The following sum and integral formulas are useful in probability theory.

From time to time, when solving a problem we will obtain the left-hand side of one of these formulas; to proceed with the solution we replace it with the corresponding right-hand side.

Triangular Number Formula: For all $n \in \{1, 2, 3, ...\}$,

$$1 + 2 + 3 + \dots + n = \sum_{j=0}^{n} j = \frac{n(n+1)}{2}.$$

Finite Geometric Series Formula: for all $r \in \mathbb{R}$,

$$\sum_{n=0}^{N} r^n = \frac{1 - r^{N+1}}{1 - r}.$$

Infinite Geometric Series Formula: for all $r \in \mathbb{R}$ such that |r| < 1,

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r} \quad \text{and} \quad \sum_{n=N}^{\infty} r^n = \frac{r^N}{1-r}$$

Derivative of the Geometric Series Formula: for all $r \in \mathbb{R}$ such that |r| < 1,

$$\sum_{n=0}^{\infty} nr^n = \frac{r}{(1-r)^2}.$$

Exponential Series Formula: for all $r \in \mathbb{R}$,

$$\sum_{n=0}^{\infty} \frac{r^n}{n!} = e^r.$$

Binomial Theorem: for all $n \in \mathbb{N}$, and all $x, y \in \mathbb{R}$,

$$\sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} = (x+y)^n.$$

Vandermonde Identity: for all $n, k, r \in \mathbb{N}$,

$$\sum_{x=0}^{n} \left(\begin{array}{c} r \\ x \end{array} \right) \left(\begin{array}{c} n-r \\ k-x \end{array} \right) = \left(\begin{array}{c} n \\ k \end{array} \right).$$

Gamma Integral Formula: for all r > 0, $\lambda > 0$,

$$\int_0^\infty x^{r-1}e^{-\lambda x} dx = \frac{\Gamma(r)}{\lambda^r}.$$

Normal Integral Formula: for all $\mu \in \mathbb{R}$ and all $\sigma > 0$,

$$\int_{-\infty}^{\infty} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right) dx = \sigma\sqrt{2\pi}.$$

Beta Integral Formula: for all r > 0, $\lambda > 0$,

$$\int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$