
Old Math 324 Exams

David M. McClendon

Department of Mathematics
Ferris State University

Last updated to include exams from Fall 2017

1



Contents

Contents 2

1 General information about these exams 3

2 Exams from Fall 2017 4
2.1 Fall 2017 Exam 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Fall 2017 Exam 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Fall 2017 Exam 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Fall 2017 Final Exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2



Chapter 1

General information about
these exams

These are the exams I gave in Fall 2017 when teaching Math 324 at Ferris. Each
exam is followed by what I believe are valid solutions (there may be some number
of computational errors or typos in these answers).

Exam 1 covered Chapters 1 and 2 in my Math 324 lecture notes; Exam 2 cov-
ered Chapters 3 and 4, and Exam 3 covered Chapters 4 and 5. The final exam was
cumulative.
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Chapter 2

Exams from Fall 2017

2.1 Fall 2017 Exam 1
1. Construct a truth table for the proposition (P ∨Q)⇒ (∼ P ∨ ∼ Q).

2. Write a useful denial of each of the following statements:

a) Tom Cruise is an actor and Bobby Flay is a chef.

b) There exists x ∈ R such that x is not normal.

c) If Mike is a rabbit, then Mike likes to eat carrots.

3. a) Write the converse of the statement “If Jenny eats pie, then Peter eats
cake".

b) Write the contrapositive of the statement “If Jenny eats pie, then Peter
eats cake."

4. Given the three open sentences

D(x) = “x is dangerous”; K(x) = “x is a koala”; A(x) = “x is from Australia”;

write each statement below in symbolic form. (Assume that the universe of
discourse for x is the set of all animals.)

a) All animals are dangerous.

b) There is exactly one dangerous koala.

c) There is a non-dangerous Australian animal.

d) Dangerous koalas cannot be from Australia.

5. Prove that the sum of an even number and an odd number is odd.
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2.1. Fall 2017 Exam 1

6. Prove that for any integer n, either 4 |n2 or 4 | (n2 − 1).

7. Prove that there do not exist integers p and q such that
(

p
q

)2
= 2.

8. Let m be an integer. Prove m3 − 1 is even if and only if m is odd.

9. Define a function f : R → R to be even if for all x ∈ R, f(−x) = f(x). For
each function f below, determine (with proof) whether or not f is even:

a) f(x) = (x− 2)2

b) f(x) = x2 − 2

10. (Bonus) Let n ∈ Z. Prove that 3 | (2n − 1) if and only if n is even.

Hint: You may assume that given any three consecutive integers, exactly one
of them is divisible by 3.
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2.1. Fall 2017 Exam 1

Solutions

1. Here is the truth table:

P Q ∼ P ∼ Q P ∨Q ∼ P ∨ ∼ Q (P ∨Q)⇒ (∼ P ∨ ∼ Q)
T T F F T F F
T F F T T T T
F T T F T T T
F F T T F T T

2. a) Tom Cruise is not an actor, or Bobby Flay is not a chef.

b) For all x ∈ R, x is normal.

c) Mike is a rabbit who does not like to eat carrots.

3. a) If Peter eats cake, then Jenny eats pie.

b) If Peter does not eat cake, then Jenny does not eat pie.

4. a) ∀x, D(x).
b) ∃!x : (D(x) ∧K(x)).
c) ∃x : (∼ D(x) ∧ A(x)).
d) (D(x) ∧K(x))⇒∼ A(x).

5. PROOF: Let x ∈ Z be even, so that x = 2k for k ∈ Z. Let y ∈ Z be odd, so that
y = 2l + 1 for l ∈ Z. The sum of x and y is therefore

x + y = 2k + 2l + 1 = 2(k + l) + 1

which is odd. �

6. PROOF: We proceed in two cases, depending on whether n is even or odd:

Case 1: n is even, i.e. n = 2k for k ∈ Z. Then n2 = (2k)2 = 4k2 so 4 |n2 as
wanted.

Case 2: n is odd, i.e. n = 2k +1 for k ∈ Z. Then n2 = (2k +1)2 = 4k2 +4k +1 =
4(k2 + k) + 1 and therefore n2 − 1 = 4(k2 + k) so 4 | (n2 − 1) as desired. �

7. PROOF: Suppose not, i.e. that there exists p, q ∈ Z such that
(

p
q

)2
= 2. WLOG

p
q

is in lowest terms. Now rewriting the equation
(

p
q

)2
= 2, we get p2 = 2q2

so p2 is even. By a result from class (or the notes), that means p is even, so we
can write p = 2k where k ∈ Z. Then

2q2 = p2 = (2k)2 = 4k2
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2.1. Fall 2017 Exam 1

so q2 = 2k2, so q2 is even. By the same result from class, that means q is even.

But since both p and q are even, p
q

isn’t in lowest terms (2 divides both p and
q), a contradiction. Thus no such p and q can exist. �

8. PROOF: (⇒) Assume m is even, i.e. m = 2k for k ∈ Z. Then

m3 − 1 = (2k)3 − 1 = 8k3 − 1 = 8k3 − 2 + 1 = 2(4k3 − 1) + 1

so m3 − 1 is odd. By contraposition, we are done.

(⇐) Assume m is odd, i.e. m = 2k + 1 for k ∈ Z. Then, using the hint,

m3 − 1 = (2k + 1)3 − 1 = 8k3 + 12k2 + 6k + 1− 1 = 2(4k3 + 6k2 + 3k)

so m3 − 1 is even, as wanted. �

9. a) Claim: f(x) = (x− 2)2 is not even.
PROOF: Notice that f(−1) = (−1− 2)2 = 9 but f(1) = (1− 2)2 = 1. Since
f(−1) 6= f(1), f is not even. �

b) Claim: f(x) = x2 − 2 is even.
PROOF: Observe that for any x ∈ R, f(−x) = (−x)2 − 2 = x2 − 2 = f(x).
Thus f is even. �

10. PROOF: (⇐) Suppose n is even. Then n = 2k for k ∈ Z. Thus

2n − 1 = 22k − 1 = (2k + 1)(2k − 1).

Now, of the three consecutive integers 2k − 1, 2k and 2k + 1, by the hint, one
must be divisible by 3. Clearly 2k isn’t divisible by 3, so either 3 | (2k − 1) or
3 | (2k + 1). Either way, 3 divides the product (2k − 1)(2k + 1) = 2n − 1 (by the
result from class which says that a|b and b|c implies a|c).

(⇒) Suppose n is odd; then n = 2k + 1 for k ∈ Z. Thus

2n − 1 = 22k+1 − 1 = 2(22k)− 1 = 2(22k − 1) + 1.

The number 2k is even, so by the (⇐) part of this proof, 3|(22k − 1), so
3 |(2(22k − 1)) as well. By the hint, 3 cannot divide the next consecutive inte-
ger, which is 2(22k − 1) + 1 = 2n − 1. �.
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2.2. Fall 2017 Exam 2

2.2 Fall 2017 Exam 2
1. Classify the following statements as true or false.

a) The function f : R→ R given by f(x) = ex is surjective.

b) The function f : [0, 1]→ [0, 3] given by f(x) = 3x is injective.

c) If f : A → B is a bijection, then the inverse function f−1 : B → A must
also be a bijection.

d) For any sets P, Q and R, (P ∩Q) ∩R = P ∩ (Q ∩R).
e) For any sets E and F , (E ∪ F )C = EC ∪ F C .

f) For any sets G and H , G ∩H ⊆ G.

g) For any sets X, Y and Z, if X ∪ Z ⊆ Y ∪ Z, then X ⊆ Y .

h) For any set E, the relation ' is an equivalence relation on the power set
2E , where ' is defined by:

A ' B ⇔ A ∩B 6= ∅.

i) 19 and 7 belong to the same congruence class modulo 3.

j) The relation {(3, 2), (5,−8), (−4, 7), (2,−7)} is a function.

2. Consider the following sets:

A = {0, 1, 2} B = {2, 4, 6, 8} C = {7, 8, 9, 10}

and the following functions:

f : N× N→ N given by f(m, n) = 2m3n

g : R→ R given by g(x) = x + 2

h : R→ R given by h(x) = x2

Describe each of the following sets by giving a list of their elements.

a) B ∪ C

b) A ∩BC

c) A× ∅
d) g−1(B)
e) g−1(B) ∩ g(A)
f) f(A× {1})
g) h([0, 5])
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2.2. Fall 2017 Exam 2

h) h−1(9)
i) (h ◦ g)(A)
j) h−1(h(A))

3. Let A, B and C be sets. Prove that if A ⊆ B, then A− C ⊆ B − C.

4. Let f : A→ B. Prove or disprove: for any two sets E ⊆ B and F ⊆ B,

f−1(E ∪ F ) = f−1(E) ∪ f−1(F ).

5. Let g : R− {3} → R− {1} be defined by

g(x) = x + 1
x− 3 .

Prove that g is a bijection, by computing the inverse of g and proving that
your formula for the inverse of g is correct.

6. Suppose f : A � B and g : B � C are surjective functions. Prove that g ◦ f
is also surjective.

9



2.2. Fall 2017 Exam 2

Solutions

1. a) FALSE: −1 /∈ Range(f), so f is not surjective.

b) TRUE: if f(x) = f(y), then 3x = 3y so x = y.

c) TRUE: f−1 is also invertible (its inverse is f ), so it must be a bijection.

d) TRUE: this is the associative law for intersections.

e) FALSE: DeMorgan’s Law says (E ∪ F )C = EC ∩ F C .

f) TRUE: taking intersection makes a set smaller.

g) FALSE: for X = {1}; Y = ∅; Z = {1}, X ∪ Z ⊆ Y ∪ Z but X 6⊆ Y .

h) FALSE: Let A = {1}, B = {1, 2} and C = {2}. A ' B and B ' C but
A 6' C so ' is not transitive.

i) TRUE: 3 | (19− 7).
j) TRUE: none of the inputs are related to more than one different output.

2. a) B ∪ C = {2, 4, 6, 7, 8, 9, 10}.
b) A ∩BC = A−B = {0, 1}.
c) A× ∅ = ∅.
d) g−1(B) = {0, 2, 4, 6}.
e) g−1(B) ∩ g(A) = {0, 2, 4, 6} ∩ {2, 3, 4} = {2, 4}.
f) f(A× {1}) = f({(0, 1), (1, 1), (2, 1)}) = {3, 6, 12}.
g) h([0, 5]) = [0, 25].
h) h−1(9) = {−3, 3}.
i) (h ◦ g)(A) = h(g(A)) = h({2, 3, 4}) = {4, 9, 16}.
j) h−1(h(A)) = h−1({0, 1, 4}) = {−2,−1, 0, 1, 2}.

3. PROOF Suppose x ∈ A − C. Then x ∈ A ∩ CC , so x ∈ CC . Also, x ∈ A and
since A ⊆ B, this means x ∈ B. Thus x ∈ B ∩ CC = B − C. �

4. PROOF (⊆) Let x ∈ f−1(E ∪ F ). That means f(x) ∈ E ∪ F .

Case 1: f(x) ∈ E. Thus x ∈ f−1(E) ⊆ f−1(E) ∪ f−1(F ).
Case 2: f(x) ∈ F . Thus x ∈ f−1(F ) ⊆ f−1(E) ∪ f−1(F ).
In either case, x ∈ f−1(E) ∪ f−1(F ), as wanted.

(⊇) Let x ∈ f−1(E) ∪ f−1(F ).
Case 1: x ∈ f−1(E). Therefore f(x) ∈ E so f(x) ∈ E ∪ F so x ∈ f−1(E ∪ F ).
Case 2: x ∈ f−1(F ). Therefore f(x) ∈ F so f(x) ∈ E ∪ F so x ∈ f−1(E ∪ F ).
In either case, x ∈ f−1(E ∪ F ) as wanted. �
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2.2. Fall 2017 Exam 2

5. Set y = x+1
x−3 and solve for x using algebra to get x = 3y+1

y−1 . Thus g−1(x) = 3x+1
x−1 .

PROOF (THAT g AND g−1 ARE INVERSES) We compute (g ◦ g−1)(x) and (g−1 ◦
g)(x) and show that both are equal to x:

(g ◦ g−1)(x) = g(g−1(x)) = g

(
3x + 1
y − 1

)
=

3x+1
x−1 + 1
3x+1
x−1 − 3 = 3x + 1 + x− 1

3x + 1− 3(x− 1) = 4x

4 = x;

(g−1 ◦ g)(x) = g−1(g(x)) = g−1
(

x + 1
x− 3

)
=

3
(

x+1
x−3

)
+ 1

x+1
x−3 − 1 = 3(x + 1) + x− 3

x + 1− (x− 3) = 4x

4 = x.�

6. PROOF Let z ∈ C. Since g is surjective, there exists y ∈ B such that g(y) =
z. Since f is surjective, there exists x ∈ A such that f(x) = y. For this x,
(g ◦ f)(x) = g(f(x)) = g(y) = z so z ∈ Im(g). Thus g ◦ f is surjective. �
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2.3 Fall 2017 Exam 3
1. In each item, you are given the description of a set. Characterize the set as

finite, countably infinite, or uncountable:

a) The integers Z
b) The rational numbers Q
c) The irrational numbers R−Q
d) The power set of a finite set

e) The union of a finite set and a countably infinite set

f) The intersection of a finite set and a countably infinite set

g) A union of countably many countably infinite sets

h) The Cartesian product of a countable number of sets, each of which has
cardinality 2

2. Prove that for all n ∈ N,

0 · 0! + 1 · 1! + 2 · 2! + 3 · 3! + · · ·+ n · n! = (n + 1)!− 1.

3. Prove that for all n ∈ N,
3 | (5n − 2n).

4. Prove that for all n ∈ N, when n2 is divided by 8, the remainder is 0, 1 or 4.

5. Let xn be the sequence defined by setting x0 = 3 and x1 = 4, and for all n ≥ 1,
setting

xn+1 = xn + 6xn−1.

Prove that for all n ∈ N,
xn = 2 · 3n + (−2)n.

6. Choose one of (a) or (b):

a) Prove the Fundamental Theorem of Arithmetic, which says that every
natural number greater than or equal to 2 can be written as a product of
prime numbers.

b) Prove the Inclusion-Exclusion Law, which says that for any two finite
sets A and B,

#(A ∪B) = #(A) + #(B)−#(A ∩B).
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2.3. Fall 2017 Exam 3

Solutions

1. a) Z is countably infinite.

b) Q is countably infinite.

c) R − Q is uncountable (if they were countable, R would be the union of
two countable sets, hence countable).

d) The power set of a finite set is finite (a set of size n has 2n subsets).

e) The union of a finite set and a countably infinite set is countably infinite.

f) The intersection of a finite set and a countably infinite set is finite.

g) A union of countably many countably infinite sets is countably infinite.

h) The Cartesian product of a countable number of sets, each of which has
cardinality 2 is uncountable (each element would be an infinite string
of elements from the set of cardinality 2, which makes this set equinu-
merous with the set X we proved is uncountable in the notes).

2. We proceed by induction on n.

Base case: when n = 0 we have

0 · 0! = 0 = 1− 1 = (0 + 1)!− 1.

Induction step: suppose the result is true when n = k. Then

0 · 0! + · · ·+ (k + 1) · (k + 1)! = [0 · 0! + · · · k · k!] + (k + 1) · (k + 1)!
= [(k + 1)!− 1] + (k + 1) · (k + 1)! (by the IH)
= (k + 1)!(1 + (k + 1))− 1
= (k + 2)(k + 1)!− 1
= (k + 2)!− 1.

By induction, the result is true. �

3. We proceed by induction on n.

Base case: when n = 1 we have 51 − 21 = 3 so 3 | (51 − 21) as wanted.

Induction step: suppose 3 | (5k − 2k). That means 5k − 2k = 3x where x ∈ Z.
Multiplying both sides by 5, we get 5k+1−5 ·2k = 3(5x). Adding 3 ·2k to both
sides, we get 5k+1 − 2k+1 = 3(5x) + 3(2k) = 3(5x + 2k) so 3 | (5k+1 − 2k+1) as
desired.

By induction, we are done. �
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2.3. Fall 2017 Exam 3

4. By the Division Theorem, every n ∈ N can be written as n = 4q + r where
r ∈ {0, 1, 2, 3}. We argue in cases based on the value of r:

Case 1: r = 0. Then n = 4q so n2 = 16q2 = 8(2q2) so when n2 is divided by 8,
the remainder is 0.

Case 2: r = 1. Then n = 4q +1 so n2 = (4q +1)2 = 16q2 +8q +1 = 8(2q2 +q)+1
so when n2 is divided by 8, the remainder is 1.

Case 3: r = 2. Then n = 4q+2 so n2 = (4q+2)2 = 16q2+16q+4 = 8(2q2+2q)+4
so when n2 is divided by 8, the remainder is 4.

Case 4: r = 3. Then n = 4q + 3 so n2 = (4q + 3)2 = 16q2 + 24q + 9 =
8(2q2 + 3q + 1) + 1 so when n2 is divided by 8, the remainder is 1.

In all cases, the remainder is 0, 1 or 4, so the result is true. �

5. We proceed by strong induction on n.

Base cases: when n = 0, x0 = 3 = 2 · 30 + (−2)0 as desired.

When n = 1, x1 = 4 = 2 · 31 + (−2)1 as desired.

Induction step: Suppose the result is true for all k ≤ n. Then

xn+1 = xn + 6xn−1

= 2 · 3n + (−2)n + 6
[
2 · 3n−1 + (−2)n−1

]
(by the IH)

= 2 · 3n + (−2)n + 4 · 3n − 3 · (−2)n

= 6 · 3n − 2(−2)n

= 2 · 3n+1 + (−2)n+1.

By induction, we are done. �

6. a) Let E be the set of natural numbers greater than or equal to 2 that cannot
be written as a product of primes. Suppose E 6= ∅; then by the WOP E
has a least element x. If x is prime, then x can be written as a product
of primes, so x /∈ E, a contradiction. But if x is composite, then x = ab
where 1 < a < x, 1 < b < x. Since neither a nor b can lie in E, a and b
can be written as product of primes:

a = p1 · · · pm b = q1 · · · qn

But then x = ab = p1 · · · pmq1 · · · qn is a product of primes, so x /∈ E, a
contradiction. Either way, E must be empty, proving the result. �

b) Notice that A∪B is the disjoint union of the sets A and B−A. Therefore,
by a result from class,

#(A ∪B) = #(A) + #(B − A).
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Therefore

#(A ∪B) = #(A) + #(B − A) + #(A ∩B)−#(A ∩B).

Now, observe that B is the disjoint union of A∩B and B−A, so #(B) =
#(A∩B) + #(B−A). Substituting this into the previous equation gives

#(A ∪B) = #(A) + #(B)−#(A ∩B)

as wanted. �
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2.4 Fall 2017 Final Exam
1. Write a truth table for the compound proposition (P ∨Q)⇔ (∼ P ∧R).

2. a) Write the contrapositive of the statement “if a number is perfect, then it
is even”.

b) Write a useful denial of the statement “if a number is perfect, then it is
even”.

c) Write a useful denial of the statement “for every x ∈ R, there exists y ∈ N
such that (x, y) ∈ E”.

3. Suppose you are trying to write a proof by induction of this statement:

For all n ∈ N, JnK ` En ⊕ F .

a) Write the fact you would be trying to establish when you are doing the
base case of your proof:

b) Write the induction hypothesis you would start with, when writing the
inductive step of your proof:

c) Write the statement you would be trying to establish, when you get to
the end of the inductive step of your proof:

4. In this problem, assume the universe of discourse is {a, b, c, d, e, f, g, h} and
that sets X , Y and Z are given by

X = {a, b, c, d, e} Y = {d, e} Z = {b, d, f, h}

List the elements in each of these sets:

a) XC

b) Y ∪ ∅
c) X ∩ (Y ∪ Z)
d) Z −X

e) Y 2

f) X4Z

5. Classify the following statements as true or false:

a) If 2 = 3, then 5 = 8.

b) “If P , then Q” is logically equivalent to “P or not Q”.

c) “If P , then Q” is logically equivalent to “If not Q, then not P ”.

d) For any two sets A and B, A×B = B × A
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e) For any three sets E, F and G, E ∩ (F ∪G) = (E ∩ F ) ∪ (E ∩G).
f) The relation R = {(x, y) : x + y is even} is an equivalence relation on Z.

g) The relation {(3, 2), (7, 5), (8, 1), (4, 4), (2, 5)} is a function.

h) The function f : R→ R given by f(x) = x3 − x is injective.

i) The function f : R→ R given by f(x) = x3 − x is surjective.

j) For any function f and any two subsets E and F of the codomain of f ,
f−1(E ∩ F ) = f−1(E) ∩ f−1(F ).

k) Every nonempty subset of N has a least element.

l) R is countable.

m) The Cartesian product of countably many finite sets, each of whom con-
tain 2 elements, is countable.

6. Complete a total of eight of the sixteen proofs below, with the caveat that you
must complete at least one and at most two from each category (A, B, C, D,
E).

Category A:

A1. Prove that
√

2 is irrational.

A2. Let x, y ∈ Z. Prove that if xy is even, then x or y is even.

A3. Let n ∈ Z. Prove that if 7 does not divide n2, then 7 does not divide n.

Category B:

B1. Let A, B and C be sets. Prove (A ∪B)− (A ∪ C) ⊆ A ∪ (B − C).
B2. Let E, F and G be sets. Prove (E ∩ F )×G = (E ×G) ∩ (F ×G).
B3. Let R be an equivalence relation on a set E. Let x, y ∈ E and suppose

x R y. Prove [x] = [y] (where [z] denotes the R-equivalence class of z).

Category C:

C1. Prove the function f(x) = (ex + 1)3 is a bijection from R to (1,∞).
C2. Let f : A → B and g : B → C. Prove that if g ◦ f is injective, then f is

injective.

C3. Let f : X → Y , and let A and B be subsets of X . Prove f(A ∪ B) =
f(A) ∪ f(B).

Category D:

D1. Let F be the set of all finite subsets of N. Prove that F is countable.

D2. Prove that the union of two countably infinite sets is countable.
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D3. Prove the Inclusion-Exclusion Law, which says that for two finite sets A
and B, #(A ∪B) = #(A) + #(B)−#(A ∩B).

Category E:

E1. Prove that for all natural numbers n ≥ 3, 2n + 1 < 2n.

E2. Prove that for all n ∈ N,

0 · 20 + 1 · 21 + 2 · 22 + ... + n · 2n = 2 + (n− 1)2n+1.

E3. Prove that the union of finitely many finite sets is finite (you may assume
that the union of two finite sets is finite).

E4. Let Fn denote the nth Fibonacci number (i.e. F0 = 0, F1 = 1 and Fn+1 =
Fn + Fn−1 for all n ≥ 1). Prove

n∑
j=0

Fj = Fj+2 − 1.
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Solutions
1. Here is the completed truth table:

P Q R P ∨Q ∼ P ∼ P ∧R (P ∨Q)⇔ (∼ P ∧R)
T T T T F F F
T T F T F F F
T F T T F F F
T F F T F F F
F T T T T T T
F T F T T F F
F F T F T T F
F F F F T F T

2. a) If a number is not even, then it is not perfect.

b) There is a number which is perfect, but not even.

c) There exists x ∈ R such that for all y ∈ N, (x, y) /∈ E.

3. a) J0K ` E0 ⊕ F .

b) JkK ` Ek ⊕ F .

c) Jk + 1K ` Ek+1 ⊕ F .

4. a) XC = {f, g, h}.
b) Y ∪ ∅ = Y = {d, e}.
c) X ∩ (Y ∪ Z) = X ∩ {b, d, e, f, h} = {b, d}.
d) Z −X = {f, h}.
e) Y 2 = {(d, d), (d, e), (e, d), (e, e)}.
f) X4Z = {a, c, e, f, h}.

5. a) TRUE (vacuously).

b) FALSE: “If P , then Q” is logically equivalent to “Q or not P ”.

c) TRUE: a conditional is logically equivalent to its contrapositive.

d) FALSE: the order of an ordered pair matters.

e) TRUE (this is a distributive law for set operations).

f) TRUE (this is the same relation as equivalence modulo 2)

g) TRUE since each input has at most one output.

h) FALSE since f(0) = f(1) = 0.

i) TRUE this function is cubic, so its tails point toward +∞ and−∞, so its
range includes every real number.

j) TRUE: inverses preserve both union and intersection.

k) TRUE (this is the Well-Ordering Property of N).
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l) FALSE: R is uncountable.
m) FALSE: such a product space would contain infinite sequences of ele-

ments of the sets; such a set is uncountable for the same reasons the set
X discussed in class is uncountable.

A1. Suppose not, i.e.
√

2 = p
q

in lowest terms where p, q ∈ Z. Then 2q2 = p2, so p2

is even, so p is even. Thus p = 2s for s ∈ Z and consequently 2q2 = (2s)2 = 4s2

so q2 = 2s2. Thus q2 is even, so q is even. Therefore 2 divides both p and q, so
p
q

wasn’t in lowest terms after all, a contradiction. Therefore
√

2 /∈ Q. �

A2. We prove the contrapositive: suppose x and y are odd. Then x = 2m + 1 and
y = 2n + 1 for m, n ∈ Z. Thus xy = (2m + 1)(2n + 1) = 4mn + 2m + 2n + 1 =
2(2mn + m + n) + 1 is odd. By contraposition, we are done. �

A3. We prove the contrapositive: suppose 7 |n. Then n = 7k for k ∈ Z. Thus
n2 = (7k)2 = 49k2 = 7(7k2) so 7 |n2. By contraposition, we are done. �

B1. Let x ∈ (A− C) ∪ (B − C).
Case 1: x ∈ A − C = A ∩ CC . Then, since x ∈ A, x ∈ A ∪ B. Also, x ∈ CC so
x ∈ (A ∪B)− C as desired.

Case 2: x ∈ B − C = B ∩ CC . Then, since x ∈ B, x ∈ A ∪ B. Also, x ∈ CC so
x ∈ (A ∪B)− C as desired.

In either case, x ∈ (A ∪B)− C. �

B2. (⊆) Let x ∈ (E ∩ F ) × G. Then x = (a, b) where a ∈ E ∩ F and b ∈ G. Then,
since a ∈ E and b ∈ G, x = (a, b) ∈ E × G. Similarly, since a ∈ F and b ∈ G,
x = (a, b) ∈ F ×G so x ∈ (E ×G) ∩ (F ×G) as desired.

(⊇) Let x = (a, b) ∈ (E×G)∩(F×G). Since x ∈ E×G, a ∈ E and b ∈ G. Also,
since x ∈ F ×G, a ∈ F and b ∈ G. Thus a ∈ E ∩F so x = (a, b) ∈ (E ∩F )×G.
�

B3. (⊆) Let z ∈ [x]. This means xRz. Since xRy, by transitivity zRy, i.e. z ∈ [y].
This proves [x] ⊆ [y].
(⊇) Let z ∈ [y]. This means yRz. Since xRy, by transitivity zRx, i.e. z ∈ [x].
This proves [y] ⊆ [x]. �

C1. Define f−1 : (1,∞)→ R by f−1(y) = ln( 3
√

y − 1). We have

f−1(f(x)) = ln
(

3
√

(ex + 1)3 − 1
)

= ln(ex + 1− 1) = ln ex = x

and
f(f−1(y)) =

(
eln( 3√y−1) + 1

)3
= ( 3
√

y − 1 + 1)3 = ( 3
√

y)3 = y

so f and f−1 are inverse functions. Since f is invertible, it is a bijection. �
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C2. Suppose x1 and x2 in X are such that f(x1) = f(x2). Applying g to both sides,
we get g(f(x1)) = g(f(x2)), i.e. (g ◦ f)(x1) = (g ◦ f)(x2). But since g ◦ f is
injective, x1 = x2. Thus f is injective. �

C3. (⊆) Let x ∈ f(A ∪B). Then x = f(a) where a ∈ A ∪B.

Case 1: a ∈ A. Then x = f(a) ∈ f(A).
Case 2: a ∈ B. Then x = f(a) ∈ f(B).
In either case, x ∈ f(A) ∪ f(B).
(⊇) Let x ∈ f(A) ∪ f(B).
Case 1: x ∈ f(A). Thus x = f(a) for a ∈ A. Since a ∈ A ∪B, x ∈ f(A ∪B).
Case 2: x ∈ f(B). Thus x = f(b) for b ∈ B. Since b ∈ A ∪B, x ∈ f(A ∪B).
In either case, x ∈ f(A ∪B). �

D1. For each n ∈ N, let Fn be the set of subsets of N of cardinality n. The function
f : Nn → F given by f(x1, x2, ..., xn) = {x1, ..., xn} maps onto all of Fn, so

Fn is countable for each n. But F =
∞⋃

n=0
Fn is therefore a countable union of

countable sets, so F is countable. �

D2. Let A and B be countably infinite; then there are bijections f : N → A and
g : N → B. Define h : N → A ∪ B by “alternating” values of f and g. More
precisely, set

h(n) =

 f
(

n
2

)
if n is even

g
(

n−1
2

)
if n is odd

.

h is the union of two surjections, so is surjective. Since we have established a
surjective function h : N→ A ∪B, A ∪B is countable. �

D3. Notice that A is the disjoint union of A ∩ B and A − B; similarly B is the
disjoint union of A ∩B and B − A. Therefore

#(A) = #(A ∩B) + #(A−B) and #(B) = #(A ∩B) + #(B − A).

Adding the left- and right-hand sides of these equations gives

#(A) + #(B) = #(A ∩B) + #(A−B) + #(A ∩B) + #(B − A)

so by subtracting #(A ∩B) from both sides, we get

#(A) + #(B)−#(A ∩B) = #(A ∩B) + #(A−B) + #(B − A).

But the three sets on the right-hand side of this equation are disjoint and have
union A ∪B, so the result follows:

#(A) + #(B)−#(A ∩B) = #(A ∪B). �
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E1. Induction on n:

Base case: when n = 3, 2(3) + 1 = 7 < 8 = 23.

Induction step: Suppose k ≥ 3 and 2k+1 < 2k. Since k ≥ 3, 2 < 2k so by adding
the smaller and larger terms of both inequalities, we get 2k + 1 + 2 < 2k + 2k,
i.e. 2k + 3 < 2 · 2k, i.e. 2(k + 1) + 1 < 2k+1. By induction, we are done. �

E2. Base case: when n = 0, 0 · 20 = 0 = 2− 2 = 2 + (−1)21.

Induction step: Suppose
k∑

j=0
j2j = 2 + (k − 1)2k+1. Then

k+1∑
j=0

j 2j =
k∑

j=0
j2j + (k + 1)2k+1

=
[
2 + (k − 1)2k+1

]
+ (k + 1)2k+1 (by the IH)

= 2 + (k − 1 + k + 1)2k+1

= 2 + 2k 2k+1

= 2 + k 2k+2

= 2 + [(k + 1)− 1]2(k+1)+1 as wanted.

By induction on n, we are done. �

E3. Let n be the number of sets in the union. The proof is by induction on n (the
base case n = 2 can be assumed):

Induction step: Suppose the union of any k finite sets is finite. Then, let
A1, ..., Ak+1 be finite sets. We have

k+1⋃
j=1

Aj =
 k⋃

j=1
Aj

 ∪ Ak+1.

By the IH, the set
k⋃

j=1
Aj is finite, so

k+1⋃
j=1

Aj is the union of two finite sets,

which is finite by the base case. By induction, we are done. �

E4. The proof is by strong induction on n:

Base cases: when n = 0,
0∑

j=0
Fj = F0 = 0 = 1− 1 = F2 − 1.

When n = 1,
1∑

j=0
Fj = F0 + F1 = 0 + 1 = 2 = 3− 1 = F3 − 1.
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Induction step: Suppose that for all k ≤ n,
k∑

j=0
Fj = Fk+2 − 1. Then

n+1∑
j=0

Fj =
n∑

j=0
Fj + Fn+1

= Fn+2 − 1 + Fn+1 (by the IH)
= [Fn+2 + Fn+1]− 1
= Fn+3 − 1 (by the definition of the Fibonacci numbers)
= F(n+1)+2 − 1 as wanted.

By induction, we are done. �
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