of multiplicity one and one of multiplicity
two, find the eigenvalues of the matrix (stating which one is of which
multiplicity).

13. Suppose a 3× 3 matrix A has the following eigenvalues and eigenvectors:

λ = 2↔

 1
−1
0

 λ = −1↔

 3
1
0

 λ = 4↔

 2
−3
2


Find A.

14. Compute the exact value of A25 if A =
(
−4 6
−3 5

)
.

15. Compute the exact value of eA if A =
(

0 1
2 1

)
.

16. Let B =
(

0 1
0 0

)
.

a) Show that 0 is the only eigenvalue of B.

b) Prove that B is not diagonalizable by showing that it does not have two
linearly independent eigenvectors.

c) Compute B2.

d) Compute Bn for all n ≥ 2.

e) Compute exp(B).

17. Suppose {xn} is a sequence defined by setting x0 = 2; x1 = −3 and for n ≥ 2,
setting xn = −10xn−2 + 7xn−1.

a) Find x2, x3 and x4.
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b) Find the exact value of x2000.

18. Denote the owl population and wood rat population in a certain ecosystem at
time k by xk = (Ok, Rk). Suppose biologists determine that these populations
evolve by the equations {

Ok+1 = .5 Ok + .4 Rk

Rk+1 = −p Ok + 1.1 Rk

where p > 0 is some unknown parameter representing the rate of deaths of
rats due to predation by owls. Suppose initially that there are 250 owls and
2000 rats in the ecosystem.

a) Show that this set of recursive relations is equivalent to the matrix equa-
tion xk+1 = Axk for some matrix A. Find A.

b) Explain how you would compute the number of rats in the ecosystem
when k = 100. (You don’t actually have to do the problem, but your
explanation should be thorough.)

19. Suppose that the number of foxes f(t) and number of rabbits r(t) in a forest
at time t is modeled by the following system of differential equations:{

f ′(t) = 4f(t) + r(t)
r′(t) = −2f(t) + r(t)

If there are initially 13 foxes and 7 rabbits in the forest, find formulas for f(t)
and r(t).
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Appendix A

All about sets

A.1 Sets
The fundamental objects of mathematics are called sets. A set is really just a list of
objects (in math, the objects are usually numbers, or vectors, or functions). Here
are some examples of sets (observe that sets are usually denoted by capital letters):

A = {3, 5, 7, 9, 11}
B = {1, 2, 3, 4, 5, 6}
C = {3, 5, 7}

The members of a set are called the elements of that set. For example, the elements
of set C described above are 3, 5 and 7. If x is an element of set S, we write “x ∈ S”.
If x is not an element of set S, we write “x /∈ S”. For example, for the set A above,
3 ∈ A and 5 ∈ A but 8 /∈ A.

We often define a set without listing the elements (using English language). For
example, the sets A, B and C given above could be described, respectively, by say-
ing

“let A be the set of odd numbers from 3 to 11”;
“let B be the set of integers from 1 to 6”;
“let C be the set of odd numbers from 3 to 7”.

We also describe sets by using what is called set-builder notation: to describe the
same sets A, B, C as above using set-builder notation, we would write (or say)

A = {x : 3 ≤ x ≤ 11 and x is odd}
B = {x : 1 ≤ x ≤ 6 and x is an integer}
C = {x : 3 ≤ x ≤ 7 and x is odd}.
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The first statement above is interpreted as follows: it says that set A is equal
to the set of numbers x such that (the colon means “such that” in mathematics)
3 ≤ x ≤ 11 and x is odd. Notice that this is exactly the set {3, 5, 7, 9, 11}.

Each of the sets A, B and C above are finite sets, because they have finitely many
members. Sets can have infinitely many members, however. For example, consider
the interval

D = [3, 5]
= the set of real numbers that are at least 3 and at most 5
= {x : 3 ≤ x ≤ 5}.

This set contains not just 3, 4 and 5, but things like 3.2, π,
√

21, since there is no
requirement in the definition of D that x is an integer. Using the proper notation,
we’d write things like π ∈ D, 3.75 ∈ D, 8 /∈ D, etc.

To show you a different kind of example: if you were defining some set of functions
(instead of a set of numbers), then instead of x you’d write f , and then after the
colon you’d describe what has to be true about f for the function f to be in the set.
For example, the set E of functions whose derivative at x = 2 is positive could be
described by writing

E = {f : f ′(2) > 0}.

For this set E, it would be valid to say that if g(x) = x3, then g ∈ E (because
g′(2) = 3(22) = 12 > 0) but if h(x) = 3− 4x, then h /∈ E (because h′(2) = −4 ≤ 0).

A.2 Venn diagrams
A useful way to think about sets is to draw pictures called Venn diagrams. To
draw a Venn diagram, represent each set you’re thinking about by a circle (or an
oval, or a square, or a rectangle, or some other shape); think of an object as be-
ing an element of the set if and only if it is inside the shape corresponding to
the set. For example, a Venn diagram for the set A described above (recall that
A = {3, 5, 7, 9, 11}) would be given by something like
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1 3 5 7 9 11

2 4 6 8 10 12

A

because the box describing A contains exactly the elements of A (nothing more and
nothing less). Similarly, a Venn diagram representing the A, B and C we defined
earlier, all at the same time, would be something like

1 3 5 7 9 11

2 4 6 8 10 12

AC
B

A.3 Relationships between, and operations on, sets
Subset

Let S and T be two sets. If all the elements of set S are also elements of set T , then
we say “S is a subset of T ” and write S ⊆ T .

(Note the difference between the symbols ∈ and ⊆: the first symbol should be
preceded by an element, but the second symbol should be preceded by a set.)

If you draw a Venn diagram, to say S ⊆ T means that the shape corresponding to
set S is completely inside the shape corresponding to set T . For example, for the
sets A and C given in the preceding section, C ⊆ A since every element of C is also
in A.

Equality of sets

To say two sets are equal means they have exactly the same elements; this is the
same thing as requiring that each of the two sets is a subset of the other set. If two
sets S and T are equal, we write “S = T ”.
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Union

The union of two (or more) sets is the set consisting of elements which belong to
at least one of the given sets. This union is denoted S ∪ T (or ∪

j
Sj if you have a

bunch of sets which are subscripted).

Another way to think of the union of two sets is that S ∪ T is the set of things in S
or T or both. So ∪ is mathematical code for the word or.

For example, using the sets described above,

A ∪B = {1, 2, 3, 4, 5, 6, 7, 9, 11}

because all of the numbers listed there either are in A, or in B, or both.

In terms of Venn diagrams, the union is usually thought of as a “MasterCard-
symbol” shaped region that encompasses the sets whose union you are taking.
For example, the union of A and B in the figure below is exactly the shaded region
(the set A is just the circle on the left; B is the circle on the right):

S T

Intersection

The intersection of two (or more) sets is the set consisting of elements which be-
long to all of the given sets. This intersection is denoted S ∩ T (or ∩

j
Sj if the sets

are subscripted).

Another way to think of the intersection of two sets is that S ∩T is the set of things
in S and T or both. So ∩ is mathematical code for the word and.

For example, using the sets described A and B earlier,

A ∩B = {3, 5}

because the only numbers lying in both A and B are 3 and 5.

In terms of Venn diagrams, the intersection of two sets is the overlap of the shapes
representing the sets (below, the shaded region is A ∩B):
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S T

Frequently used special sets with specific names

• The set which has no elements is called the empty set and is denoted ∅.

• The set of real numbers is denoted R.

• The set of integers is denoted Z (i.e. Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}).

• The set of natural numbers is denoted N (i.e. N = {1, 2, 3, 4...}).

• The set of ordered pairs (x, y) of real numbers is denoted R2, and the set of
n−tuples of real numbers is called Rn.

Disjointness

Two sets S and T are called disjoint (or mutually exclusive) if their intersection is
the empty set.

Equivalently, this means there are no objects which are both elements of S and
elements of T .

If you drew a Venn diagram with sets S and T where S and T are disjoint, then
the shapes corresponding to S and T should not overlap: the Venn diagram would
look like this:

S T
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A.4 Sums and differences of sets
Suppose you have two sets (say S and T ) where the elements of these objects are
vectors (i.e. objects that can be added to one another and multiplied by constants).

Define a new set, called the sum of S and T and denoted S + T , to be the set of
all objects which are the sum of some element of S and some element of T . In
set-builder notation, this means

S + T = {s + t : s ∈ S, t ∈ T}.

Also, define the set S − T to be the set of all objects which can be written as some
element of S minus some element of T . In set-builder notation, this means

S − T = {s− t : s ∈ S, t ∈ T}.

If x is an element, we write S + x and S − x when we mean S + {x} and S − {x},
respectively.

Last,given a set S and a real number c, define the set cS to be the set of all objects
which are c times something in S.

Here are some examples, where F is given as {0, 2, 4} and G is given as {0, 15}:

5F = {0, 10, 20} (obtained by multiplying each element in F by 5)
F + G = {0, 2, 4, 15, 17, 19} (obtained by adding each element in F to

each element of G)
−G = {0,−15} (obtained by multiplying each element in G

by −1)
F + 3 = {3, 5, 7} (obtained by adding 3 to each element in F ).
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Appendix B

Mathematica information

B.1 What is Mathematica?
Mathematica is an extremely useful and powerful software package / program-
ming language Mathematica is an extremely useful and powerful software package
/ programming language invented by a mathematician named Stephen Wolfram.
Early versions of Mathematica came out in the late 1980s and early 1990s; as of 2023,
the most recent version available to you is Mathematica 13.

Mathematica does symbolic manipulation of mathematical expressions; it solves all
kinds of equations; it has a library of important functions from mathematics which
it recognizes while doing computations; it does 2− and 3−dimensional graphics; it
has a built-in word processor tool; it works well with Java and C++; etc. One thing
it doesn’t do is prove theorems, so it is less useful for a theoretical mathematician
than it is for an engineer or college student.

A bit about how Mathematica works

When you use the Mathematica program, you are actually running two programs.
The “front end” of Mathematica is the part that you type on and the part you see.
The “kernel” is the part of Mathematica that actually does the calculations. If you
type in 2 + 2 and hit [ENTER] (actually [SHIFT]+[ENTER]; see below), the front
end “sends” that information to the kernel which actually does the computation.
The kernel then “sends” the result back to the front end, which displays 4 on the
screen.

About Mathematica notebooks and cells

The actual files that Mathematica produces that you can edit and save are called
notebooks and carry the file designation *.nb; they take up little space and can easily
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be saved to Google docs or on a flash drive, or emailed to yourself if you want them
somewhere you can retrieve them.

Suggestion: when saving any file, include the date in the file name (so it is easier
to remember which file you are supposed to be open).

A Mathematica notebook is broken into cells. A cell can contain text, input, or out-
put. A cell is indicated by a dark blue, right bracket (a “]”) on the right-hand
side of the notebook. To select a cell, click that bracket. This highlights the “]”
in blue. Once selected, you can cut/copy/paste/delete cells as you would high-
lighted blocks of text in a Word document.

To change the formatting of a cell, select the cell, then click “Format / Style” and
select the style you want. You may want to play around with this to see what the
various styles look like. There are three particularly important styles:

• input: this is the default style for new cells you type
• output: this is the default style for cells the kernel produces from your com-

mands
• text: changing a cell to text style allows you to make comments in between

the calculations

To execute an input cell, put the cursor anywhere in the cell and hit [SHIFT]+[ENTER]
(or the [ENTER] on the numeric keypad at the far-right edge of the keyboard). The
[ENTER] next to the apostrophe key (a.k.a. [RETURN]) gives you only a carriage
return.
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B.2 Important general concepts re: Mathematica syntax
Executing mathematical commands: To execute an input cell, put the cursor any-

where in the cell and hit [SHIFT]+[ENTER] (or the [ENTER] on the numeric
keypad at the far-right edge of the keyboard). The [ENTER] next to the apos-
trophe key (a.k.a. [RETURN]) gives you only a carriage return.

Multiplication: use a star or a space: 2 * 3 or 2 3 will multiply numbers; a x means
a times x; ax means the variable ax (in Mathematica, variables do not have to
be named after one letter; they can be named by words or other strings of
characters as well).

Parentheses: used for grouping only. Parentheses mean “times” in Mathematica.

Brackets: used to enclose all functions and Mathematica commands. For example,
to evaluate a function f(x), you would type f[x]; for sin x you type Sin[x]; etc..
Brackets mean “of” in Mathematica and cannot be used for multiplication.

Capitalization: All Mathematica commands and built-in functions begin with cap-
ital letters. For example, to find the sine of π, typing sin(pi) does you no good
(this would be the variable “sin” times the variable “pi”). The correct syntax
is Sin[Pi].

Spaces: Mathematica commands do not have spaces in them; for example, the
inverse function of sine is ArcSin, not Arc Sin or Arcsin.

Pallettes: Lots of useful commands are available on the Basic Math Assistant
Pallette, which can be brought up by clicking “Pallettes / Basic Math Assistant”
on the toolbar. If you click on a button in the pallette, what you see appears
in the cell.

Commands Mathematica knows: Sqrt, Sin, Cos, Tan, Csc, Cot, Sec, ArcSin, ArcCos,
ArcTan, ArcCsc, ArcSec, ArcCot, ! (for factorial). It knows what Pi and E are
(but not pi or e).

Logarithms: Log[ ] means natural logarithm (base e); Log10[ ] means common
logarithm (base 10).

% refers to the last output (like ANS on a TI-calculator).

Exact answers versus decimal approximations: Mathematica gives exact answers
for everything if possible. If you need a decimal approximation, click “numerical
value" or use the command N[ ]. For example, N[Pi] spits out 3.14159...

To solve an equation: make sure there are two equals signs (“==”) in your equa-
tion.
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Getting help from the program: To get help on a command, type ? followed by
the command you don’t understand (with no space between the ? and the
command).

To export graphics: Once Mathematica produces a graphic, you can right-click the
graphic, and select “Copy Graphic”. Then you can go in a Word document or
a PowerPoint, and paste the graphic. You can subsequently resize it and/or
move it around as you see fit.

Troubleshooting: For a command to run correctly, you usually want everything
in your command to be black. If anything is purple or red, that suggests
where the problem is. Variables that don’t have values should be blue. Next,
check that everything is capitalized appropriately. Next, check that you aren’t
missing a space if you are trying to multiply two variables. Next, if you are
using variables in your code, try clearing the variables by executing some-
thing like Clear[x] (if your variable is x). Then re-run the command that is
giving you trouble.

If Mathematica freezes up in the middle of a calculation and you see “Running..."
at the top of your screen, click “Evaluation / Abort Evaluation” on the toolbar.
If this doesn’t help, kill the program and restart it.

To get help: Email me, and attach your Mathematica file (or a screenshot) to your
email. I can troubleshoot things pretty quickly if the file is attached. If the
file isn’t attached, it is hard for me to figure out what you are doing wrong.
Alternatively, seek assistance from another math major who has experience
with Mathematica.

279



B.3. Mathematica quick reference guides

B.3 Mathematica quick reference guides
General tasks

TASK MATHEMATICA SYNTAX

To call the preceding output %
To get a decimal approximation to the N[%]

preceding output (or click numerical value)

Algebraic manipulations

TASK MATHEMATICA SYNTAX

To factor an expression Factor[ ]
To multiply out an expression Expand[ ]

(i.e. FOIL an expression)
Partial fraction decomposition Apart[ ]
To combine rational terms Together[ ]

(i.e. “undo” a partial fraction decomp)
To simplify an answer Simplify[ ] (or FullSimplify[ ])

Solving equations

GOAL MATHEMATICA SYNTAX

Find exact solution(s) to equation Solve[lhs == rhs, x]
of form lhs = rhs (two equals signs)

(assuming the variable is x) (works only with polynomials or other
relatively “easy” equations)

Find decimal approx. to solutions NSolve[lhs == rhs, x]
of equation lhs = rhs (two equals signs)

(works only with “easy” equations)
Find decimal approx. to solutions FindRoot[lhs == rhs, {x, guess}]
of equation lhs = rhs (two equals signs)
Solve two (or more) equations Solve[{lhs1==rhs1, lhs2==rhs2}, {x,y}]
together, like lhs1 = rhs1

lhs2 = rhs2

(assuming variables are x and y)
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Precalculus operations

EXPRESSION MATHEMATICA SYNTAX
SP

E
C

IA
L

SY
M

B
O

L
S

e E (not e) (or use Basic Math Assistant pallette)
π Pi (or use Basic Math Assistant)
∞ Infinity (or use Basic Math Assistant)

(or type [Esc] inf [Esc])
i =
√
−1 I (not i) (or use Basic Math Assistant)

A
R

IT
H

M
E

T
IC

3 + 4x 3 + 4x
5− 27 5 - 27

12x 12x or 12 x or 12 * x
xy x y (don’t forget the space)
x
y

x/y (or use Basic Math Assistant pallette)
(or type [CTRL]+/ to get □

□ )√
32 Sqrt[32]

(or use Basic Math Assistant)
(or type [CTRL]+2 for the√ sign)

4
√

40 40ˆ(1/4) (or use Basic Math Assistant)
|x− 3| Abs[x-3]

30! (factorial) 30!

T
R

IG

sin π Sin[Pi]
cos(x(y + 1)) Cos[x(y+1)]

cos 60◦ Cos[60 Degree]
(or use Basic Math Assistant)

cot
(

2π
3 + 3π

4

)
Cot[2 Pi/3 + 3 Pi/4]

sin2 x Sin[x]ˆ2 (not Sinˆ2[x])
arctan 1 ArcTan[1]

E
X

P
S

/
L

O
G

S

ln 3 Log[3]
log6 63 Log[6,63]
log 18 Log10[18] or Log[10, 18]

27y 2ˆ(7y) (or use Basic Math Assistant)
(or type [CTRL]+6 to get □□)

ex−5+x2 E^(x-5+xˆ2) or Exp[x-5+xˆ2]
(or use Basic Math Assistant)
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Defining functions

CLASS OF FUNCTION SYNTAX TO DEFINE FUNCTION

Calculus 1 function f : R→ R
x

f7−→ y f[x_] = formula

(one equals sign, underscore after the x)
Ex: f(x) = 3 cos(x2−x) f[x_] = 3 Cos[xˆ(2-x)]

Algebraic operations on functions

All these commands assume you have previously defined the function(s) as out-
lined above.

EXPRESSION MATHEMATICA SYNTAX

Generate table of values for f Table[{x, f[x]}, {x, xmin, xmax, step}]
(put //TableForm after this command to

format the output in a table)
f(x + 3) f[x+3]
xf(2x)− x2f(x) x f[2x] - xˆ2 f[x]

(spaces important)
Composition (f ◦ g)(x) . f[g[x]]
Addition (f + g)(x) f[x] + g[x]
Multiplication (fg)(x) f[x] g[x]
Powers fn(x) (f[x])ˆn (or just f[x]ˆn)

Ex: sin2 x Sin[x]ˆ2
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Graphs

The basic command to graph a function is Plot[f(x), {x, xmin, xmax}]; the exam-
ples below describe how to adapt the Plot[ ] command:

GOAL HOW TO ADAPT THE Plot[ ] COMMAND

Plot multiple graphs at once Plot[{formula, formula, ..., formula},
{x, xmin, xmax}]

Plot the graph of f(x) = formula Plot[formula, {x, xmin, xmax},
with range of y−values specified PlotRange -> {ymin, ymax}]
Plot the graph of f(x) = formula Plot[formula, {x,xmin,xmax},
with x- and y-axes on same scale PlotRange -> ymin,ymax,

AspectRatio -> Automatic]
Plot the graph of f(x) = formula Plot[formula, {x,xmin,xmax},
with a red, dashed curve PlotStyle -> {Red, Dashed}]

Single-variable calculus

EXPRESSION MATHEMATICA SYNTAX

lim
x→4

f(x) Limit[f[x], x -> 4]
f ′(3) f’[3]
h′(x) D[h[x], x]

d
dx

(cos x) D[Cos[x], x]
g′′′(x) g’ ’ ’[x] or D[g[x], {x,3}]∫

x2 dx Integrate[xˆ2, x] (or use Basic Math Assistant pallette)

Note: answer will be missing the “+C”∫ 5

2
cos x dx For an exact answer:

Integrate[Cos[x], {x, 2, 5}]
(or use Basic Math Assistant)

For a decimal approximation:
NIntegrate[Cos[x], {x, 2, 5}]

12∑
k=1

f(k) Sum[f[k], {k, 1, 12}]

(or use Basic Math Assistant)
∞∑

n=3
blah Sum[blah, {n, 3, Infinity}]

(or use Basic Math Assistant)
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B.4 Linear algebra in Mathematica
Typing in vectors

To type in a vector, use a set of squiggly braces to surround the components,
and separate the components with commas: for example, to save the vector v =
(2,−3, 5, 0, 1), execute

v = {2,-3,5,0,1}

Typing in matrices

To type in a matrix, use one of two methods:

1. Use squiggly braces and commas to separate the entries. Each row should be
surrounded by a squiggly brace, and the entire matrix should be surrounded
by a set of squiggly braces, and everything should be separated by commas.
For example, to define A as (

1 2
3 4

)
one could execute

A = {{1, 2}, {3, 4}}

Note that if you have a column matrix like

 1
2
3

, this matrix can be defined

by thinking of B as a vector and typing something like B = {1, 2, 3} (instead
of having to type B = {{1}, {2}, {3}}).

2. On the Basic Math Assistant palette, under Basic Commands, click the matrix.
Then type A = , then click the matrix in the palette. To add rows and columns,
click AddRow or AddColumn until the matrix is the appropriate size. Then go
into the matrix and type in each entry, moving between the locations using
the [TAB] key or clicking on the location you want.

If the entries of the matrix are functions, then define the matrix as a function by
executing A[t_] = ... instead of A = ...

Once you have defined all necessary matrices and vectors, Mathematica commands
for operations on those matrices are given in the quick reference guides for vectors
and matrices on the next two pages.
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Vector operations

EXPRESSION MATHEMATICA SYNTAX

Vector addition / subtraction:
(2, 5,−1) + (5, 0, 2) {2,5,-1} + {5,0,2}
v−w v - w

Scalar multiplication:
3(1, 2,−3,−4) 3{1,2,-3,-4}
5v− 3w 5v - 3w

Dot product v ·w v.w
(3,−4) · (2, 10) {3,-4}.{2,10}

Norm ||v|| Norm[v]
Unit vector in same direction as v Normalize[v]

(i.e. v
||v|| )

Projection of v onto w Projection[v,w]
(i.e. πwv)

Angle between two vectors VectorAngle[v,w] (answer is in radians)
(to get degrees, click degree measure

in the suggestions bar)
Cross product v×w Cross[v,w]
To get the number of components of v Length[v]
To get the ith component of v v[[i]]
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Matrix operations

To make Mathematica display an answer as a matrix:

1. follow your command with // MatrixForm, or
2. once you’ve executed the command, choose Display as... matrix from the sug-

gestions bar.

EXPRESSION MATHEMATICA SYNTAX

Matrix addition / subtraction
A + B A + B
A−B A - B

Scalar multiplication
3A 3A
nA n A (space important)
−5A + 1

2B -5A + (1/2)B
Matrix product AB A.B (the period is important)

A2 A.A or MatrixPower[A,2] (not Aˆ2)
A7 MatrixPower[A,7]

Trace tr(A) Tr[A]
Determinant det A Det[A]
Transpose AT Transpose[A]
To get the entry of matrix A in the ith row A[[i,j]]

and jth column
To call the n× n identity matrix I IdentityMatrix[n]
Find derivative of a matrix of functions A’[t]

term-by-term
Matrix exponential eA = exp(A) MatrixExp[A]
Eigenvalues and eigenvectors of A Eigensystem[A]

Just the eigenvalues of A Eigenvalues[A]
Just the eigenvectors of A Eigenvectors[A]
Find det(A− xI) CharacteristicPolynomial[A,x]

Determine if A is diagonalizable DiagonalizableMatrixQ[A]
Determine if A is positive definite PositiveDefiniteMatrixQ[A]
Determine if A is negative definite NegativeDefiniteMatrixQ[A]
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C∞(R,R), 241
T (x) = b, solutions of, 154
Rn, definition of, 22
Rn, pictorial representation, 23
∃, 25
∀, 25
πW (v), 107
πwv, 104
projwv, 105

absolute value (of a vector), 95
addition (in a vector space), 19
addition (of matrices), 37
affine subspace, 62
affine subspaces of R, R2 and R3, 83
angle (between vectors), 117
associated subspace (of an affine sub-

space), 62
augmented matrix, 196

basis, 74
basis (of column space), 208
basis (of null space), 208
basis (of row space), 208
Basis Extension Theorem, 81
Basis Theorem, 82
bijective, 157
bijectivity, equivalent properties, 159,

194
bilinearity (dot product), 93

brute-force method (for determining
whether a subset is a subspace),
50

brute-force method (for proving that a
transformation is linear), 145

Cauchy-Schwarz Inequality, 116
characteristic equation (of a differen-

tial equation), 249
characteristic polynomial (of a matrix),

255
column space, 163
column space, basis of, 208
column space, dimension of, 165
column vector, 38
columns (of a matrix), 35
component of a vector orthogonal to

a subspace, 107
composition of linear transformations,

143
computing determinants, 232
computing eigenvalues, 255
consistent, 185
counterexample, 55
cross product, 122
cross product, properties, 122

definiteness (distance), 97
definiteness (dot product), 93
definiteness (norm), 96
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description of solutions to T (x) = b,
154

description of the solution set of a lin-
ear system, 188

determinant (2× 2 matrix), 229
determinant, evaluation via minors, 234
determinant, properties of, 230
determinants on Mathematica, 236
determinants on calculators, 236
determinants, computing, 232
diagonal (matrix), 34
diagonal entries (of a matrix), 34
diagonalizable (matrix), 252
diagonalizing a matrix, 252
dimension (of a vector space), 78
dimension (of an affine subspace), 79
Dimension Formula, 109
Dimension Theorem, 78
dimensions of fundamental subspaces,

165
direction (of a vector), 60
distance (between vectors), 97
distance from vector to subspace, 110
distance, properties of, 97
dot product (Rn), 91
dot product (of functions), 92
dot product (of matrices), 92
dot product, properties of, 93
downward reduction, 201
Dual Relations, 95

echelon form, 198
eigenfunction, 244
eigenvalue, 244
eigenvalues, basic properties, 245
eigenvalues, computing, 255
eigenvector, 244
eigenvectors, basic properties, 245
equality (of matrices), 33
equivalent (linear systems), 185
equivalent properties to bijectivity, 159,

194

equivalent properties to injectivity, 158,
193

equivalent properties to surjectivity, 158,
192

evaluation of determinants via minors,
234

Exchange Lemma, 77
existence/uniqueness of solutions to

T (x) = b, 154
exists, 25
exponential (of a matrix), 262

finite dimensional (vector space), 78
for all, 25
free column, 199
FTLA, 164
fundamental subspaces (of a matrix),

163
fundamental subspaces, dimension of,

165
Fundamental Theorem of Linear Al-

gebra, 164

Gaussian elimination, 195, 201
Generalized Triangle Inequality, 117
Gram-Schmidt Theorem, 114

head-to-tail addition (of vectors), 23
hyperplane, 79, 118
hyperplane, normal equation, 118

identity matrix, 35
image, 152
Image-Kernel Theorem, 155
infinite dimensional (vector space), 78
infinitely differentiable, 241
injective, 157
injectivity, equivalent properties, 158,

193
inner product space, 93
inverse (of a function), 157
inverse (of a matrix), 167
inverse (of a matrix), computing, 211
inverse of 1× 1 matrix, 168, 169
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inverse of 2× 2 matrix, 169
inverses, properties of, 168
invertible, 157
invertible (matrix), 167

kernel, 152
key picture associated to linear trans-

formations, 153

leading entry, 198
least-squares approximation, 215
least-squares solution, 217
left null space, 163
left null space, dimension of, 165
length (of a vector), 95
line, 62, 79
linear combination, 69
linear equation, 185
linear system, 185
linear transformation, 132
linear transformations, compositions

of, 143
linear transformations, examples of, 149
linear transformations, key picture, 153
linearly dependent, 69
linearly independent, 71
Linearly Independent Set Theorem, 81
lower triangular, 34

magnitude, 95
matrix, 33
matrix exponential, 262
matrix exponential, properties of, 262
matrix inverse, computing, 211
matrix multiplication, 39
matrix operations on Mathematica, 44
matrix operations on calculators, 45
matrix operations, properties of, 38, 42
minor, 233
multiplication of matrices, 39
multiplicativity (distance), 97
multiplicativity (norm), 96
multiplicity (eigenvalue), 256

nontrivial combination, 69
norm, 95
normal equation (of hyperplane), 118
normalized version (of a vector), 99
norms, properties of, 96
null space, 163
null space, basis of, 208
null space, dimension of, 165

one-to-one, 157
onto, 157
orthogonal, 100
orthogonal (set of vectors), 112
orthogonal complement, 102
orthogonal complements are subspaces,

104
Orthogonal Decomposition Theorem

(dimension 1), 104
Orthogonal Decomposition Theorem

(general case), 107
orthogonal decomposition, uniqueness

of, 108
orthonormal (basis), 112
orthonormal (set of vectors), 112

pairwise orthogonal, 112
parallel (vectors), 60
parallelepiped, 229
parallelogram addition (of vectors), 23
Parallelogram Law, 98
parametric equations (of a line), 63
parametric equations (of a plane), 64
particular solution, 154
perp (of a subspace), 102
perpendicular, 100
pivot, 198
pivot column, 199
plane, 64, 79
point, 79
Polarization Identity, 98
positivity (distance), 97
positivity (dot product), 93
positivity (norm), 96
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product (of matrices), 39
projection (onto a vector), 105
projection formula, 113
projection matrix, 217
projection of a vector onto a subspace,

107
projection onto a column space, 217
projections, properties of, 107
properties of cross product, 122
properties of determinants, 230
properties of distance, 97
properties of dot product, 93
properties of matrix exponentials, 262
properties of matrix inverses, 168
properties of matrix operations, 38, 42
properties of norms, 96
properties of projections, 107
Pythagorean Theorem, 101

rank (of a linear transformation), 153
rank (of a matrix), 165
Rank Theorem, 165, 199
Rank-Nullty Theorem, 156
real vector space, 19
reduced row-echelon form, 198
ref, 198
row equivalent (matrices), 198
row operations, 197
row reduction, 201
row space, 163
row space, basis of, 208
row space, dimension of, 165
row-echelon form, 198
rows (of a matrix), 35
rref, 198
Rule of Sarrus, 232

Sarrus, 232
scalar, 19
scalar multiplication, 19
scalar multiplication (of matrices), 37
solution (of a system), 185
solution set (of a system), 185

solution set of linear system, descrip-
tion of, 188

solving systems of equations on Math-
ematica, 219

solving systems of equations on cal-
culators, 220

span (as a verb), 57
span (of a set of vectors), 57
span (of a single vector), 56
Spanning Set Theorem, 81
spectrum, 244
square (matrix), 34
standard basis of Rn, 135
standard equation (of hyperplane), 118
standard matrix (of a linear transfor-

mation), 135
subspace, 49, 50
subspace, generic picture of, 67
subspaces of R, R2 and R3, 83
surjective, 157
surjectivity, equivalent properties, 158,

192
symmetricity (distance), 97
symmetricity (dot product), 93
system of linear equations, 185

there exists, 25
trace, 34
translation vector, 62
transpose, 34
triangle inequality, 96, 97, 117
Triangle Inequality, Generalized, 117
triangle inequality, proof, 117
triangular, 34
trivial combination, 69

Unique Representation Theorem, 75
uniqueness of orthogonal decomposi-

tions, 108
unit vector, 99
upper triangular, 34
upward reduction, 201

290



Index

vector, 19
vector space, 19
vector spaces, examples of, 25
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