Fall 2023 Exam 1

1. Throughout this problem, let

$$A = \begin{pmatrix} 6 & -4 \\ 7 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -7 & 3 \\ -1 & 0 & 4 \end{pmatrix} \qquad \mathbf{x} = (3, -5, 2) \qquad \mathbf{y} = (-2, -1, 4).$$

Compute each of the following expressions (unless the expression is nonsense, in which case you should indicate that it is nonsense):

- (a) 3x 2y (c) BB^T (e) 2By(b) B^2 (d) $b_{21}x$ (f) tr(A+I)
- 2. In each part of this problem, you are given a subset of \mathbb{R}^3 . Sketch a crude picture of that set:
 - (a) Span((2,2,0))(b) Span((0,2,0), (0,1,1))(c) Span((0,2,0)) + Span((0,1,1))(d) Span((0,2,0)) + (0,1,1)
- 3. In each part of this problem, you are given a set S of vectors in \mathbb{R}^3 . Determine whether S is linearly dependent or linearly independent. Your answers should be appropriately justified, either by appealing to some theory or by doing some algebra.
 - (a) $S = \{(7, 11, -19), (14, 5, 23)\}$
 - (b) $S = \{(2, 1, -5), (3, -2, 6), (11, -8, 1), (4, 7, -2)\}$
 - (c) $S = \{(5,2,8), (0,0,0), (17,5,-3)\}$
 - (d) $S = \{(1, 5, -6)\}$
 - (e) $S = \{(4,3,0), (-2,5,0), (1,5,1)\}$
- 4. Consider the subset W of \mathbb{R}^3 defined by

$$W = \{(x, y, z) : 2x + y - 3z = 0\}.$$

Determine, with proof, whether or not *W* is a subspace of \mathbb{R}^3 .

- 5. Let *V* be the set of differentiable functions from \mathbb{R} to \mathbb{R} . Let *W* be the subset of *V* consisting of all increasing functions (from calculus, this is the set of functions *f* such that $f'(x) \ge 0$ for all *x*; this includes all the constant functions, by the way). Determine, with proof, whether or not *W* is a subspace of *V*.
- 6. In each part of this problem, you are given a vector space *V* and a subspace *W* of *V* (you do not need to prove that *W* is a subspace). In each part, give a basis of *W* and the dimension of *W*.
 - (a) $V = \mathbb{R}^3$; W = Span((1, 3, -1), (2, 1, 0))
 - (b) $V = \mathbb{R}^3$; W = Span((1, 3, -1), (2, 6, -2))
 - (c) $V = \mathbb{R}^3$; $W = \{(x, y, z) \in \mathbb{R}^3 : 2x + y z = 0 \text{ and } x y + 3z = 0\}$
 - (d) $V = M_2(\mathbb{R}); W = \{A \in M_2(\mathbb{R}) : a_{12} = 3a_{11} \text{ and } a_{22} = -a_{21}\}$
- 7. Classify each statement as true or false (circle your answer, no justification is needed).
 - (a) A 5×7 matrix has more rows than columns.
 - (b) There is a basis of \mathbb{R}^5 consisting of six vectors.
 - (c) If five vectors in \mathbb{R}^5 are linearly independent, then they must also span \mathbb{R}^5 .

- (d) If five vectors in \mathbb{R}^5 are linearly dependent, then they cannot span \mathbb{R}^5 .
- (e) The only affine subspaces of \mathbb{R}^3 are lines, planes and all of \mathbb{R}^3 .
- (f) If *W* is a subspace of vector space *V*, then W + W = W.
- 8. (a) Write parametric equations for the plane in \mathbb{R}^3 containing the three points (5, -1, 0), (3, 2, 7) and (-2, -4, 5).
 - (b) Determine, with justification, whether the point (8,7,5) also belongs to the plane described in part (a). (The equations you wrote in part (a) may be helpful here.)

Fall 2019 Exam 1

- 1. Throughout this problem, let $A = \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix}$ and let $\mathbf{x} = (4, -1)$. Compute each of the following expressions (unless the expression is nonsense, in which case you should indicate that it is nonsense):
 - (a) the trace of A (b) $A\begin{pmatrix} 1 & -3 & 4 \\ 2 & 0 & -3 \end{pmatrix}$ (c) $3A - A^T + 4I$ (d) $3a_{12}\mathbf{x}$ (e) $\mathbf{x}^T A^2 \mathbf{x}$ (f) $\dim(Span(\mathbf{x}))$
- 2. Let $\mathbf{v} = (-2, -1)$. In each part of this problem, you are given a set *S*. If the set *S* makes sense, sketch a picture of *S*; however, if *S* is nonsense, indicate that it is nonsense.
 - (a) $S = Span(\mathbf{v})$ (b) $S = (-1, 2) + Span(\mathbf{v})$ (c) $S = Span(\mathbf{v}, \mathbf{v} + (0, 1))$ (d) $S = Span(\mathbf{v}, (0, 0, 1))$
- 3. In each part of this problem, you are given a vector space V and a set S of vectors in V. Determine whether S is linearly dependent or linearly independent. Your answers should be appropriately justified, either by appealing to some theory or by doing some algebra.
 - (a) $V = \mathbb{R}^3$; $S = \{(1, 2, -3), (5, -1, 4)\}$
 - (b) $V = \mathbb{R}^5$; $S = \{(3, 0, 1, 0, 0), (2, 4, -3, 0, 1), (-6, 0, -2, 0, 0), (4, 1, 3, -2, 1)\}$
 - (c) $V = M_2(\mathbb{R}); S = \left\{ \begin{pmatrix} 1 & 2 \\ 5 & 7 \end{pmatrix}, \begin{pmatrix} 3 & 8 \\ 15 & 11 \end{pmatrix}, \begin{pmatrix} 2 & 9 \\ 6 & 19 \end{pmatrix}, \begin{pmatrix} 7 & 7 \\ 7 & 7 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 15 & 32 \end{pmatrix} \right\}$
 - (d) $V = \mathbb{R}^3$; $S = \{(a, b, c), (0, d, e), (0, 0, f)\}\}$ *Note:* in this problem, letters *a*, *b*, *c*, *d*, *e* and *f* represent unknown nonzero constants.
- 4. (a) Suppose you know W_1 is a subspace of \mathbb{R}^6 .
 - i. What is the largest possible dimension of W_1 ?
 - ii. What is the smallest possible dimension of W_1 ?
 - iii. Is it possible that W_1 is spanned by four vectors?
 - iv. Is it possible that W_1 contains a set of four linearly independent vectors?
 - (b) Suppose you know W_2 is a subspace of \mathbb{R}^6 containing three linearly independent vectors.
 - i. What is the largest possible dimension of W_2 ?
 - ii. What is the smallest possible dimension of W_2 ?
 - iii. Is it possible that W_2 is spanned by four vectors?
 - iv. Is it possible that W_2 contains a set of four linearly independent vectors?
 - (c) Suppose you know W_3 is a subspace of \mathbb{R}^6 spanned by three vectors.
 - i. What is the largest possible dimension of W_3 ?
 - ii. What is the smallest possible dimension of W_3 ?
 - iii. Is it possible that W_3 is spanned by four vectors?
 - iv. Is it possible that W_3 contains a set of four linearly independent vectors?
 - (d) Suppose you know W_4 is a subspace of \mathbb{R}^6 spanned by three linearly independent vectors.
 - i. What is the largest possible dimension of W_4 ?
 - ii. What is the smallest possible dimension of W_4 ?
 - iii. Is it possible that W_4 is spanned by four vectors?

- iv. Is it possible that W_4 contains a set of four linearly independent vectors?
- 5. Let $V = \mathbb{R}^3$ and suppose that $W \subseteq V$ is the plane containing the three points (1, 1, -5), (2, -1, 2) and (-2, 1, -2).
 - (a) Write parametric equations for the plane *W*.
 - (b) Write parametric equations of the plane passing through the point (-5, 3, -2) that is parallel to W.
 - (c) Is *W* a subspace of *V*? Prove or disprove your answer.
- 6. Let $V = \mathbb{R}^4$ and suppose that

$$W = \{ (w, x, y, z) \in \mathbb{R}^4 : x = 2w, z = w + x + y \}.$$

Prove W is a subspace of V; find the dimension of W; and give a basis of W.

7. Let $B = \begin{pmatrix} 3 & -2 \\ 1 & 4 \end{pmatrix}$ and suppose that

$$W = \{A \in M_2(\mathbb{R}) : AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\}.$$

Determine, with proof, whether or not *W* is a subspace of $M_2(\mathbb{R})$.

- 8. Let $V = C(\mathbb{R}, \mathbb{R})$ and suppose that W is the set of functions f in V that are equal to their second derivative.
 - (a) Find a nonzero element of *W*.
 - (b) Determine, with proof, whether or not W is a subspace of V.

Fall 2016 Exam 1

1. Let A, B and \mathbf{x} be:

$$A = \begin{pmatrix} 1 & 4 & 2 & -5 \\ 0 & -3 & -2 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & -1 \\ 2 & -3 \end{pmatrix} \qquad \mathbf{x} = (-1, -3, 7, 0).$$

Compute each of the following expressions (unless the expression is nonsense, in which case you should indicate that it is nonsense):

(e) 3Ax

(f) $a_{12}\mathbf{x} + \begin{pmatrix} 0 \\ 2 \\ -5 \\ 1 \end{pmatrix}$

- (a) the size of A
- (b) *BA*
- (c) $B^T B A$
- (d) $B^T B A B$
- 2. Sketch a picture of the following subsets of \mathbb{R}^3 :
 - (a) Span((0, -1, 0))
 - (b) Span((0, -1, 0)) + (0, 0, 2)
 - (c) Span((1,0,0), (0,0,2))
 - (d) Span((1,0,0), (0,0,2)) + (0,0,3)
- 3. (a) Find the parametric equations of the line in \mathbb{R}^3 passing through the points (2, -3, 5) and (1, 0, 4).
 - (b) Find the parametric equations of the plane in \mathbb{R}^3 passing through the points (1, 4, -3), (2, -3, 0) and (-1, 5, -1).
 - (c) Does the line described in part (a) of this problem intersect the plane described in part (b), or is the line parallel to the plane? Explain.
- 4. Fill in each blank with the word ALWAYS, SOMETIMES or NEVER, so that the sentence is as accurate as possible.
 - (a) A set of six linearly independent vectors in \mathbb{R}^6 spans \mathbb{R}^6 .
 - (b) A set of three linearly independent vectors in \mathbb{R}^6 _____ spans \mathbb{R}^6 .
 - (c) If *W* is a subspace of *V*, then the dimension of *W* is ______ greater than the dimension of *V*.
 - (d) A square matrix _____ has the same size as its transpose.
 - (e) A plane containing the origin is _____ a subspace of \mathbb{R}^3 .
 - (f) If $\{v_1, v_2, v_3\}$ is a linearly independent set of vectors, then $\{v_1, v_2\}$ is _____ a linearly independent set.
 - (g) If $\{v_1, v_2, v_3\}$ is a linearly independent set of vectors, then $\{v_1, v_2, v_3, v_4\}$ is ______ a linearly independent set.
 - (h) If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a linearly independent set of vectors and $\{\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is a linearly independent set of vectors, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is ______ a linearly independent set.
 - (i) If \mathcal{B} and \mathcal{B}' are two different bases of the same finite-dimensional vector space V, then the union $\mathcal{B} \cup \mathcal{B}'$ is ______ a basis of V.
 - (j) If \mathcal{B} and \mathcal{B}' are two different bases of the same finite-dimensional vector space V, then the intersection $\mathcal{B} \cap \mathcal{B}'$ is ______ a basis of V.
- 5. In each part of this problem, you are given a vector space V and a subset W of V. For each problem:

- Determine, with proof, whether or not *W* is a subspace of *V*.
- If *W* is a subspace of *V*, find a basis of *W* and compute dim *W*.
- (a) $V = \mathbb{R}^4$; $W = \{(w, x, y, z) \in \mathbb{R}^4 : w 2x + 5y z = 0\}.$
- (b) $V = C(\mathbb{R}, \mathbb{R}); W = \{ f \in C(\mathbb{R}, \mathbb{R}) : \int_0^1 f(x) \, dx = 2 \}.$
- (c) $V = M_2(\mathbb{R}); W = \{A \in M_2(\mathbb{R}) : tr(A) = 0\}.$
- 6. In each part of this problem, you are given a vector space V and a set S of vectors in V. Determine whether S is linearly dependent or linearly independent. Your answers should be appropriately justified, either by appealing to some theory or by doing some algebra.

(a)
$$V = \mathbb{R}^3$$
; $S = \{(1, 2, 3), (4, -2, 7), (8, -1, 4), (5, 0, 0), (5, 2, -6)\}$
(b) $V = \mathbb{R}^6$; $S = \{(1, 0, 2, -3, 1, 0), (2, 1, 5, -4, 0, 0)\}$
(c) $V = M_{34}(\mathbb{R})$; $S = \{\begin{pmatrix} 0 & 0 & 0 & 0\\ 1 & 1 & 1 & 1\\ 0 & 0 & 0 & 1 \end{pmatrix}\}$
(d) $V = \mathbb{R}^3$; $S = \{(1, 2, 3), (1, -1, 1), (8, 7, 18)\}$

Spring 2014 Exam 1

1. Let *A* be the matrix

(2	-1	3
	0	1	2
	-4	1	0
	0	2	0 /

and let x be the vector (-2, 3, 2). Compute each of the following expressions (unless the expression is nonsense, in which case you should indicate that it is nonsense):

- (a) *A***x**
- (b) $a_{23}\mathbf{x} + a_{12}(1, -1, 3)$
- (c) $(\mathbf{x}^T \mathbf{x}) A$
- (d) $\mathbf{x}^T(\mathbf{x}A)$

(e)
$$\begin{pmatrix} 2 & 0 & -2 & 1 \\ 0 & 0 & 1 & 5 \end{pmatrix} A$$

- 2. (a) Find the parametric equations of the line in \mathbb{R}^4 passing through the points (1,3,5,0) and (5,-1,4,1).
 - (b) Does the line described in part (a) of this problem pass through the point (13, -9, 2, 2)? Explain your answer.
- 3. Sketch a picture of the following subsets of \mathbb{R}^2 :
 - (a) Span((1, -3)) + (5, -1)
 - (b) Span((2,3), (4,3))
- 4. In this question, you are given various subsets of ℝ³. Determine whether each given subset is a point, line, plane, or all of ℝ³:

(a)	POINT	LINE	PLANE	ALL OF \mathbb{R}^3	Span((3, -2, 5))
(b)	POINT	LINE	PLANE	ALL OF \mathbb{R}^3	(2, -1, 5)
(c)	POINT	LINE	PLANE	ALL OF \mathbb{R}^3	Span((1,0,0),(0,0,1),(3,0,-2))
(d)	POINT	LINE	PLANE	ALL OF \mathbb{R}^3	Span((2,1,-3)) + (4,0,2)
(e)	POINT	LINE	PLANE	ALL OF \mathbb{R}^3	Span((4,0,0),(0,2,0),(0,0,-3))
(f)	POINT	LINE	PLANE	ALL OF \mathbb{R}^3	$\{(x, y, z) : x = 2t, y = 4t, z = 12t\}$
(g)	POINT	LINE	PLANE	ALL OF \mathbb{R}^3	Span((2, 1, -1), (4, 2, -2), (-8, -4, 4))
(h)	POINT	LINE	PLANE	ALL OF \mathbb{R}^3	Span((1,0,0),(0,1,0))+(0,0,1)

6.

5. Classify the following statements as true or false.

(a)	TRUE	FALSE	The set of points (x, y) lying on the line $y = mx + b$ is a subspace of \mathbb{R}^2 .
(b)	TRUE	FALSE	The following set of vectors in \mathbb{R}^4 is linearly independent: $\{(1, 2, -1, 5), (2, -1, 6, -9), (0, 4, -1, 3), (-1, 3, 6, 8), (0, 2, -1, 6)\}$
(c)	TRUE	FALSE	The following set of vectors in $C(\mathbb{R}, \mathbb{R})$ is linearly independent: $\{\sin x, \cos x\}$
(d)	TRUE	FALSE	There is a basis of \mathbb{R}^3 consisting of four vectors.
(e)	TRUE	FALSE	The xz -plane (i.e. the set of points whose y -coordinate is zero) is a subspace of \mathbb{R}^3 .
(f)	TRUE	FALSE	Any five linearly independent vectors in \mathbb{R}^5 must also span all of \mathbb{R}^5 .
(g)	TRUE	FALSE	If W_1 and W_2 are subspaces of the same vector space V , then the union $W_1 \cup W_2$ must also be a subspace of V .
(h)	TRUE	FALSE	If W_1 and W_2 are subspaces of the same vector space V , then the intersection $W_1 \cap W_2$ must also be a subspace of V .
	Let $V = \mathbb{I}$ a subspace		$W = \{(x, y, z) \in \mathbb{R}^3 : xyz = 0\}$. Determine, with proof, whether or not W is

- (b) Let $V = \mathbb{R}^5$ and let $W = \{(x_1, x_2, x_3, x_4, x_5) : x_1 = x_3 \text{ and } x_4 = 2x_2 x_5\}$. Determine, with proof, whether or not W is a subspace of V.
- 7. Let $V = M_3(\mathbb{R})$ and let $W = \{A \in M_3(\mathbb{R}) : A = A^T\}$. *W* is a subspace of *V* (you do not need to prove that *W* is a subspace).
 - (a) Find a basis of *W*. (You do not need to justify that your answer is a basis.)
 - (b) Give the dimension of *W*.
- 8. Let $V = \mathbb{R}^3$ and let $W = \{(x, y, z) : 3x + 5y z = 0\}$. *W* is a subspace of *V* (you do not need to prove that *W* is a subspace).
 - (a) Find a basis of W; completely justify that your answer is in fact a basis of W.
 - (b) Give the dimension of *W*.
 - (c) What kind of geometric object is W?