Fall 2023 Exam 3

1. Let $A = \begin{pmatrix} -3 & 5 \\ 2 & 6 \end{pmatrix}$.

- (a) (7.2) Compute the determinant of *A*.
- (b) (8.4) Compute the eigenvalues and eigenvectors of A.
- (c) (8.4) Compute and simplify A^{200} .
- 2. (8.1) Find all functions y(t) which satisfy the differential equation

$$y''(t) - 2y'(t) - 8y(t) = -9\cos t + 2\sin t.$$

3. (6.5) Use the Gauss-Jordan method to compute the inverse of this matrix. Show all the steps in your row reductions.

$$\left(\begin{array}{rrrr} 0 & 2 & 3\\ 2 & -4 & -5\\ 1 & 3 & 6 \end{array}\right).$$

4. The augmented matrix of a system $A\mathbf{x} = \mathbf{b}$ is given below, along with its reduced row echelon form:

$$(A \mid \mathbf{b}) = \begin{pmatrix} -2 & 4 & 4 & -1 & 0 & 1 & | & 3\\ 1 & -2 & 3 & 2 & 1 & 5 & | & -1\\ 0 & 0 & 0 & 3 & 4 & -3 & | & 2\\ -7 & 14 & 9 & 1 & 7 & -8 & | & 14\\ 4 & -8 & -5 & 4 & 3 & -4 & | & 6 \end{pmatrix} \xrightarrow{\text{row ops}} \begin{pmatrix} 1 & -2 & 0 & 0 & 0 & -2 & | & \frac{21}{2} \\ 0 & 0 & 1 & 0 & 0 & \frac{1}{2} & | & \frac{9}{4} \\ 0 & 0 & 0 & 1 & 0 & 5 & | & -15\\ 0 & 0 & 0 & 0 & 1 & -\frac{9}{2} & | & \frac{47}{4} \\ 0 & 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

- (a) (6.1) How many equations are in the system Ax = b?
- (b) (6.1) How many variables are being solved for in the system Ax = b?
- (c) (6.4) How many solutions does the system Ax = b have?
- (d) (6.4) What is the dimension of R(A)?
- (e) (6.3) Find a basis for the column space of A.
- (f) (6.3) Find a basis for ker(T), where $T(\mathbf{x}) = A\mathbf{x}$.
- 5. (6.3) Solve each system. If your answers are correct, I do not need to see your work.

(a)
$$\begin{cases} 5x +4y -z = -14 \\ x +3y -2z = -11 \\ -4x -7y +2z = 12 \\ 3x +y -z = -14 \end{cases}$$

(b)
$$\begin{cases} 4x & -3y & +2z & = -16 \\ x & +y & -4z & = -14 \\ 2x & -6y & +5z & = -5 \\ x & -z & = -4 \end{cases}$$

(c)
$$\begin{cases} x & -3y & -z & = 2 \\ 2x & -7y & -z & = 5 \\ x & -4z & = -1 \end{cases}$$

6. (6.6) Find the model of the form

$$z = ax^2 + by^2$$

that best fits the data points

(1, -1, 2) (2, 1, 8) (2, 3, -5) (0, 3, -14) (3, 1, 22)

and use your model to predict the value of *z* when x = 2 and y = 5.

- 7. Fill in each blank with the word "ALWAYS", "SOMETIMES" or "NEVER" so that the statement is true.

 - (b) (6.3) The first five columns of a 7×8 matrix with rank 4 are ______ linearly independent.
 - (c) (6.2) If *A* is a matrix with $N(A^T) = \{0\}$, then the equation $A\mathbf{x} = \mathbf{b}$ _________ has at least one solution.
 - (d) (7.1) If A is an invertible matrix, then $\det A$ _____ equals 0.
 - (e) (8.2) If A is a 6×6 matrix, then A _____ has six eigenvalues.
 - (f) (8.5) If *A* and *B* are square matrices, then e^{A+B} ______ equals $e^A e^B$.
 - (g) (6.2) A linear transformation from \mathbb{R}^8 to \mathbb{R}^5 is _______ injective.

 - (i) (8.2) If λ is an eigenvalue of square matrix A, then 2λ is ______ an eigenvalue of 2A.
 - (j) (8.2) If λ is an eigenvalue of square matrix A, then λ^2 is ______ an eigenvalue of A^2 .

Fall 2019 Exam 3

- 1. Suppose *A* is a 4×4 matrix whose trace is 2 and whose determinant is 4. Suppose further that *A* has two different real eigenvalues, both of which are of multiplicity 2.
 - (a) Suppose that matrix *B* is formed from *A* by multiplying the second row by 3, then swapping the first and third columns. What is the determinant of *B*?
 - (b) What is det(-3A)?
 - (c) How many solutions does the equation $A\mathbf{x} = (2, 3, -5, 1)$ have?
 - (d) What are the eigenvalues of *A*?
- 2. Parts (a) and (b) of this question are related, but (c) has nothing to do with (a) or (b).
 - (a) Find the eigenvalues and eigenvectors of the matrix $A = \begin{pmatrix} 1 & 2 \\ 6 & -3 \end{pmatrix}$. Be sure to tell me which eigenvector goes with which eigenvalue. (To get credit, you must show your work.)
 - (b) Compute and simplify *A*²⁰¹⁹, where *A* is the matrix given in part (a) of this problem. (To get credit, you must show enough work so that I can tell how your answer comes from your work in part (a).)
 - (c) Find all functions y(t) which satisfy this differential equation:

$$y''(t) + 6y'(t) - 16y(t) = 72e^{-2t}$$

3. Compute the determinant of each matrix. (You may (and should) use technology to check your answers, but to get credit, I need to see appropriate work.)

	$\begin{pmatrix} 2 \end{pmatrix}$	-1	-2			(3	0	0	2	0	
(a)	-3	7	4			1	0	0	5	0	
	$\setminus 1$	5	3		(b)	0	0	4	0	-1	
	·					0	0	-2	0	-3	
						0	8	0	0	0]

4. Consider the following system of equations:

$$A\mathbf{x} = \mathbf{b} \quad \Leftrightarrow \quad \begin{cases} -2v + w -2x + 4y + 5z = 2\\ v + 2w & -y + 3z = 4\\ 7v + 4w & 4x - 11y - z = 8 \end{cases}$$

- (a) Solve the system using row reductions. You must show all your steps.
- (b) Find a basis of the null space of *A*.
- (c) Find a basis of the column space of *A*.
- (d) Find a basis of the row space of *A*.

- 5. For each given system of equations:
 - If the system has a solution, find its solution set.
 - If the system has no solution, say so, and find the least-squares solution of the system.

(a)
$$\begin{cases} 2x & -y & +3z & = 4\\ -5x & +2z & = -1\\ x & -3y & +11z & = 2\\ 4x & +y & = 5 \end{cases}$$

(b)
$$\begin{cases} 3x & -7y & +2z & = -26\\ 2x & -y & +4z & = -1\\ x & -3z & = -9 \end{cases}$$

(c)
$$\begin{cases} x & -3y & = -8\\ -4x & +2y & +z & = 7\\ -3x & +2z & = 7\\ 2x & +7y & -4z & = 3 \end{cases}$$

6. Each column of this chart corresponds to a matrix *A* whose entries are real numbers. Use the given information to fill in all the blank spaces:

	(a)	(b)	(c)
Size of A		8×6	5×7
Number of equations	3		
in system $A\mathbf{x} = \mathbf{b}$			
Number of components			
in each solution of			
the system $A\mathbf{x} = \mathbf{b}$			
Domain of <i>T</i> , where			
$T(\mathbf{x}) = A\mathbf{x}$			
$\dim C(A)$			
$\dim N(A)$			4
Number of pivots in		6	
an echelon form of A			
Number of solutions of			
the system $A\mathbf{x} = 0$			
Possible number of			
solutions of the system	always 1		
$A\mathbf{x} = \mathbf{b}$, where \mathbf{b}	solution		
is arbitrary			
Is A invertible?			

Fall 2016 Exam 3

- 1. Suppose that *A* is a 3×3 matrix whose determinant is 5.
 - (a) Suppose that a matrix is made from *A* by switching the first two rows of *A*, then switching the first two columns. Find the determinant of this new matrix.
 - (b) Suppose that a matrix is made from *A* by adding the first column to the second. Find the determinant of this new matrix.
 - (c) Is A invertible? If so, give the determinant of A^{-1} . If not, explain why not.
 - (d) Find the determinant of 3A.
 - (e) If *A* has eigenvalue 2 (repeated twice), what is the third eigenvalue of *A*?
 - (f) Find the determinant of AB, where

$$B = \left(\begin{array}{rrr} 4 & -3 & -5\\ 2 & -1 & -2\\ 1 & 7 & -3 \end{array}\right).$$

2. Suppose that a collection of data points (x, y, z) is supposed to fit an equation of the form

$$axy + bxz + cyz = 1,$$

where *a*, *b* and *c* are constants. Suppose also that the data points collected are:

(1,2,5) (1,7,10) (2,3,8) (3,1,2) (3,5,14) (4,2,9)

- (a) Set up a matrix equation $A\mathbf{x} = \mathbf{b}$ which can be used to find the equation. In particular, what are A, \mathbf{x} and \mathbf{b} ?
- (b) Compute (using least-squares) the model which best fits the data.
- 3. Solve the following system of equations. In this problem, you must use row reductions and show all your steps.

$$\begin{cases} -3x + y + z = -2\\ 5x -2y = -4\\ x -4y -3z = -17 \end{cases}$$

4. Solve the following systems of equations. Write your answers in the appropriate form.

(a)
$$\begin{cases} w + x - 3y + z = -3 \\ 3w - x & -2z = 7 \\ -2w + 2x - 3y + 3z = -10 \end{cases}$$

(b)
$$\begin{cases} 4x & -3y & +7z & = 6\\ -6x & +5y & -4z & = -8\\ -6x & +7y & +22z & = 5 \end{cases}$$

(c)
$$\begin{cases} 2x & +5y & -z & = 8\\ -x & +4y & -3z & = 4\\ 5x & -2y & +7z & = 3 \end{cases}$$

5. Suppose the following matrices are row equivalent:

- (a) Find the rank of *A*.
- (b) Find a basis of the column space of *A*.
- (c) Find a basis of the row space of *A*.
- (d) Find a basis of the null space of *A*.
- (e) Find the dimension of the left nullspace of A.
- (f) Classify the following statements as true or false:
 - i. $A\mathbf{x} = \mathbf{b}$ has at least one solution.
 - ii. $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.
 - iii. The first, second and fourth columns of *A* are linearly independent.
 - iv. The first, second and fifth columns of *A* are linearly independent.
 - v. The first five rows of *A* are linearly independent.
- 6. Find the eigenvalues and eigenvectors of the following matrix (work must be shown). Be sure to indicate which eigenvector goes with which eigenvalue.

7. Suppose that the sequence of numbers $\{x_n\}$ is defined recursively by setting $x_0 = 1$, $x_1 = 4$ and by defining, for $n \ge 2$, $x_n = 2x_{n-1} + 3x_{n-2}$. Find the exact value of x_{2016} , the 2016^{th} number in this sequence.

Матн 322

Spring 2014 Exam 3

1. (a) Find the determinant of the following matrix:

$$\left(\begin{array}{rrrr} 2 & -3 & 1 \\ -4 & -1 & -2 \\ 5 & 1 & 2 \end{array}\right)$$

(b) Find the value of *k* so that the following matrix is not invertible:

$$\left(\begin{array}{rrrr} 1 & 3 & -2 \\ 0 & 5 & -1 \\ 3 & 1 & k \end{array}\right)$$

2. Suppose that a collection of data points is supposed to lie on a parabola of the form

$$y = a + bx + cx^2.$$

Suppose also that the data points collected are:

(-3, -13) (-2, -8) (-1, 0) (0, 3) (1, 4) (3, 1) (5, 0) (6, -7)

- (a) Set up a matrix equation Ax = b which can be used to find the best fitting parabola. In particular, what are A, x and b?
- (b) Compute (using least-squares) the model which best fits the data.
- (c) Use your model to predict the value of y when x = 10.
- 3. Find the inverse of the following matrix using the Gauss-Jordan method (please show all your steps).

$$\left(\begin{array}{rrrr}
1 & 0 & -2 \\
-2 & 3 & 2 \\
-1 & 1 & 1
\end{array}\right)$$

4. Solve the following systems of equations:

(a)
$$\begin{cases} w -4x +2y +z = 1\\ 2w -3x +y +2z = -4\\ -5w +2y -5z = 15 \end{cases}$$

(b)
$$\begin{cases} x -4y +2z = 1\\ 2x -3y +z = -4\\ -2x +y = 3 \end{cases}$$

(c)
$$\begin{cases} 3v -w -3x +y +2z = 1\\ 2v -3w +4x -2y +z = -4\\ 4v -5w -10x +4y +3z = 6 \end{cases}$$

- 5. For each given $m \times n$ matrix *A*, fill out the rest of the chart, where the rows of the chart correspond to the following questions:
 - (a) Give the dimension of the column space of *A*.
 - (b) Give the dimension of the null space of *A*.
 - (c) True or false: $A\mathbf{x} = \mathbf{b}$ has no solution for *some* $\mathbf{b} \in \mathbb{R}^m$.
 - (d) True or false: $A\mathbf{x} = \mathbf{b}$ has no solution for *every* $\mathbf{b} \in \mathbb{R}^m$.
 - (e) True or false: $A\mathbf{x} = \mathbf{b}$ has at least one solution for *some* $\mathbf{b} \in \mathbb{R}^m$.
 - (f) True or false: $A\mathbf{x} = \mathbf{b}$ has at least one solution for *every* $\mathbf{b} \in \mathbb{R}^m$.
 - (g) True or false: $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions for *some* $\mathbf{b} \in \mathbb{R}^m$.
 - (h) True or false: $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions for *every* $\mathbf{b} \in \mathbb{R}^m$.

	A is an 18×14 matrix whose null space	A is a 7×4 matrix whose columns are	A is an 11×22 matrix that	A is an invertible
	is six-dimensional	linearly independent	has 11 pivots	5×5 matrix
(a)				
(b)				
(c)				
(d)				
(e)				
(f)				
(g)				
(h)				

6. Find the characteristic polynomial, the eigenvalues and corresponding eigenvectors of the following matrix:

1	0	-6	12	
	-5	11	-12	
	-5	17	-24 /	

7. Suppose that the number x(t) of sparrows at time t and the number y(t) of cardinals at time t in a forest are modeled by this system of differential equations:

$$\begin{cases} x'(t) = \frac{4}{3}x(t) + \frac{2}{3}y(t) \\ y'(t) = \frac{1}{3}x(t) + \frac{5}{3}y(t) \end{cases}$$

If there are initially 30 sparrows and 120 cardinals in the forest, how many sparrows and how many cardinals will be in the forest at time t = 20? (I want an exact answer, not an approximation.)