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1 Limits

Suppose f : R→ R. To say
lim
x→a

f(x) = L

means that as x gets closer and closer to a, then f(x) gets closer and closer to L. This suggests that
the graph of f looks like one of the following three pictures:

a

fHaL = L

a

L

fHaL

a

L

The graph on the left is “continuous” at a; the other two graphs are not. More precisely,

Definition 1.1 A function f : R→ R is continuous at a if lim
x→a

f(x) = f(a). f is called continuous
if it is continuous at every point in its domain.

Most “reasonable” functions are continuous, as seen in the following theorem:

Theorem 1.2 Any function which is the sum, difference, product, composition, and/or quotient of
functions made up of constants, powers of x, sines, cosines, arcsines, arctangents, exponentials and/or
logarithms is continuous everywhere except where any denominator is zero.

This theorem suggests that to evaluate most limits, you should start by plugging in a for x. If
you get a number, that is usually the answer.

When you plug in a for x and you get 0 in a denominator, you have to work a bit harder to
evaluate a limit.

• When you get nonzero
0 : answer is ±∞ (this indicates the presence of a vertical asymptote at

x = a); check the signs of the top and bottom carefully to see whether the answer is∞ or−∞.

• When you get 0
0 : answer could be anything

Techniques for dealing with 0
0 :

– Factor and cancel

– Conjugate square roots

– Clear denominators of “inside” fractions

– L’Hôpital’s Rule (see below)
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Theorem 1.3 (L’Hôpital’s Rule) Suppose f and g are differentiable functions. Suppose also that
either

lim
x→a

f(x) = lim
x→a

g(x) = 0 or lim
x→a

f(x) = lim
x→a

g(x) = ±∞.

Then:
lim
x→a

f(x)

g(x)

L
= lim

x→a

f ′(x)

g′(x)
.

Limits at infinity: Suppose f : R→ R. To say

lim
x→∞

f(x) = L

means that as x gets larger and larger without bound, then f(x) gets closer and closer to L; equiva-
lently this means y = L is a horizontal asymptote of f . To evaluate a limit at infinity, “plug in ”∞
for x and use the following arithmetic rules with∞:

∞± c =∞ ∞ ·∞ =∞ ∞∞ =∞ c · ∞ =

{
∞ if c > 0
−∞ if c < 0

√
∞ =∞ ln∞ =∞ e∞ =∞ ∞c =

{
∞ if c > 0
0 if c < 0

c

∞
= 0

∞
0

= ±∞ c

0
= ±∞ so long as c 6= 0

In the last two situations, you need to analyze the sign carefully to determine whether the answer
is∞ or −∞.

Warning: The following expressions are indeterminate forms, i.e. they can work out to be
different things depending on the context (these are evaluated using L’Hôpital’s Rule):

0

0

∞
∞

0 · ∞ ∞−∞ 1∞ ∞0 00

Limits at infinity for rational functions can be determined immediately by way of the following
theorem:

Theorem 1.4 (Limits at infinity for rational functions) Suppose f is a rational function, i.e. has
form

f(x) =
amxm + am−1x

m−1 + am−2x
m−2 + ... + a2x

2 + a1x + a0
bnxn + bn−1xn−1 + bn−2xn−2 + ... + b2x2 + b1x + b0

.

Then:

1. If m < n (i.e. largest power in numerator < largest power in denominator), then lim
x→∞

f(x) = 0.

2. If m > n (i.e. largest power in numerator > largest power in denominator), then lim
x→∞

f(x) =

±∞.

3. If m = n (i.e. largest powers in numerator and denominator are equal), then lim
x→∞

f(x) = am

bn
.
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2 Derivatives

Definition 2.1 (Limit definition of the derivative) Let f : R→ R be a function and let x be in the
domain of f . If the limit

lim
h→0

f(x + h)− f(x)

h

exists and is finite, say that f is differentiable at x. In this case, we call the value of this limit the
derivative of f and denote it by f ′(x) or df

dx or dy
dx .

Differentiable functions are smooth, i.e. are continuous and do not have sharp corners, vertical
tangencies or cusps.

Assuming it exists, the derivative f ′(x) computes:

1. the slope of the line tangent to f at x;

2. the slope of the graph of f at x;

3. the instantaneous rate of change of y with respect to x;

4. the instantaneous velocity at time x (if f is the position of the object at time x).

We do not compute derivatives using the limit definition given above. We use differentiation rules
(given on the next two pages), which consist of a list of functions whose derivative we memorize
and a list of rules which tell us how to differentiate more complicated functions made up of pieces
whose derivatives we know.

Derivatives have many applications. The most important (for Math 230 purposes) is that given
a differentiable function f , you can approximate values of f near a using the tangent line to f at a:

Definition 2.2 Given a differentiable function f and a number a at which f is differentiable, the tan-
gent line to f at a is the line whose equation is

y = f(a) + f ′(a)(x− a) (a.k.a. L(x) = f(a) + f ′(a)(x− a)).

For values of x near a, f(x) ≈ L(x); approximating f(x) via this procedure is called linear approxi-
mation.

You can also conclude many things about the graph of f from looking at its derivative and its
higher-order derivatives, as defined below:

Definition 2.3 Let f : R→ R be a function.

• The zeroth derivative of f , sometimes denoted f (0), is just the function f itself.

• The first derivative of f , sometimes denoted f (1) or dy
dx , is just f ′.

• The second derivative of f , denoted f ′′ or f (2) or d2y
dx2 , is the derivative of f ′: f ′′ = (f ′)′.

• More generally, the nth derivative of f , denoted f (n) or dny
dxn ,is the derivative of f (n−1):

f (n) = ((((f ′)′) · · ·′)′
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The first derivative of a function measures its tone (when f ′ > 0, the function is increasing;
when f ′ < 0, the function is decreasing). The second derivative of a function measures its concav-
ity (when f ′′ > 0, the function is concave up; when f ′′ < 0, the function is concave down). The
second derivative of a function which gives the position of an object gives the acceleration of the
object.

Derivatives of functions that you should memorize:

Constant Functions d
dx (c) = 0

Power Rule d
dx (xn) = nxn−1 (so long as n 6= 0)

Special cases of the Power Rule: d
dx (mx + b) = m

d
dx (
√
x) = 1

2
√
x

d
dx

(
1
x

)
= −1

x2

d
dx (x2) = 2x

Trigonometric Functions d
dx (sinx) = cosx

d
dx (cosx) = − sinx

d
dx (tanx) = sec2 x

d
dx (cotx) = − csc2 x

d
dx (secx) = secx tanx

d
dx (cscx) = − cscx cotx

Exponential Function d
dx (ex) = ex

Natural Log Function d
dx (lnx) = 1

x

Inverse Trig Functions d
dx (arctanx) = 1

x2+1

d
dx (arcsinx) = 1√

1−x2

Rules that tell you how to differentiate more complicated functions:

Sum Rule (f + g)′(x) = f ′(x) + g′(x)

Difference Rule (f − g)′(x) = f ′(x)− g′(x)

Constant Multiple Rule (kf)′(x) = k · f ′(x) for any constant k

Product Rule (fg)′(x) = f ′(x) g(x) + g′(x) f(x)

Quotient Rule
(

f
g

)′
(x) = f ′(x) g(x)−g′(x) f(x)

[g(x)]2

Chain Rule (f ◦ g)
′
(x) = f ′(g(x)) g(x)
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3 Integrals

Definition 3.1 Given function f : [a, b]→ R, the definite integral of f from a to b is∫ b

a

f(x) dx = lim
||P||→0

n∑
k=1

f(ck)∆xk,

where the expression inside the limit is a Riemann sum for f .

Note: In Math 230, the limit above always exists (but it doesn’t always exist for crazy functions
f ... take Math 430 for more on that).

The definite integral of a function is a number which gives the signed area of the region be-
tween the graph of f and the x-axis. Area above the x-axis is counted as positive area; area below
the x-axis is counted as negative area. (A definite integral also gives the displacement of an object
from time a to time b, if the object’s velocity at time x is the integrand f(x).)

As with derivatives, we do not compute integrals with this definition. We use the Fundamental
Theorem of Calculus, which tells us to evaluate integrals using antiderivatives:

Definition 3.2 Given function f , an antiderivative of f is a function F such that F ′ = f .

Every continuous function has an antiderivative (although you may not be able to write its for-
mula down); any two antiderivatives of the same function must differ by a constant (so if you know
one antiderivative, you know them all by adding a +C to the one you know).

Definition 3.3 Given function f , the indefinite integral of f , denoted∫
f(x) dx,

is the set of all antiderivatives of f .

Theorem 3.4 (Fundamental Theorem of Calculus Part II) Let f be continuous on [a, b]. Suppose
F is any antiderivative of f . Then∫ b

a

f(x) dx = F (x)|ba = F (b)− F (a).

Despite the similar notation,
∫
f(x) dx and

∫ b

a
f(x) dx are very different objects. The first object

is a set of functions; the second object is a number.
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Theorem 3.5 (Integration Rules to Memorize)∫
0 dx = C∫
M dx = Mx + C∫
xn dx =

xn+1

n + 1
+ C (so long as n 6= −1)∫

1

x
dx = ln |x|+ C (I don’t care so much about the | |)∫

sinx dx = − cosx + C∫
cosx dx = sinx + C∫
sec2 x dx = tanx + C∫
csc2 x dx = − cotx + C∫
secx tanx dx = secx + C∫
cscx cotx dx = − cscx + C∫
ex dx = ex + C∫

1

x2 + 1
dx = arctanx + C∫

1

x2 + a2
dx =

1

a
arctan

x

a
+ C∫

1√
1− x2

dx = arcsinx + C

Theorem 3.6 (Linearity of Integration) Suppose f and g are integrable functions. Then:∫ b

a

[f(x) + g(x)] dx =

∫ b

a

f(x) dx +

∫ b

a

g(x) dx;∫ b

a

[f(x)− g(x)] dx =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx;∫ b

a

[k · f(x)] dx = k

∫ b

a

f(x) dx for any constant k;

(and the same rules hold for indefinite integrals).

Here are some other basic properties of integrals:

Definition 3.7 Let a < b and let f : [a, b]→ R be integrable. Then∫ a

b

f(x) dx = −
∫ b

a

f(x) dx and
∫ a

a

f(x) dx = 0.
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Theorem 3.8 (Additivity property of integrals) Suppose f is integrable. Then for any numbers a,
b and c, ∫ b

a

f(x) dx +

∫ c

b

f(x) dx =

∫ c

a

f(x) dx

Difficult integrals require more advanced techniques. u-substitutions are useful to integrate
functions which are the product of two or more related terms:

Theorem 3.9 (Integration by u−substitution - Indefinite Integrals)∫
f(g(x)) · g′(x) dx =

∫
f(u) du

by setting u = g(x).

Theorem 3.10 (Integration by u−substitution - Definite Integrals)∫ b

a

f(g(x)) · g′(x) dx =

∫ g(b)

g(a)

f(u) du

by setting u = g(x).

It is helpful to memorize the following idea, which comes from using a u-substitution u =
mx + b:

Theorem 3.11 (Linear Replacement Principle) Suppose you know∫
f(x) dx = F (x) + C.

Then for any constants m and b,∫
f(mx + b) dx =

1

m
F (mx + b) + C.

Integrals whose integrands are products of unrelated terms are often computed using integra-
tion by parts:

Theorem 3.12 (Integration by Parts (IBP) Formula)∫
u dv = uv −

∫
v du.

A last technique useful to evaluate some integrals is to find the partial fraction decomposition
of the integrand; to use this technique, the denominator of the integrand should be “factorable”
and the degree of the numerator should be less than the degree of the denominator.
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4 Infinite Series

An infinite series is an attempt to add an infinite list of numbers

∞∑
n=1

an = a1 + a2 + a3 + ...

If the infinite list of numbers has a finite sum, we say the series converges; otherwise we say the
series diverges. More formally:

Definition 4.1 Let
∑

an be an infinite series. For each N , let SN be the N th partial sum of the series;
this is defined to be the sum of all the an for which n ≤ N . Then:

1. If L is a real number such that lim
N→∞

SN = L, then we say the infinite series a1 + a2 + a3 + ...

converges (to L) and write
∑

an = L. In this setting L is called the sum of the series.

2. If lim
N→∞

SN = ±∞ or if lim
N→∞

SN DNE, then we say the infinite series
∑

an diverges.

Important: There is a big difference between saying “
∑

an converges” and saying “an con-
verges”. Without the Σ, you aren’t adding the numbers. Therefore, you should never omit the Σ
when describing whether or not an infinite series converges.

We divide convergent series into two classes as follows:

Definition 4.2 Let
∑

an be an infinite series. We say the series is absolutely convergent (or that
the series converges absolutely) if

∑
|an| converges.

If
∑

an converges but
∑
|an| diverges, then we say

∑
an is conditionally convergent (or that

the series converges conditionally).

The reason we care whether a series converges absolutely or conditionally is the following the-
orem:

Theorem 4.3 (Rearrangement Theorem) Suppose
∑

an is an infinite series.

1. If
∑

an converges conditionally, then the terms of that series can be rearranged so that the rear-
ranged series converges to any number you like! (The series can also be rearranged so that the
rearranged series diverges.)

2. If
∑

an converges absolutely to L, then no matter how the terms of the series are regrouped or
rearranged, the rearranged series still converges absolutely to L.

The major application of series is to obtain alternate representations of functions which can be
used for approximations:

Definition 4.4 Suppose f is a function which can be differentiated over and over again at x = 0. The
Taylor series (centered at 0) of f (a.k.a. Maclaurin series of f is the power series

∞∑
n=0

f (n)(0)

n!
xn.

If we truncate this series at the N th power term, we obtain a partial sum of the Taylor series called the
N th Taylor polynomial (centered at 0) of f . This polynomial is denoted PN (x).
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General properties of Taylor polynomials:

1. PN (x) is a polynomial of degree ≤ N ;

2. P0(x) is the constant function of height f(0);

3. P1(x) is the tangent line to f when x = 0;

4. PN (x) is the best N th degree polynomial approximation to f near 0.

The point of Taylor series and Taylor polynomials is that if a function f has N th Taylor polyno-
mial PN , then PN (x) ≈ f(x) (this approximation improves as N increases, but is pretty good even
for small N ).

Theorem 4.5 (Uniqueness of power series) Suppose f is a function which can be differentiated
over and over again at x = 0. Then if we write f as a power series of the form

f(x) =

∞∑
n=0

anx
n,

then the coefficients an must satisfy

an =
f (n)(0)

n!
for all n.

In other words, the only power series of the form
∑

anx
n which can represent f is its Taylor series

centered at 0.

Commonly used Taylor series:

ex =
∞∑

n=0

xn

n! = 1 + x + x2

2 + x3

3! + ... (holds for all x)

sinx =
∞∑

n=0

(−1)nx2n+1

(2n+1)! = x− x3

3! + x5

5! −
x7

7! + ... (holds for all x)

cosx =
∞∑

n=0

(−1)nx2n

(2n)! = 1− x2

2 + x4

4! −
x6

6! + ... (holds for all x)

1
1−x =

∞∑
n=0

xn = 1 + x + x2 + x3 + ... (holds when x ∈ (−1, 1))

ln(1 + x) =
∞∑

n=1

(−1)n+1

n xn = x− x2

2 + x3

3 −
x4

4 + ... (holds when x ∈ (−1, 1])

arctanx =
∞∑

n=0

(−1)n
2n+1 x

2n+1 = x− x3

3 + x5

5 −
x7

7 + ... (holds when x ∈ [−1, 1])


