Fall 2023 Exam 3

1. Let $A=\left(\begin{array}{cc}-3 & 5 \\ 2 & 6\end{array}\right)$.
(a) (7.2) Compute the determinant of A.
(b) (8.4) Compute the eigenvalues and eigenvectors of A.
(c) (8.4) Compute and simplify A^{200}.
2. (8.1) Find all functions $y(t)$ which satisfy the differential equation

$$
y^{\prime \prime}(t)-2 y^{\prime}(t)-8 y(t)=-9 \cos t+2 \sin t
$$

3. (6.5) Use the Gauss-Jordan method to compute the inverse of this matrix. Show all the steps in your row reductions.

$$
\left(\begin{array}{ccc}
0 & 2 & 3 \\
2 & -4 & -5 \\
1 & 3 & 6
\end{array}\right)
$$

4. The augmented matrix of a system $A \mathbf{x}=\mathbf{b}$ is given below, along with its reduced row echelon form:

$$
(A \mid \mathbf{b})=\left(\begin{array}{cccccc|c}
-2 & 4 & 4 & -1 & 0 & 1 & 3 \\
1 & -2 & 3 & 2 & 1 & 5 & -1 \\
0 & 0 & 0 & 3 & 4 & -3 & 2 \\
-7 & 14 & 9 & 1 & 7 & -8 & 14 \\
4 & -8 & -5 & 4 & 3 & -4 & 6
\end{array}\right) \xrightarrow{\text { row ops }}\left(\begin{array}{cccccc|c}
1 & -2 & 0 & 0 & 0 & -2 & \frac{21}{2} \\
0 & 0 & 1 & 0 & 0 & \frac{1}{2} & \frac{9}{4} \\
0 & 0 & 0 & 1 & 0 & 5 & -15 \\
0 & 0 & 0 & 0 & 1 & -\frac{9}{2} & \frac{47}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(a) (6.1) How many equations are in the system $A \mathbf{x}=\mathbf{b}$?
(b) (6.1) How many variables are being solved for in the system $A \mathbf{x}=\mathbf{b}$?
(c) (6.4) How many solutions does the system $A \mathrm{x}=\mathrm{b}$ have?
(d) (6.4) What is the dimension of $R(A)$?
(e) (6.3) Find a basis for the column space of A.
(f) (6.3) Find a basis for $\operatorname{ker}(T)$, where $T(\mathbf{x})=A \mathbf{x}$.
5. (6.3) Solve each system. If your answers are correct, I do not need to see your work.
(a) $\left\{\begin{array}{c}5 x+4 y-z=-14 \\ x+3 y-2 z=-11 \\ -4 x-7 y+2 z=12 \\ 3 x+y-z=-14\end{array}\right.$
(b) $\left\{\begin{aligned} 4 x-3 y+2 z & =-16 \\ x+y-4 z & =-14 \\ 2 x-6 y+5 z & =-5 \\ x-z & =-4\end{aligned}\right.$
(c) $\left\{\begin{array}{llll}x & -3 y & -z & =2 \\ 2 x & -7 y & -z & =5 \\ x & & -4 z & =-1\end{array}\right.$
6. (6.6) Find the model of the form

$$
z=a x^{2}+b y^{2}
$$

that best fits the data points

$$
\begin{equation*}
(1,-1,2) \quad(2,1,8) \quad(2,3,-5) \quad(0,3,-14) \tag{3,1,22}
\end{equation*}
$$

and use your model to predict the value of z when $x=2$ and $y=5$.
7. Fill in each blank with the word "ALWAYS", "SOMETIMES" or "NEVER" so that the statement is true.
(a) (6.3) The first four columns of a 7×8 matrix with rank 4 are \qquad linearly independent.
(b) (6.3) The first five columns of a 7×8 matrix with rank 4 are \qquad linearly independent.
(c) (6.2) If A is a matrix with $N\left(A^{T}\right)=\{\mathbf{0}\}$, then the equation $A \mathbf{x}=\mathbf{b}$ has at least one solution.
(d) (7.1) If A is an invertible matrix, then $\operatorname{det} A$ \qquad equals 0 .
(e) (8.2) If A is a 6×6 matrix, then A \qquad has six eigenvalues.
(f) (8.5) If A and B are square matrices, then e^{A+B} \qquad equals $e^{A} e^{B}$.
(g) (6.2) A linear transformation from \mathbb{R}^{8} to \mathbb{R}^{5} is \qquad injective.
(h) (6.2) An injective linear transformation from \mathbb{R}^{7} to \mathbb{R}^{7} is \qquad surjective.
(i) (8.2) If λ is an eigenvalue of square matrix A, then 2λ is \qquad an eigenvalue of $2 A$.
(j) (8.2) If λ is an eigenvalue of square matrix A, then λ^{2} is an eigenvalue of A^{2}.

Fall 2019 Exam 3

1. Suppose A is a 4×4 matrix whose trace is 2 and whose determinant is 4 . Suppose further that A has two different real eigenvalues, both of which are of multiplicity 2.
(a) Suppose that matrix B is formed from A by multiplying the second row by 3 , then swapping the first and third columns. What is the determinant of B ?
(b) What is $\operatorname{det}(-3 A)$?
(c) How many solutions does the equation $A \mathbf{x}=(2,3,-5,1)$ have?
(d) What are the eigenvalues of A ?
2. Parts (a) and (b) of this question are related, but (c) has nothing to do with (a) or (b).
(a) Find the eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{cc}1 & 2 \\ 6 & -3\end{array}\right)$. Be sure to tell me which eigenvector goes with which eigenvalue. (To get credit, you must show your work.)
(b) Compute and simplify A^{2019}, where A is the matrix given in part (a) of this problem. (To get credit, you must show enough work so that I can tell how your answer comes from your work in part (a).)
(c) Find all functions $y(t)$ which satisfy this differential equation:

$$
y^{\prime \prime}(t)+6 y^{\prime}(t)-16 y(t)=72 e^{-2 t}
$$

3. Compute the determinant of each matrix. (You may (and should) use technology to check your answers, but to get credit, I need to see appropriate work.)
(a) $\left(\begin{array}{ccc}2 & -1 & -2 \\ -3 & 7 & 4 \\ 1 & 5 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccccc}3 & 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 5 & 0 \\ 0 & 0 & 4 & 0 & -1 \\ 0 & 0 & -2 & 0 & -3 \\ 0 & 8 & 0 & 0 & 0\end{array}\right)$
4. Consider the following system of equations:

$$
A \mathbf{x}=\mathbf{b} \Leftrightarrow\left\{\begin{array}{cccccc}
-2 v & +w & -2 x & +4 y & +5 z & =2 \\
v & +2 w & & -y & +3 z & =4 \\
7 v & +4 w & 4 x & -11 y & -z & =8
\end{array}\right.
$$

(a) Solve the system using row reductions. You must show all your steps.
(b) Find a basis of the null space of A.
(c) Find a basis of the column space of A.
(d) Find a basis of the row space of A.
5. For each given system of equations:

- If the system has a solution, find its solution set.
- If the system has no solution, say so, and find the least-squares solution of the system.
(a) $\left\{\begin{array}{cccc}2 x & -y & +3 z & =4 \\ -5 x & & +2 z & =-1 \\ x & -3 y & +11 z & =2 \\ 4 x & +y & & =5\end{array}\right.$
(b) $\left\{\begin{aligned} 3 x-7 y+2 z & =-26 \\ 2 x-y+4 z & =-1 \\ x-3 z & =-9\end{aligned}\right.$
(c) $\left\{\begin{array}{ccc}x-3 y & =-8 \\ -4 x+2 y+z & =7 \\ -3 x & +2 z & =7 \\ 2 x+7 y-4 z & =3\end{array}\right.$

6. Each column of this chart corresponds to a matrix A whose entries are real numbers. Use the given information to fill in all the blank spaces:

	(a)	(b)	(c)
Size of A		8×6	5×7
Number of equations in system $A \mathbf{x}=\mathbf{b}$	3		
Number of components in each solution of the system $A \mathbf{x}=\mathbf{b}$			
Domain of T, where $T(\mathbf{x})=A \mathbf{x}$			
$\operatorname{dim} C(A)$		6	
$\operatorname{dim} N(A)$			
Number of pivots in an echelon form of A			
Number of solutions of the system $A \mathbf{x}=\mathbf{0}$			
Possible number of solutions of the system $A \mathbf{x}=\mathbf{b}$, where \mathbf{b} is arbitrary	always 1 solution		
Is A invertible?			

Fall 2016 Exam 3

1. Suppose that A is a 3×3 matrix whose determinant is 5 .
(a) Suppose that a matrix is made from A by switching the first two rows of A, then switching the first two columns. Find the determinant of this new matrix.
(b) Suppose that a matrix is made from A by adding the first column to the second. Find the determinant of this new matrix.
(c) Is A invertible? If so, give the determinant of A^{-1}. If not, explain why not.
(d) Find the determinant of $3 A$.
(e) If A has eigenvalue 2 (repeated twice), what is the third eigenvalue of A ?
(f) Find the determinant of $A B$, where

$$
B=\left(\begin{array}{ccc}
4 & -3 & -5 \\
2 & -1 & -2 \\
1 & 7 & -3
\end{array}\right)
$$

2. Suppose that a collection of data points (x, y, z) is supposed to fit an equation of the form

$$
a x y+b x z+c y z=1
$$

where a, b and c are constants. Suppose also that the data points collected are:

$$
(1,2,5) \quad(1,7,10) \quad(2,3,8) \quad(3,1,2) \quad(3,5,14) \quad(4,2,9)
$$

(a) Set up a matrix equation $A \mathbf{x}=\mathbf{b}$ which can be used to find the equation. In particular, what are A, \mathbf{x} and \mathbf{b} ?
(b) Compute (using least-squares) the model which best fits the data.
3. Solve the following system of equations. In this problem, you must use row reductions and show all your steps.

$$
\left\{\begin{array}{ccc}
-3 x+y+z & =-2 \\
5 x & -2 y & =-4 \\
x & -4 y & -3 z
\end{array}=-17 .\right.
$$

4. Solve the following systems of equations. Write your answers in the appropriate form.
(a) $\left\{\begin{array}{ccccc}w & +x & -3 y & +z & =-3 \\ 3 w & -x & & -2 z & =7 \\ -2 w & +2 x & -3 y & +3 z & =-10\end{array}\right.$
(b) $\left\{\begin{array}{ccc}4 x-3 y+7 z & =6 \\ -6 x+5 y-4 z & =-8 \\ -6 x+7 y+22 z & =5\end{array}\right.$
(c) $\left\{\begin{array}{l}2 x+5 y-z=8 \\ -x+4 y-3 z=4 \\ 5 x-2 y+7 z=3\end{array}\right.$
5. Suppose the following matrices are row equivalent:

$$
(A \mid \mathbf{b})=\left(\begin{array}{ccccc|c}
2 & 1 & -2 & 1 & 4 & 2 \\
5 & -1 & 5 & -4 & 7 & 0 \\
0 & 7 & -22 & 13 & 6 & 10 \\
1 & 4 & 3 & 0 & 1 & -3 \\
1 & -17 & -6 & -4 & 3 & 12 \\
8 & 4 & 7 & -3 & 11 & 9
\end{array}\right) \xrightarrow{\text { row ops }}\left(\begin{array}{ccccc|c}
1 & 0 & 0 & \frac{-17}{105} & 0 & \frac{268}{15} \\
0 & 1 & 0 & \frac{41}{105} & 0 & \frac{-4}{15} \\
0 & 0 & 1 & \frac{-7}{15} & 0 & \frac{-49}{15} \\
0 & 0 & 0 & 0 & 1 & -10 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(a) Find the rank of A.
(b) Find a basis of the column space of A.
(c) Find a basis of the row space of A.
(d) Find a basis of the null space of A.
(e) Find the dimension of the left nullspace of A.
(f) Classify the following statements as true or false:
i. $A \mathrm{x}=\mathrm{b}$ has at least one solution.
ii. $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions.
iii. The first, second and fourth columns of A are linearly independent.
iv. The first, second and fifth columns of A are linearly independent.
v. The first five rows of A are linearly independent.
6. Find the eigenvalues and eigenvectors of the following matrix (work must be shown). Be sure to indicate which eigenvector goes with which eigenvalue.

$$
\left(\begin{array}{ccc}
6 & 6 & 6 \\
-3 & 3 & 9 \\
5 & -1 & -7
\end{array}\right)
$$

7. Suppose that the sequence of numbers $\left\{x_{n}\right\}$ is defined recursively by setting $x_{0}=1, x_{1}=4$ and by defining, for $n \geq 2, x_{n}=2 x_{n-1}+3 x_{n-2}$. Find the exact value of x_{2016}, the $2016^{\text {th }}$ number in this sequence.

Spring 2014 Exam 3

1. (a) Find the determinant of the following matrix:

$$
\left(\begin{array}{ccc}
2 & -3 & 1 \\
-4 & -1 & -2 \\
5 & 1 & 2
\end{array}\right)
$$

(b) Find the value of k so that the following matrix is not invertible:

$$
\left(\begin{array}{ccc}
1 & 3 & -2 \\
0 & 5 & -1 \\
3 & 1 & k
\end{array}\right)
$$

2. Suppose that a collection of data points is supposed to lie on a parabola of the form

$$
y=a+b x+c x^{2} .
$$

Suppose also that the data points collected are:

$$
(-3,-13) \quad(-2,-8) \quad(-1,0) \quad(0,3) \quad(1,4) \quad(3,1) \quad(5,0) \quad(6,-7)
$$

(a) Set up a matrix equation $A \mathbf{x}=\mathbf{b}$ which can be used to find the best fitting parabola. In particular, what are A, \mathbf{x} and \mathbf{b} ?
(b) Compute (using least-squares) the model which best fits the data.
(c) Use your model to predict the value of y when $x=10$.
3. Find the inverse of the following matrix using the Gauss-Jordan method (please show all your steps).

$$
\left(\begin{array}{ccc}
1 & 0 & -2 \\
-2 & 3 & 2 \\
-1 & 1 & 1
\end{array}\right)
$$

4. Solve the following systems of equations:
(a) $\left\{\begin{array}{rrrrc}w & -4 x & +2 y & +z & =1 \\ 2 w & -3 x & +y & +2 z & =-4 \\ -5 w & & +2 y & -5 z & =15\end{array}\right.$
(b) $\left\{\begin{array}{cccc}x & -4 y & +2 z & =1 \\ 2 x & -3 y & +z & =-4 \\ -2 x & +y & & =3\end{array}\right.$
(c) $\left\{\begin{array}{lllllc}3 v & -w & -3 x & +y & +2 z & =1 \\ 2 v & -3 w & +4 x & -2 y & +z & =-4 \\ 4 v & -5 w & -10 x & +4 y & +3 z & =6\end{array}\right.$
5. For each given $m \times n$ matrix A, fill out the rest of the chart, where the rows of the chart correspond to the following questions:
(a) Give the dimension of the column space of A.
(b) Give the dimension of the null space of A.
(c) True or false: $A \mathbf{x}=\mathbf{b}$ has no solution for some $\mathbf{b} \in \mathbb{R}^{m}$.
(d) True or false: $A \mathbf{x}=\mathbf{b}$ has no solution for every $\mathbf{b} \in \mathbb{R}^{m}$.
(e) True or false: $A \mathbf{x}=\mathbf{b}$ has at least one solution for some $\mathbf{b} \in \mathbb{R}^{m}$.
(f) True or false: $A \mathbf{x}=\mathbf{b}$ has at least one solution for every $\mathbf{b} \in \mathbb{R}^{m}$.
(g) True or false: $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions for some $\mathbf{b} \in \mathbb{R}^{m}$.
(h) True or false: $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions for every $\mathbf{b} \in \mathbb{R}^{m}$.

$\left.$| A is an 18×14 matrix |
| :---: | :---: | :---: | :---: | :---: |
| whose null space |
| is six-dimensional |\quad| A is a 7×4 matrix |
| :---: |
| whose columns are |
| linearly independent | | A is an 11×22 |
| :---: |
| matrix that |
| has 11 pivots | | A is an |
| :---: |
| invertible |
| 5×5 matrix | \right\rvert\,

6. Find the characteristic polynomial, the eigenvalues and corresponding eigenvectors of the following matrix:

$$
\left(\begin{array}{ccc}
0 & -6 & 12 \\
-5 & 11 & -12 \\
-5 & 17 & -24
\end{array}\right)
$$

7. Suppose that the number $x(t)$ of sparrows at time t and the number $y(t)$ of cardinals at time t in a forest are modeled by this system of differential equations:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=\frac{4}{3} x(t)+\frac{2}{3} y(t) \\
y^{\prime}(t)=\frac{1}{3} x(t)+\frac{5}{3} y(t)
\end{array}\right.
$$

If there are initially 30 sparrows and 120 cardinals in the forest, how many sparrows and how many cardinals will be in the forest at time $t=20$? (I want an exact answer, not an approximation.)

