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Chapter 1

Probability spaces

1.1 The big picture

FIRST QUESTION
What is probability?

Some history of probabiity

Pascal & Fermat (1654): correspondence regarding fair odds in games of chance
Bernoulli (1713), de Moivre (1718): basic laws of discrete probability

Boltzmann (1896), Gibbs (1902): statistical mechanics of gases expressed in terms
of the random motion of large numbers of particles

Kolmogorov (1933): formal, mathematical foundation of the subject

Black-Scholes (1973): application of probability to pricing of derivatives

6



1.1. The big picture

General setup of probability

1. You intend to perform an experiment which has different possible outcomes.

2. Use mathematical language to predict frequencies of these outcomes under rep-
etitions of the experiment.

MOTIVATING EXAMPLES

1. Roll a die repeatedly, and record the number you roll (the number is the
outcome).

In this setting, you might be interested in knowing things like:

* What is the likelihood (a.k.a. probability) you will roll a 4 on the third
roll?

* What is the probability you will roll between nine and twelve 4s if you
roll the die 60 times?

* How many rolls on the average will it take you until you roll a 4 for the
eighth time?

¢ What is the probability you eventually roll nineteen 5s in a row?

* What is the probability that the sum of the first 200 numbers you roll is
less than 6507

2. A driver will be involved in a random number of accidents over the course
of a year, and each of these accidents will cause a random amount of damage
to his/her car.

* How long will it take (on the average) for the driver to be involved in
three accidents?

* What is the probability the driver can be accident-free for at least six
years?

* What is the probability the driver will cause more than $3000 worth of
damage over the course of two years?

* What is the smallest number A such that you can be 99% sure that the
driver will cause less than $A worth of damage over the next three
years?

¢ What amount of damage should the driver expect (on the average) to
cause over the course of a year?

Probability is the branch of mathematics which solves these types of questions. To
solve them, and questions like them, we will

1. learn about a bunch of common models for probabilistic problems, and

2. learn the general theory of arbitrary probabilistic models.



1.2. Probability spaces

Both the common models and the general theory involves mastery of three inter-
twining mathematical concepts: probability spaces, random variables and stochastic
processes. Loosely speaking:

1. a probability space is a structure on which one can formulate a mathematically
legal method of computing probability;

2. a random variable is a measured quantity arising randomly as the result of
some experiment (like the number you roll or the amount of damage done in
an accident);

3. astochastic process is a collection of random variables indexed by time (like the
running total of the numbers you roll or the running amount of total damage
done by the driver or the price of a stock).

1.2 Probability spaces

RECALL
We seek mathematical language to describe probabilistic experiments.

Definition 1.1 (Outcomes, sample spaces and events)
1. Any single possible result of a probabilistic experiment is called an outcome.

2. The set of all possible outcomes is called the sample space. This set is usually
denoted ).

3. Any “observable” (more on what “observable” means later) subset of the sample
space is called an event. Events are usually denoted by capital letters like A, B,
E, F, etc.

Notice that definitions (2) and (3) above contain the words set and subset. So to
understand these definitions, we need to review some material about sets.



1.2. Probability spaces

Sets

Definition 1.2 (Basic language associated to sets)

1. A set is any definable collection of objects. Sets are usually denoted by capital
letters.

2. The members of a set are called elements of the set; if x is an element of set A
then we write x € A. If x is not an element of A, we write x ¢ A.

3. If every element of set E is also an element of set F', we say E is a subset of F
and write E C For F DO FE.

4. Two sets E and F are said to be equal if E C F and F' C E, in which case we
write E = F.

5. The empty set, denoted (), is the set with no elements.

Remarks:

1. the key word in part (1) of the above definition is “definable”. This basically
means that the set can be described without creating any kind of logical con-
tradiction. For more on a collection which isn’t definable, Google “Russell’s
paradox”.

2. To say two sets are equal means that they contain exactly the same elements.

3. Note the difference between “€” and “C”: the first symbol should be pre-
ceded by an element; the second symbol should be preceded by a subset.

4. There is only one empty set, so we say “the empty set”, not “an empty set”.

Venn diagrams

A useful way to think about sets is to draw pictures called Venn diagrams. To draw
a Venn diagram, traditionally you represent each set you're thinking about by a
circle (or an oval, or a square, or a rectangle, or some other shape); think of an object
as being an element of the set if and only if it is inside the shape corresponding
to the set. For example, a Venn diagram for the set A = {3,5,7,9,11} might be
something like




1.2. Probability spaces

because the box describing A contains exactly the elements of A (nothing more and
nothing less). Similarly, a Venn diagram representing three sets A, B and C' might
be something like

Here, this Venn diagram tells us that statements like these are all true:
3ec A 10¢ B 2¢ B CCA B ¢Z A.

In probability, the sample space (2 is the “universal set” containing all possible
outcomes of the experiment, so in any of our Venn diagrams, we can draw a box
containing “everything” and label that box 2.

Also, in probability our Venn diagrams tend to be more abstract (since we don’t
actually have a list of elements of our sets), so they look more like these:

E
To show
one event L.
Q
Q
E
To show E F 7
two events
Fand F*
Q
Q
E F E
To show F
three events
E, F and G: L—J(J
G Q

Q

The more useful pictures in probability tend to be the ones drawn on the right
above.

10



1.2. Probability spaces

Set-builder notation

We often describe sets with “set-builder” notation. For instance, to say something
like
E={reR:2<x<5}

means (in English) that £ is the set of real numbers x such that 2 < x < 5 (in other
words, F is the interval (2, 5]).

A picture of this £ would look something like this:

Set operations

Next, we want to discuss some operations on sets which arise naturally when de-
scribing results of an experiment:

Definition 1.3 (Complements) Given an event E, the event “E does not occur” is
the complement of E and is denoted E°, E€, E', QO — E, E, E (and other ways as

well).
E

Q

Definition 1.4 (Unions) Given two events E and I, the event “E or I or both
happen” is the union of E and F and is denoted E U F'.

E E€

F

C
Q /2

Q

Given a bunch of events E,, indexed by «, the union of these events, denoted |J E,, is
the event that at least one of the E,, occur.

11



1.2. Probability spaces

Definition 1.5 (Intersections) Given two events E and F, the event “E and F both
happen” is the intersection of E and F and is denoted E N F.

E E€

F

C
Q a

Q

Given a bunch of events E, indexed by «, the intersection of these events, denoted
N E.,, is the event that all of the E,, occur.

Definition 1.6 (Mutual exclusivity) Two events E and F are called mutually ex-
clusive or disjoint if they cannot both occur, i.e. if EN F = ().

EC

E E

FC

Definition 1.7 (Differences) Given two events E and I, the event “E occurs, but
not F'” is the difference of E and F. This difference is denoted E' — F (also E\F).

E E€

Notice that E — F = E N FC.

12



1.2. Probability spaces

EXAMPLE 1
Let £ =10,3], let ' = (—00,2),and let G = [1, o). Describe each of these sets:

1. FUF

2. E°NnG

5. (FUQG)®

More examples of this vocabulary can be found on the next page:

13



1.2. Probability spaces

n +> rolling n face up

0=r
E = {1,3,5} =rolling an odd number
F = {2,3,5} = rolling a prime number

EXAMPLES
EXPERIMENT OUTCOMES OF EVENTS
Toss a coin

9]

[Sa]

>

@)

O

5
ol o e
H E | >
=29 | Z
m 2
<3 |3
m W =
ik
~ g | H :
=N, Roll a die 0 ={1,2,3,4,5,6) olling a 7
2% |E
Ue
@ 3
A%

Flip a coin over
and over until
you flip a heads;
record the #
of flips

oo MANY OUTCOMES

CONTINUOUS
PROBABILITY

Record the
amount of
time (starting
now) until
your phone
rings

E = [0, 5] = your phone rings within 5
minutes
F = Q = your phone rings in a rational
amount of time

14



1.2. Probability spaces

Observability and the definition of a probability space

Start with a sample space (2, which is just a mathematical set. We want to describe
“observable” subsets of (), that is, subsets which we can distinguish.

Some philosophy: I

II.

Given these philosophical constraints, nothing mathematical “forces” an event to
be observable. We are allowed (in the most general sense) to choose a collection F
of subsets of (2 which obey I and II above and decree the subsets belonging to F to
be observable. The idea is that our choice of 7 should be a list of observable sets
which appropriately models the problem at hand.

(It turns out that there are only two reasonable choices of 7 in MATH 414, but
things get more interesting in MATH 416.)

Definition 1.8 Let 2 be a set. A nonempty collection F of subsets of §) is called a
o—algebra (a.k.a. o—field) if

1. Fis “closed under complements”, i.e. whenever E € F, EC € F.

2. F is “closed under finite and countable unions and intersections”, i.e. whenever
Ey, By, Es, ... € F, both J E; and () E; belong to F as well.
J J

A subset E of Q2 is called F —measurable (or just measurable) if E € F.

aai

The phrases “event”, “measurable set” and “observable set” are synonyms.

Theorem 1.9 Let F be a o—algebra of subsets of 2. Then ) € F and Q) € F.

PROOF By definition, F is nonempty.
Therefore, there is some set £ which belongs to F.
Since F is closed under complements, £ is also in F.
Now, since F is closed under finite intersections, E N E¢ = () € F.
Also, since F is closed under finite unions, EU E¢ = Q e F. O

15



1.2. Probability spaces

EXAMPLES OF 0-ALGEBRAS
Suppose you have a six-sided die where the sides are labeled with ared 1, ared 2,
ared 3,a green 1, a green 2, and a green 3. Roll the die once and let 2 be the set of
outcomes, i.e.

0={088 088 ={Rr1,R2 R3,Gl,G2,G3}.

Let’s look at some o—algebras on (2.

1. Suppose a blind man rolls the die. He can tell whether the die has been
rolled (by the sound), but has no idea what number is rolled. Thus the only
sets he can observe are () (the die hasn’t been rolled) and 2 (the die has been
rolled. He cannot observe the set { R1, 2} or { k1, G3}, because to determine
whether or not the outcome lies in that set, he would have to see the die.

The o —algebra representing the subsets a blind person can seeis| F = {), 2} |

(Notice that this collection F of sets is a o —algebra, meaning that it is closed
under complements, countable unions and countable intersections.)

2. Suppose a red-green colorblind person rolls the die. She can observe sets like
{R1,G1}, because to determine whether the outcome is in that set she only
needs to see that the top face of the die has one spot. But she can’t observe
sets like { #1}, because she can’t tell the background color of the face (so she
can’t distinguish between @ and ).

The o—algebra F representing the subsets a colorblind person can see can’t
be easily listed, but can be described as follows:

F is the collection of sets E' satisfying this property:
Rj e Fifand only if Gj € E, forall j € {1,2,3}.

(Notice that this F is also a o —algebra, since it is closed under complements,
countable unions and countable intersections.)

3. Suppose a person with 20/20 vision rolls the die. She can distinguish any
outcome. Thus the o—algebra F representing the subsets she can see is

the collection of ’ all subsets of (2 ‘ (F is clearly closed under complements,
countable unions and countable intersections).

Examples 1 and 3 above generalize:

Definition 1.10 Let 2 be any set.
o F ={0,Q} is a c—algebra called the trivial c—algebra on Q.

® The collection of all subsets of €, called the power set of ) and denoted 29 s
a o—algebra on ).

16



1.2. Probability spaces

Fact If the sample space (2 is finite or countable (including all cases
where 2 C Z), then we can decree F to be the power set of 2 and
never have a problem. Thus every subset of a finite or countable
sample space can be thought of as measurable.

Next, we want to calculate the probability of measurable sets:

More philosophy: Given a set (2 and a c—algebra F:

L.
II.

III1.

Given these philosophical constraints, nothing else mathematical is forced on us.
We are free to choose any assignment of probabilities to events that satisfies these
rules. Our choice should appropriately model the context of the original problem.

Definition 1.11 Given a set ) and a o—algebra F of subsets of ), a probability
measure on (§2, F) is a function P : F — R satisfying

1. P is normalized, meaning P(Q2) = 1;
2. P is positive, meaning P(E) > 0 forall E € F;

3. P is countably additive on disjoint sets, meaning that if £, E,, ... € F are

all mutually disjoint, then P (U Ej) =Y P(E;).
J J

Note: Statement (3) above necessarily implies that if there are infinitely many j
with P(E};) > 0, then the infinite series ) P(E;) must converge.
J

17



1.2. Probability spaces

Definition 1.12 A probability space is a triple (2, F, P) where 2 is a set (called
the sample space), F is a o—algebra on 2 (members of F are called events) and P
is a probability measure on (€2, F).

EXAMPLE 2
Describe a probability space which represents the result when a fair coin is tossed.

Important If the sample space (2 is finite or countable (including all
Remark situations where (2 C Z), then we can define P : 7 — R by
writing down P(w) for each w € .

This is because for any event E, we can set P(E) =) P(w).
wek

EXAMPLE 3
Suppose you roll a weighted die where 3 and 4 are three times as likely to appear
as any of the other four numbers (3 and 4 are equally likely to occur). Describe a
probability space which represents this experiment.

18



1.2. Probability spaces

EXAMPLE 4
Flip a fair coin repeatedly until a tail lands for the first time. Describe a probability
space which records the number of flips, and verify that you have constructed a
probability space.

19



1.2. Probability spaces

Observability in uncountable sample spaces

EXAMPLE 5
Choose a real number from the interval [0, 1] with all numbers “relatively equally
likely”. What is a probability space that models this problem?

Even more philosophy:

Definition 1.13 Given any interval ) of finite length (2 does not have to be closed):

1. There is a o—algebra L(SY) of subsets of § called the Lebesgue o—algebra
which includes all intervals, all single points, and all countable unions of inter-
vals, and

2. furthermore, there is a probability measure P on (2, L(2)) which assigns the
probability of any interval to be its normalized length:

E
—p— R
a a B b

_ length(E) B —«
(E) = length(Q)  b—a’

This (2, L(2), P) is a probability space called the uniform distribution or normal-
ized Lebesgue measure on ().

Fact You cannot take F to be the power set of (2 and obtain a probability
measure on (£, 2%) which assigns the probability of any interval to
be its normalized length.

20



1.2. Probability spaces

Thus if the sample space of some experiment is represented by an interval of real
numbers, and if we are going to compute probabilities in a reasonable way, we
must assume that there are some sets which are not observable. It is beyond the
scope of MATH 414 and 416 to actually characterize such a set; if you are inter-
ested, do a Google search for Vitali set. Fortunately, non-measurable sets do not
arise in any real world applications of probability, so we will ignore this issue for
the rest of the course.

EXAMPLE 6
Pick a number X from [—2, 6) with the uniform distribution (i.e. pick the number
“uniformly”).

1. What is the probability that X < 0?

2. What is the probability that X = 1?

3. What is the probability that X < 0or X > 5?

The idea of a uniform distribution generalizes to higher dimensions. The big dif-
ference is that we have to use a different notion of the “size” of a set:

dimension d | notion of “size” | how the “size” is computed
1(i.e. R) length by subtracting endpoints
2 (i.e. R?)
3 (ie R?)

> 3 (i.e. RY)

21



1.2. Probability spaces

Definition 1.14 Given any set Q2 C R? whose size is finite, there is a o —algebra L(S2)
on § and a probability measure P on (2, L(S2)) such that

1. L(S2) contains all subsets of 2 whose volume is calculable using integrals;
2. (2, L(S2), P) is a probability space;

_ size(E)
 size(Q)’

3. If E € L(Q), then P(E)

This (2, L(Q2), P) is called the uniform distribution or normalized Lebesgue
measure on 2, and L(S) is called the Lebesgue c—algebra on (2 .

EXAMPLE 6
Pick a point (X,Y) from the square with vertices (0,0), (2,0), (0,2) and (2, 2) uni-
formly.

1. What is the probability that Y > X7?

2. What is the probability that Y = 2.X?

3. What is the probability that Y < X??

22



1.3. Elementary properties of probability spaces

Summary so far
* A probability space is a triple, consisting of

- a sample space 2 (the set of all outcomes);

- a o—algebra F (the collection of measurable sets, closed under comple-
ments, countable unions and countable intersections);

— and a probability measure P on (2, F) (P is a function which measures
the probability of each measurable set; P must be normalized, positive,
and countably additive on disjoint sets).

¢ If the sample space (2 is finite or countable, we can always decree every subset
of Q2 to be measurable (i.e. set F = 29) and can define P as a function on
outcomes, rather than a function on events.

o If the sample space () is a subset of R?, we generally set 7 = L(Q), the
Lebesgue o—algebra on (2. This c—algebra contains all reasonable subsets
of 2, but not all subsets of 2.

* To calculate probabilities associated to uniform choices of numbers or points,
we compute lengths/areas/volumes as appropriate.

1.3 Elementary properties of probability spaces

RECALL
A probability space is a triple (€2, F, P) where F is a c—algebra of subsets of {2 and
P is a function from F to R so that P is

1.
2.
3.

We are now going to derive a long list of properties which hold in any probabil-
ity space. They are called elementary properties of probability spaces, because they
follow from the definition of a probability space without introducing other deep
mathematical ideas.

23



1.3. Elementary properties of probability spaces

Theorem 1.15 (Complement Rule) Let (X2, F, P) be a probability space. Then, for
any event E, P(E°) =1 — P(E).

PROOF F and E¢ are disjoint and F U E¢ = (), so by additivity of P, we have
1=P(Q)=P(FE UE°) = P(E)+ P(E°).

Subtract P(E) from both sides of this equation to get the result. [J

Theorem 1.16 (Maximum/minimum probability) Let (2, F, P) be a probability
space. Then for any event E, P(E) € [0, 1].

PROOF By definition, P(E) > 0.
By the complement rule, P(E) = 1 — P(E°).
Since P(EY) > 0, that means P(E) < 1.0

Theorem 1.17 Let (2, F, P) be a probability space. Then P(()) = 0.

PROOF Apply the Complement Rule to & = 2. [

WARNING: P(E) = 0 does not imply E = ().

Theorem 1.18 (Monotonicity) Let (€2, F, P) be a probability space, and let E and
F be events. If E C F, then P(E) < P(F).

PROOF HW (as a hint, start by writing F as F = EU (F N EY).) O

Theorem 1.19 (De Morgan Law) Let (2, F, P) be a probability space, and let E;
be an event for all j. Then P (U Ej) =1-P (ﬂ ch)
J J

PROOF We will first show .
(us) -ne
J J
and then apply the Complement Rule.

24



1.3. Elementary properties of probability spaces

Recall from the previous page that we wanted to show

(UE]-)C =&

To do this, observe
c
w € (UEJ) wisnotin | | E;
J J
w is not in at least one of the F;

w is in none of the E;

w is in all of the E]C

wem(EjC).D

[ A

Theorem 1.20 (Inclusion-Exclusion) Let (X2, F, P) be a probability space, and let
E and F be events. Then

P(EUF)=P(E)+ P(F)— P(ENF).

PROOF Start with a Venn diagram, and label each compartment of that Venn dia-
gram with a lowercase letter representing the probability of that compartment:

E

25



1.3. Elementary properties of probability spaces

Theorem 1.21 (Bonferonni Inequality) Let (€2, F, P) be a probability space, and
let E and F be events. Then P(EN F) > P(E) + P(F) — 1.

PROOF HW (as a hint, use Theorems and [1.20). O

Theorem 1.22 (General subadditivity) Let (2, F, P) be a probability space, and
let E and F be events. Then P(E U F) < P(E) + P(F).

PROOF By Inclusion-Exclusion, P(EU F) = P(E)+ P(F) — P(ENF).
Since P(ENF) >0, P(EUF) > P(E)—P(F)—0= P(E)+ P(F) as wanted. (J

Theorem 1.23 (General subadditivity) Let (2, F, P) be a probability space, and

let B\, By, Es, ... be events. Then P (U Ej) <> P(E)).
] J

J

PROOF Follows from Theorem and induction on j. [

Theorem 1.24 (Continuity of probabliity measures I) Let (52, F, P) be a proba-
bility space, and let E, Es, Fs, ... be events with Ey C E; C ... Let E :U E;. Then
J

P(E) =lim P(E;).

Jj—00

PROOF The first step of this proof is to “disjointify” the F;.
This means we will define a sequence of sets F}, F5, F3, ... with two properties:

* The sets F} are disjoint.

$Ur =y,
J J
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1.3. Elementary properties of probability spaces

Theorem 1.25 (Continuity of probabliity measures II) Let (2, F, P) be a prob-
ability space, and let Ey, Es, Fs, ... be events with £y O Ey, DO E3 DO ... Let
E =( E;. Then P(E) =lim P(E}).

. Jj—00

J

PROOF From the hypothesis, E¢ C EY C E C .... Therefore
P(E)=1- P(EY)

(NE)”
J

=1—-P (by definition of E)

=1-P (U(EJC)) (by De Morgan)

J

=1- lim P(E{) (by Continuity I)

Jj—00
=1— lim [1— P(E;)] (bythe Complement Rule)
Jj—o0

=1-1+ lim P(E))
—lim P(E;).0

j—o0

Applications
EXAMPLE 7
Assume AUB =Q, P(ANBY) = i and P(A%) = :1)) Find P(B).
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1.3. Elementary properties of probability spaces

EXAMPLE 8
Suppose events J, K and L in a probability space are such that

P(J)=5, P(K)=4, P(L)=3and P(JUK UL) = 9.

If J and L are mutually exclusive and P(K N L) is twice P(K° N L), whatis P(J —
K)?

J JC¢
K
C T
KC L_JL
Q
EXAMPLE 9

The chance you lose your umbrella is at least 80%. The chance you lose your glasses
is at least 75%. The chance you lose your keys is at least 60%. What is the minimum
chance you lose all three items?
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1.3. Elementary properties of probability spaces

Generalized Inclusion-Exclusion

RECALL

Theorem [1.20| (Inclusion-Exclusion) above says:

P(EUF) =

QUESTION

Can you say something similar about P(E U F' U G)?

Theorem 1.26 (3-way Inclusion-Exclusion) Let (€2, F, P) be a probability space,
and let E, F and G be events. Then

P(EUFUG)=P(E)+ P(F)+ P(G)
—P(ENF)—-P(ENG)—-P(FNG)
+ P(ENFNG).

PROOF Start with a Venn diagram:

E
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1.3. Elementary properties of probability spaces

QUESTION
What about P(E; U E, U E3U ... U E,)?

Theorem 1.27 (General Inclusion-Exclusion) Let (2, F, P) be a probability space,
and let E1, By, Es, ..., E,, be events. Then

P (U E]) — Sl - SQ + Sg - 54 + Sn :Z <—1)TS7~
j=1

r=1

where

1< <i2<... < <n
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1.3. Elementary properties of probability spaces

EXAMPLE 10
Suppose that there are three risk factors which affect the chance one will contract
a certain disease. Suppose that for any one risk factor, the probability that a ran-
domly chosen person has any one particular risk factor is .45. Suppose that for any
two risk factors, the probability that a randomly chosen person has those two risk
factors is .2, and suppose that the probability that a person has all three risk factors
is .07. What is the probability that a person has none of the three risk factors?
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1.4. Conditional probability and independence

1.4 Conditional probability and independence

MOTIVATING EXAMPLE
Suppose you roll two fair dice. What is the probability that you roll two numbers
that sum to 10?

1 2 3 4 ) 6

RRREYS

A CHANGE TO THE MOTIVATING EXAMPLE
Again, roll two fair dice. What is the probability that you roll two numbers that
sum to 10, given that at least one die roll is a 6?

When you are asked to compute the probability of one event given that another
one occurs, the quantity you compute is called a conditional probability:
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1.4. Conditional probability and independence

Definition 1.28 Let (2, F, P) be a probability space, and let E and F' be events with
P(F) > 0. The conditional probability of £ given F', denoted P(E | I), is defined
as

P(ENF)

PEIF) = =5

The definition of conditional probability can be rearranged by multiplying through
the equation in Definition by P(F) to obtain

Theorem 1.29 (Multiplication Principle) Let (2, F, P) be a probability space, an
let E and F be events with P(F) > 0. Then

P(ENF) = P(F)- P(E|F)

This law is useful for computing probabilities like these, which come from experi-
ments that have multiple stages or steps:

EXAMPLE 11
A jar contains 8 marbles, 3 of which are red. If you draw 2 marbles from the jar (one
at a time, without replacement), what is the probability that both of the marbles
you draw are red?
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1.4. Conditional probability and independence

Independence

Definition 1.30 Let (52, F, P) be a probability space, and let E and F be events. E
and F are said to be independent if P(E N F') = P(E) - P(F).
If E and F are independent, we write E L F. Otherwise we write E J F.

Consequences of this definition

Lemma 1.31 Let (2, F, P) be a probability space, and let E and F be events. If
P(E)=0o0r P(E)=1,then E L F.

(So in particular, ) L. F and Q@ L F for any event F.)

Furthermore, if E L E, then P(E) = 0or P(E) = 1.

PROOF We'll prove here that if P(EF) =0, then £ L F.
Towards that end, suppose P(E) = 0.
Therefore, since ENF C E, P(ENF) =0.
Therefore P(ENF) =0=0P(F) = P(E)P(F),so E L F by definition.
Proofs of the other statements in this lemma are HW. [J

Lemma 1.32 Let (2, F, P) be a probability space, and let E and F' be events with
P(E) > 0and P(F) > 0. Then, the following three statements are equivalent

1. E 1L F
2. P(E|F) = P(E)
3. P(F|E) = P(F)

“To say statements are equivalent means that if any one of them are true, the others are
true, and if any one of them is false, the others are false. We use the symbol <= in between
statements that are equivalent.

PROOF This follows from basic algebra:

PEIF) = P(B)] = TS = P(E)
< P(ENF)=P(E)P(F) <
P(ENF)

> |P(F|E)=P(F)|.0

Lemma is interpreted like this: to say that two events are independent means
heuristically that the probability that either event occurs is not affected by know-
ing whether or not the other event occurs.
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1.4. Conditional probability and independence

Lemma 1.33 Let (2, F, P) be a probability space, and let E and F be events. Then,
the following five statements are equivalent (HW):

1. ELF
F1lFE
E 1 F¢
EC1F

AR N I

E€ | FC

PrROOF HW

EXAMPLE 12
Roll two fair dice. Let E be the event that you roll at least one 6, and let F' be the
event that you roll a total of at least 10. Are £/ and F' independent? Give a heuristic
justification of your answer, and then justify your answer algebraically.

EXAMPLE 13
Flip a fair coin six times consecutively. Compute the probability that out of the
first, fourth and flips, at least one of those flips is heads.
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1.4. Conditional probability and independence

Pairwise and mutual independence

Definition 1.34 Let (2, F, P) be a probability space, and let E, ..., E,, be events.
The events E, ..., &, are called pairwise independent if E; | E; for any i # j.

Heuristic interpretation: To say events are pairwise independent means that know-
ing whether or not any one of the events occurring does not, by itself, affect the
likelihood of any one other event.

Definition 1.35 Let (2, F, P) be a probability space, and let E, ..., E,, be events.
The events Ej, ..., E,, are called mutually independent (or just independent) if
for any subset J C {1,...,n},

P (ﬂ Ej) =[1 P(&)).

Heuristic interpretation: To say that a collection of events is independent means
that knowing whether or not any subcollection of events occur does not affect the
likelihood of any other collection of events (including any other single event) oc-
curring.

(Mutual) independence implies pairwise independence, but not the other way
around, as we see in this example:

EXAMPLE 14
Let Q = {1,2, 3,4} have the uniform distribution. Let £ = {1,2}, F' = {1,3} and
G ={2,3}. Are E, I, G pairwise independent? Are E, I, G independent?
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1.4. Conditional probability and independence

EXAMPLE 15

Let Q = [0,1] x [0, 1] have the uniform distribution. Let £ = |0, ;] x [0,1], F =
1 1 13
0,1] x [o, 2} and G = ([0, 1] x [0, 4}) u <[0, 1] x [2,4D.

1. Are I, F, G pairwise independent?

1 1 1
0.75 0.75 0.75
0.5 0.5 0.5
0.25 0.25 0.25
0 025 05 075 1 0 025 05 075 1 0 025 05 075 1

2. Are E. F, G independent?

1

0.75

0.5

0.25

0 025 05 075 1
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1.4. Conditional probability and independence

EXAMPLE 16 (THE MONTY HALL PROBLEM)
There are three doors on a game show “Let’s Make a Deal”. One door has a car
behind it; two doors have piles of manure behind them. You pick a door. Then the
game show host shows you that behind a door you did not pick, there is a pile of
manure. Then he gives you the option of keeping your door, or switching to the
other door you haven’t seen yet. Should you switch?
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1.5. The Law of Total Probability and Bayes” Law

1.5 The Law of Total Probability and Bayes' Law

Definition 1.36 A partition of a probability space (X2, F, P) is a collection of events
Ey, ..., E, such that

1. P(E;NE;) =0foralli# j(ie. the E; are essentially disjoint); and
2. P(E4UE,U...UE,) =1 (ie. the union of the E;s is essentially Q).

generic picture more useful diagram
Ei E, E; Eq
E E> Es Es
5 Q
EXAMPLE
1 1
E, = {O, 2} and Ey = {2, 1> form a partition of [0, 1] (with Lebesgue measure).

Theorem 1.37 (Law of Total Probability (LTP)) Let (S2, F, P) be a probability space
and let Ey, By, Es, ..., E,, be a partition. Then for any event A,

P(4) =3 P(E,)P(A|E))

J=1

PROOF Start by splitting A into its intersections with each of the E;:

generic picture more useful diagram
E, E, E; E,

E, E; | E3 Es| Q) Q
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1.5. The Law of Total Probability and Bayes” Law

As a special case of the Law of Total Probability, note that for any event £/, E and
E° form a partition of Q. Thus for any two events A and E, the Law of Total
Probability gives us

P(A) = P(E)P(A| E)+ P(EC)P(A| E°).

EXAMPLE 17
A fair coin is flipped. If the coin lands heads, a fair die is rolled once. If the coin
lands tails, a die is rolled twice independently. Find the probability that the num-
ber(s) rolled sum to 5.

EXAMPLE 18
A survey shows 54% of people age 40 or older believe in aliens, and 33% of people
aged less than 40 believe in aliens. If 48% of people are age 40 or older, what
percent of people believe in aliens?
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1.5. The Law of Total Probability and Bayes” Law

Tree diagrams

Implementing the Law of Total Probability in more complicated situations often
involves drawing a diagram called a tree diagram, rather than formally describing
the events with capital letters:

EXAMPLE 19
A vase contains 3 red and 5 blue marbles. One marble is drawn from the jar and
its color recorded, after which it is returned to the jar along with 2 marbles of the
opposite color. Then another marble is drawn and its color recorded, after which
it is returned to the jar with 2 marbles of the same color. Finally a third marble is
drawn. What is the probability that of the three marbles drawn, two of them are
blue?
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1.5. The Law of Total Probability and Bayes” Law

EXAMPLE 20

(from Nate Silver’s book The Signal and the Noise) Studies show that the chance that
a woman in her forties will develop breast cancer is 1.4%. Studies also show that if
a woman in her forties does not have cancer, a mammogram will incorrectly claim
that she does 10% of the time, and if a woman in her forties does have breast can-
cer, a mammogram will detect it 75% of the time. Suppose a woman in her forties
has a mammogram which indicates she has breast cancer. Given this, what is the
probability she actually has breast cancer?

Without reading ahead, guess the answer to this question:

Theorem 1.38 (Bayes’ Law) Let (2, F, P) be a probability space, and let E, ..., E,
be a partition. Then for any event A and any k € {1,...,n},

P(Ey)P(A|Ey)
3, P(E;)P(A| B))

P(E,|A) =

PROOF By direct calculation:

P(E;|A) = W (by def'n of conditional probability)
= P(Ek;j?f:)l | Ex) (by Multiplication Principle)

5 P(E;)P(A]E)

Importance: Bayes’ Law tells you how to get P(E) | A) given all the P(A | Ej).

Application: Think of the £} as hypotheses and think of the A as some bit of
evidence. Theoretically, you should have an idea as to the likelihood that each hy-
pothesis is true (i.e. you know the prior probabilities P(E})). Suppose you actually
witness evidence A; what is the likelihood that hypothesis E, is the correct hypoth-
esis? This posterior probability P(E}, | A) can be computed from the prior probability
using Bayes” Law.

Again, note that for any event F, F and E° form a partition of Q. Thus for any two
events A and E, Bayes’ Law gives us
P(E)P(A|E)

P(E]A) = P(E)P(A|E) + P(EC)P(A| EC)
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1.5. The Law of Total Probability and Bayes” Law

EXAMPLE 20, REPEATED
Studies show that the chance that a woman in her forties will develop breast cancer
is 1.4%. Studies also show that if a woman in her forties does not have cancer, a
mammogram will incorrectly claim that she does 10% of the time, and if a woman
in her forties does have breast cancer, a mammogram will detect it 75% of the time.
Suppose a woman in her forties has a mammogram which indicates she has breast
cancer. Given this, what is the probability she actually has breast cancer?
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1.5. The Law of Total Probability and Bayes” Law

EXAMPLE 21
An insurance company offers three levels of insurance: A,B and C. Assume that in
the next year:

* 35% of level A policyholders will file a claim;
* 12% of level B policyholders will file a claim;
* 16% of level C policyholders will file a claim.

If 80% of all policyholders are level A, and 15% are level B, what is the probability
that a claim within the next year came from a level A policyholder?

Solution: Let E be the event that a claim is filed, and let A, B and C' be the events
that the policyholder has level A,B and C insurance, respectively. Here is the
given information:

P(A) =38 P(E|A) = .35
P(B) =.15 P(E|B) = .12
P(E|C) = .16

Also, since {A, B, C'} forms a partition of 2, we can figure out that
P(C)=1-P(A)— P(B)=1- .8— .15 = .05.
So by Bayes’ Law, we have

P(A)P(E|A)
P(A)P(E|A)+ P(B)P(E|B)+ P(C)P(E|C)
B 8(.35)
~.8(.35) + .15(.12) + .05(.16)

=[.915033]

P(AE) =
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1.6. Chapter 1 Homework

1.6 Chapter 1 Homework

Exercises from Section 1.2

1. a) Shade the region corresponding to the set £ U F© on the Venn diagram
shown below at left.

E

E F
F @
QO

Q

b) Shade the region corresponding to the set (F U F)“ N (E U F)° on the
Venn diagram shown above at right.

c) Shade the region corresponding to the set F' U F' U G on the Venn dia-
gram shown below at left.

LT i
1 )

Q Q

d) Shade the region corresponding to the set /' N (E — ) on the Venn dia-
gram shown above at right.

e) Shade the region corresponding to the set (E¢ N F) U GY on a Venn
diagram similar to the ones given in parts (c) and (d).

2. In this problem, assume £ = {0,2,4,6,8,10,12}, FF = {0,1,2,...,8}, G =
{4,5,6,...,12} and H = {0,3,6,9, 12}. (The universal setis 2 = {0, 1,2, ..., 12}.)
For each given set, list the elements in the set (using proper notation, i.e. sur-
rounding the list with braces):

a) E—H d) G°UH
b) FC e) (H—E)U(H — F°)
) ENF f) EN((FUG) - E)

3. Suppose you flip a fair coin three times, and record the outcomes with Hs
and T's. Describe the following events in words (your description should be
as efficient as possible):

a) E={HHH,TTT}
b) E = {HHT,HTH,THH}
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1.6. Chapter 1 Homework

o) E={HHH HHT,HTH, HTT}
d) E={HHT,HTH HTT,THH,THT,TTH, TTT}

4. A box contains 4 marbles: 2 red, 1 green, and 1 blue.

a) Consider an experiment that consists of taking 1 marble from the box,
putting it back and drawing a second marble from the box (recording
both choices in order). Describe the sample space for this experiment
(your sample space should be constructed so that all the outcomes are
equally likely).

b) Suppose you didn’t put the first marble back before you drew the second
marble. Describe the sample space in this context (again, your sample
space should be constructed so that all the outcomes are equally likely).

5. In each part of this problem, you are given a set (2 and a description of some
a collection F of subsets of ). Determine, with some justification, whether or
not the collection F forms a o-algebra:

a) Q={1,2,3,4}; F = {0,{1,2},{3,4},Q}

b) @ ={1,2,3,4}; F = {0, {1}, {2}, {1,2},Q}

c) 2 = R; Fis the collection of sets I/ which have the property that either
E is finite or E¢ is finite.

6. Suppose you perform an experiment where there are eight possible outcomes.
Assuming that every subset of outcomes constitutes an event, how many dis-
tinct events are there?

Hint: You may want to try this problem in the situation where there are two,
three and/or four outcomes, and look for a pattern.

7. Suppose you roll a fair die repeatedly until a 4 turns up. You record the num-
ber of rolls it takes to roll a 4. Describe a probability space for this experiment.
Verify that you have constructed a probability space.

8. Suppose a point (z,y) is picked at random (with the uniform distribution)
from the triangle in the xy-plane with vertices at (0,0), (4,0), and (4, 4).

a) What is the probability that = > 2?
b) What is the probability that = < y*?

9. Suppose a point (z, y) is chosen uniformly from the rectangle in the zy-plane
whose vertices are (0,0), (4,0), (0,2) and (4,2). Let E be the event that y > z,
and let F' be the event that x < 1.

a) Compute P(E'U F).
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10.

11.

12.

b) Compute P(E° N F).

Suppose a point (z, y, z) is chosen from the unit cube (this means a cube with
opposite vertices at (0,0,0) and (1,1, 1)).
1 1
a) Compute the probability that z < 5 and y > 3"
b) Compute the probability that x +y + z < 1.

Four players, Al, Bal, Cal and Dal, take turns flipping a fair coin (Al goes first
followed by Bal, then Cal, then Dal, then Al again, then Bal, etc.). The first
player to flip a head wins. What is the probability of each player winning?

Hint: Construct a probability space for this experiment where the outcomes
correspond to the number of flips it takes for someone to win. Then, to find
the probability that Al wins, add up the probabilities associated to the num-
bers of flips that would result in Al winning. Proceed from there.

(This is a famous problem in probability called The Triangle Problem.) Suppose
you take a stick of length 1 and break it into three pieces, choosing the break
points uniformly and independently. What is the probability that the three
pieces can be used to form a triangle?

Hint: In a triangle, the sum of the lengths of any two sides must be at least
the length of the third side.

Exercises from Section 1.3

13.

14.

15.

16.

Prove that there is no such thing as a uniform distributionon N = {1,2, 3, ...}.

Hint: Prove this by contradiction: suppose that there is a uniform distribution
on N. This means that P(m) = P(n) for every m,n € N. There are two
possibilities: either P(1) = 0 or P(1) > 0. Explain why both of these cases are
impossible thinking about what the value of P({2) would end up being.

Let (€2, A, P) be a probability space. Prove (using the definition of probability
space) the Monotonicity law, which says that if £ and F' are events with
E C F, then P(E) < P(F).

Hint: Write F as the union of the twosets EN Fand E'N F.

Prove the Bonferonni Inequality, which says that given any two events £
and F', P(EN F)> P(E)+ P(F)— 1L

Suppose two fair dice are rolled and that the 36 possible outcomes are equally
likely. Compute the probability that the sum of the numbers on the two faces
is even.
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17. (AE) (The “(AE)” means this is, or closely resembles, an old actuarial exam

18.

19.

problem.) The probability that a small fire in a kitchen destroys a microwave
oven is 70%. The probability that a small fire in a kitchen destroys a refriger-
ator is 50%. If the probability that a small fire destroys both is 45%), find the
probability that the fire destroys neither the microwave nor the refrigerator.

A survey reveals that 20% of the population is afraid of ghosts, 35% of the
population is afraid of vampires, and 40% of the population is afraid of zom-
bies. 15% of the population fears ghosts and vampires; 12% of the popula-
tion fears ghosts and zombies, and 20% of the population fears vampires and
zombies. If 8% of the population fears ghosts, vampires and zombies, what
percent of the population isn’t afraid of any of the three mythical creatures
discussed in the survey?

(AE) Suppose events A and B are such that P(A) = g and P(B) = ? If you

also know P(AU B) = ;, compute P(AN B).

Exercises from Section 1.4

20.

21.

22.

Suppose a point is picked uniformly from the square whose vertices are (0, 0),
(1,0), (0,1) and (1,1). Let E be the event that the selected point is in the
triangle bounded by the lines y = 0, z = 1 and = = y, and let F' be the event
that it is in the rectangle with vertices (0, 0), (1,0), (1, 3), and (0, ).

a) Compute P(E|F).

b) Compute P(F|E).

c) Are F and F' independent? Why or why not? (You need an algebraic
proof.)

Suppose a number z is selected uniformly from the interval [0,100]. Let .J
be the event that the number selected is in [0, 50], let K be the event that the
number selected is in [30, 60|, and let L be the event that the number selected
is in [20, 70].

a) Compute P(J UK | L).

b) Compute P(J N LY | K U LY).
Note: Part of the point of this problem is to teach you order of operations
with conditional probabilities. In particular, there are “invisible parentheses”

that surround everything in front of any | and everything after any | in any
conditional probability expression.

(AE)If P(A) = .7, P(AN BY) = .6and A | B, whatis P(B)?

48



1.6. Chapter 1 Homework

23. A coin is tossed three times. Consider the following events:

* A = flipping heads on the first toss

B = flipping tails on the second toss

C' = flipping heads on the third toss

D = flipping the same side of the coin all three times
F = flipping heads exactly once in the three tosses

a) Which one or ones of the following pairs of these events are indepen-
dent? Aand B, Aand D, A and E, D and E (No proof is required here,
if you want to use the heuristic idea of independence.)

b) Which one or ones of the following triples of these events are indepen-
dent? A, Band C; A, B and D; C, D and E (No proof is required here, if
you want to use the heuristic idea of independence.)

24. a) Suppose that an event E has probability 1. Prove that F is independent
of any other event F.

b) Prove that if an event E is pairwise independent with itself, then P(E) =
Oor P(E) = 1.

25. a) Suppose F and F are independent. Prove that E¢ and F'“ are indepen-
dent.

b) Suppose E and F are independent. Prove that £ and F© are indepen-
dent.

26. A fair die is rolled repeatedly until the first time a 5 is rolled. Given that it
takes an even number of rolls to obtain that first 5, what is the probability
that a 5 is rolled within the first 10 rolls?

27. A point is chosen uniformly from the unit square [0, 1] x [0, 1]. Find a positive
number c so that the events F = {(z,y) : y +cx < 1} and F = {(z,y) : y <
2z/3} are independent.

Hint: There are two values of ¢ which solve this problem; you need to find
one or the other, not both.

Exercises from Section 1.5

28. There are three boxes, labeled I, II and III. Box I contains 2 white balls and 2
black balls; box II contains 2 white balls and 1 black ball; and box III contains
1 white ball and 3 black balls.

a) One ball is selected from each box (the draws are independent of one
another). Calculate the probability of drawing all white balls.
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29.

30.

31.

32.

b) Suppose you have five slips of paper, two labeled “I”, two labeled “I1”
and one labeled “III”. One of these five slips is drawn uniformly and
then a ball is drawn from the box indicated by the slip of paper chosen.
Calculate the probability that the drawn ball is white.

An urn contains 3 red and 2 blue marbles. One marble is drawn from the
jar and its color noted. That marble, along with 2 extra marbles of the same
color, is then returned to the jar. A second marble is drawn from the jar.

a) What is the probability that the two marbles drawn are of the same
color?

b) What is the probability that the second marble drawn is red?

Suppose a student takes a multiple choice exam where each question has
5 possible answers, exactly one of which is correct. If the student knows the
answer to the question, she selects the correct answer. Otherwise, she guesses
uniformly from the 5 possible answers. Assume that the student knows the
answer to 70% of the questions.

a) What is the probability that on any single given question, the student
gets the correct answer?

b) What is the probability that the student knows the answer to a question,
given that she got the question correct?

(AE) Suppose a factory has two machines A and B which make 64% and 36%
of the total production, respectively. Of their output, machine A produces
2% defective items and machine B produces 5% defective items. Find the
probability that a given defective part was produced by machine 5.

(AE) The probability that a randomly chosen male has a blood circulation
problem is .325. Males who have a circulation problem are twice as likely to
be smokers as those who do not have a blood circulation problem. What is
the conditional probability that a male has a blood circulation problem, given
that he is a smoker?

Calculus review

Later in the course, we’ll see that we need calculus to do lots of computations. To
make sure you are up to speed, the first few chapters of these notes have some
review problems incorporated into the homework. Here is the first batch:

33.

a) Let F(z) = 2z + 3 — 42%. Compute L F.
b) Let F(z) = (22 — 2)°. Compute F'(z).
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1.6. Chapter 1 Homework

2 1
c) Let F(x) = NG + v/z. Compute £,

34. a) Let F(z) = z%¢**. Compute F'(z).
b) Let F(z) = 2¢~%/* — 6e*/3. Compute F'(x).
c) Let M(t) = (.3 + .7¢")%. Compute M"(t).
4
35. a) Let M(t) = ys Compute M"(0).
b) Let G(t) = ¢3¢, Compute G”(1) — [G"(1)]*

36. Compute each integral, and then use a calculator to get a decimal approxi-
mation of your answer:

6 2
1

4
b —d
) 1/2 a8 .
4 ,3.25
2
C) /1 e dx
b 2 1
37. a) Determine a value of b so that / - dr = 3
0

4
b) Determine a value of ¢ so that / evrdr = 1.
2

b
c) Suppose / az® dz = 1. Solve for b in terms of a.
0
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Chapter 2

Discrete random variables

2.1 Introducing random variables

Definition 2.1 A random variable (r.v.) X is a (measurable) function X : Q —
R?, where (2, F, P) is a probability space. The range of X is the set of values taken
by X.

Definition 2.2 A r.v. is called real-valued if its range is a subset of R. It is called
vector-valued (or d—dimensional or a joint distribution) if its range is a subset
of RY for d > 1.

Technical remark: In MATH 414, the adjective “measurable” can be ignored with-
out a problem. To be technically precise, a function X : Q — R? is measurable
if given any subset S of the codomain R? whose volume you can compute with
calculus, the inverse image of S under X is an event. We’ll get into this more in
MATH 416, but you would never need to worry about this technicality too much
unless you go to graduate school in mathematics.

EXAMPLES OF RANDOM VARIABLES
Example A: Roll a fair die and let X be the number rolled.

Example B: Flip a fair coin 3 times and let X be the number of times you flip heads.
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2.1. Introducing random variables

Example C: Roll a die repeatedly; let X be the number of rolls it takes for the
running total of your rolls to be even.

Example D: Let X be the smallest amount of time between successive text mes-
sages you receive in the next 48 hours.

Example E: You and your friend plan to meet at The Rock between 6 and 7 PM.
Let X record both your arrival time and your friend’s arrival time, in terms
of the number of minutes after 6 that you each arrive.

Classifying random variables

On the face of things, it seems (based on the definition) that you need a lot of in-
formation to describe a random variable: the €, the F, the P and the rule for X. In
practice, you don’t actually use any of this to characterize a random variable.

First concept: Random variables can be partitioned into three types:
1.
2.
3.

The way you think about a r.v. (and the way you perform calculations related to
the r.v.) depends heavily on which type of r.v. you are dealing with. So the first
thing you must do when dealing with any r.v. is to determine which of these
three types it is.
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2.2. Density functions of discrete random variables

2.2 Density functions of discrete random variables

For now, we study discrete r.v.s; we’ll deal with the others in Chapter 3.

Definition 2.3 A subset S of R is called discrete if given any = € S, you can draw
a circle (or sphere) of positive radius around x such that the only point inside that
circle belonging to S is x itself.

EXAMPLES
N, Z, and Z% are discrete; any finite set is discrete; any subset of a discrete set is
discrete.

NONEXAMPLES
Q, R, Q7 are not discrete; any set containing an interval or a curve is not discrete.

Remark: Knowing the examples and nonexamples listed above is sufficient for
MATH 414 and MATH 416.

Some enrichment: Discreteness is not really a concept of probability theory. It
comes from a branch of mathematics called topology. In fact, a better definition of
discreteness comes from topology - a subset of a metric space is discrete if and only
if it has no cluster points (if and only if all its points are isolated).

Definition 2.4 A random variable X is called discrete if its range is a discrete set.

QUESTION
Which one or ones of Examples A,B,C,D,E given above are discrete r.v.s?

RETURN TO EXAMPLE B
(Flip a fair coin 3 times and record the number of heads)
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2.2. Density functions of discrete random variables

Definition 2.5 Let X : Q — R? be a discrete random variable. A density function
(a.k.a. PDF a.k.a. pdf a.k.a. mass function a.k.a. pmf) for X is a function

fx : Range(X) — R

which satisfies

forall x € R?,

We express density functions either by giving a formula for them, or by giving a
chart:

EXAMPLE 1
Find density functions for the r.v.s described in Examples A and B above.
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2.2. Density functions of discrete random variables

EXAMPLE 2
There are two dice which are rolled; one which is normal and one whose sides are
numbered 1,1, 2,4, 4, 6. Let X represent the sum of the two numbers rolled. Find a
density function of X, and sketch its graph. Finally, explain how you can compute
P(X > 10) from the density function.

x| fx(z)

Jx

01 2345678 9101112131415
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2.2. Density functions of discrete random variables

Key idea: If you want to do any probabilistic calculations related to a discrete
real-valued r.v., all you need to be given (or all you need to figure out) is the
density function of that r.v. This is because if you are given any set £ C R,

P(X€E)= Y. P(X=2)= Y fx(z)

zel zel

so long as X is discrete.

Properties of density functions of discrete r.v.s

Theorem 2.6 (Properties of density functions) A function f is the density func-
tion of a discrete r.v. if and only if:

1. f(x) > 0forall x;

2. {x: f(x) > 0} is a discrete set; and

S, > flz)=1.

ze{z:f(x)>0}

EXAMPLE 3
Suppose a r.v. X takes only the values 2, 3 and 4 and has a density function that is

1
proportional to e What is the probability that X = 2?
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2.3. Counting principles

2.3  Counting principles

The first situation we want to model using random variables is when we select a
number (or vector or some other kind of object) from a finite set, with all numbers
(vectors/objects) equally likely. The random variable that describes this is called a
discrete uniform r.v.:

Definition 2.7 Let Q C R? be a finite set. A (discrete) uniform random variable
on Q is a r.v. X whose density function is

1 )
fx(l“){#(ﬁ) freft

0 else

If X is uniform on 2, we write X ~ Unif ().

EXAMPLE 4
Let X be the number rolled if you roll one fair die. Describe X, by giving its density
function and characterizing X with appropriate language using the ~ symbol.

Theorem 2.8 Suppose X ~ Unif(2). Then given, any subset E of Q, we can com-
pute the probability that X € E by counting:

P(E)y=P(X € E)="2"

EXAMPLE 5
Deal 2 cards from a 52 card deck. What is the probability that you get two aces?

To solve problems like this, it behooves us to learn how to count certain sets of
objects quickly. The study of counting complicated sets of objects is called combi-
natorics.

(In what follows, #(F) refers to the number of elements in set E; all sets in this
section should be assumed finite.)
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2.3. Counting principles

Basic counting principles

The first principle of counting is very simple: if you can divide the things you are
counting into two disjoint groups, you can count the groups separately and add
the answers. For example, if you have 5 red apples and 3 green apples, how many
apples do you have?

Theorem 2.9 (Addition Principle of Counting) Let E and F be finite sets. If EN
F =0, then

#(EUF) =#(E) + #(F).

If you divide the things you are counting into two groups which overlap, you
can use Inclusion-Exclusion to count them. The proof of this principle is virtually
identical to the probabilistic version given in the previous chapter:

Theorem 2.10 (Inclusion-Exclusion Principle (Counting Version)) Let E and
F be finite sets. Then:

HEUF) =4(E) +#(F) - #(ENF).

EXAMPLE 6
Suppose that 17 students surveyed like pepperoni on their pizza, 13 students sur-
veyed like mushroom on their pizza and 20 students like pepperoni or mushroom
on their pizza. How many students like pepperoni and mushroom on their pizza?

Theorem 2.11 (Multiplication Principle of Counting) If E is a finite set of ob-
jects, each of which can be described as the result of a sequence of independent “choices”,
where:

* there are m, options for the first choice;

* each of the first choices allows my options for the second choice;

* each of the first two choices allows ms options for the third choice; etc.
then

#(E) = mymams - - - my,.
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2.3. Counting principles

EXAMPLE 7
How many different license plates can a state make if each plate has 4 letters fol-
lowed by 3 nonzero digits?

Orderings and factorials

EXAMPLE 8
How many different orderings of the letters in the English alphabet are there?

The result of the previous example generalizes:

Definition 2.12 Let n € N. Then n!, read n factorial, is
nl=nn-1)(n-2)(n—-3)---3-2-1.

As a special definition, we let 0! = 1.

Notice: For any n € N, n - (n — 1)! = n! (this explains why 0! should be 1).

The significance of factorials is as follows:

Theorem 2.13 (Orderings) The number of distinct ways to order n different objects
is nl.

QUESTION
Is there such a thing as (3.5)! or 7!? If so, what might that be?

Permutations

EXAMPLE 9
There are 10 people in a club. How many different sets of officers (president, VP,
secretary and treasurer) can be selected from this club?

60



2.3. Counting principles

In Example 9, we are selecting an ordered subset of 4 from a set of 10. These
ordered subsets have names:

Definition 2.14 An ordered subset taken from a larger finite set is called a permuta-
tion.

Theorem 2.15 (Permutations) The number of ordered sets of size k, taken from a
set of size n is

(n_k)!:n(n—l)(n—Q)---(n—k+1).

Combinations

EXAMPLE 10

If there are 10 people in a club, how many different 4—person committees can be

formed? (In other words, how many unordered groups of 4 from the group of 10
are there?)

Definition 2.16 An unordered subset (equivalently, just a subset) taken from a larger
finite set is called a combination.

Theorem 2.17 (Combinations) The number of unordered sets of size k taken from

a set of size n is denoted (Z) (read “n choose k”) or C(n, k) or ,Cy, and is given by the
formula

EXAMPLE 11
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2.3. Counting principles

The numbers ( Z ) are called binomial coefficients:

Theorem 2.18 (Properties of binomial coefficients) Let n, k € N. Then:

. . n n
Binomial symmetry: ( k) = (n B k)

Anything choose zero (or itself) is 1: (73) = (n) =1

n

Anything choose 1 is itself: (Tf) = ( " ) =n.

n n n+1
Bi ial ition f la: = )
inomial addition formula (k B 1) + <k> ( i )

PROOF The first three statements follow from Theorem directly.
We will prove the binomial addition formula with some algebra:

n n n! n!
Q%J)+<J::%—1Wn—k+nf+mm—kﬂ

Now add these fractions by finding a common denominator:

n! n! nlk nl(n—k+1)

G Dln—kt ) T Ho—& M-kt Bn—kt1)

_nllk+(n—k+1)
 kKl(n—k+1)

(n+1)!
El(n+1—k)!

:@1)_@

Definition 2.19 Let n,k € N. If n < k, we set (Z) =0.

This definition makes sense because if £ > n, there are no subsets of size k that can
be taken from a set of size n.
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2.3. Counting principles

Pascal’s Triangle

0" ROW — 1
| N\
1t ROW — 1 Hl%l\
27l ROW — 1#/1252 - 1
+2=: =:

3" ROW — 1/ \3<3>3/ \1

+3=
” SN NN SN
4 ROW — 1 4 6 4 1

SN\ NN N

From statements (2) and (4) of Theorem above, the entries of Pascal’s Triangle
must be the binomial coefficients (because they have the same entries down the
sides and they satisfy the same addition law). So Pascal’s Triangle is really an
array of the binomial coefficients:

63



2.3. Counting principles

EXAMPLE 12
A restaurant has 12 appetizers, 20 entrees and 5 desserts. If your table splits 3 appe-
tizers, 5 entrees and 2 desserts, how many different meals are possible (assuming
no doubling up of the same appetizer, entree or dessert)?

EXAMPLE 13
Deal 5 cards from a standard deck. What is the probability of being dealt a full
house?

EXAMPLE 14
Deal 5 cards from a standard deck. What is the probability of being dealt two pair
(but not a full house and not 4-of-a-kind)?
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2.3. Counting principles

Binomial coefficients are often used to expand expressions, for example

(z+y)' = (z+y)*(x+y)
= (2% + 2zy + ) (2* + 22y + y*)
= 2t + 223y + 22y% + 223y + 2277 + 2xy® + 22y + 22y + o
= 2t + 423y + 6279 + day® + oyt
(now, write in reverse order)
= y* + dzy® + 622y + 4Py + 2*
— 120170 4 Aty 4 a2yt 4 4gBytd 4 1yt

More generally, we have:

Theorem 2.20 (Binomial Theorem) Let z,y € R and let n € N. Then

(x4 y)" :zn: (Z) T

k=0

PROOF Expand out (z + y)™:

(z+y)"=@+y)lr+y)(z+y)z+y) - (r+y)(z+y)

When you expand this, each term of your answer will be the product of
n numbers, all of which are z or y. So each term is of the form x*y"*.

Next, fix k. The number of z*y"~* terms in the expansion is the number of
different ways to choose which k of the n (z + y)s being multiplied together
contribute an z to the term.

There are (7) such ways to do this, so the coefficient on 2%y ¥ in the expansion
k y p

is (Z) The theorem follows by adding these terms over the k. []

In MATH 414 & 416, the Binomial Theorem is most often used to simplify sums of
series obtained in some probability computation:

EXAMPLE 15
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2.3. Counting principles

Corollary 2.21 Let n € N. Then

PROOF
" (n
> (1)-
o \F

Distinguishable arrangements

EXAMPLE 16
How many different arrangements of the letters in the word MISSISSIPPI are there?

Theorem 2.22 (Distinguishable arrangements, a.k.a. MISSISSIPPI rule)
Suppose you have n = ny + ny + ... + n,. objects of r different types:

* n, objects of type 1;

* ny objects of type 2;

* n, objects of type r.
Then the number of distinguishable ways to order these objects is

n n!
Ny, N2, N3, "« Ny nllng!ngl"'nr!'
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2.3. Counting principles

Note: Distinguishable arrangements can be thought of extending the idea of a
combination. Suppose you have n objects of two types; where £ objects are of
the first type and n — k objects are of the second type. The number of distin-
guishable arrangements of these objects is therefore

the same as the number of £ combinations from a set of n. This is because
arranging the objects is the same as choosing an unordered set of £ “slots” in
which to place the objects of the first type.

Sampling without replacement

EXAMPLE 17
A box contains 30 red marbles and 20 blue marbles. If you draw 9 marbles from
the box all at once, what is the probability that of those 9 marbles, 7 are red?

Theorem 2.23 (Sampling without replacement) Suppose
you have n = ny + ns + ... + n, total objects of r different types:
* n, objects of type 1;
* ny objects of type 2;

* n, objects of type r.
Suppose you draw k = ki + ko + ... + k, objects simultaneously. Then, the probability
that you draw k; objects of type j (for each j) is

o R
()
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2.3. Counting principles

Note: in this setting, drawing objects simultaneously is the same (mathematically)
as drawing the objects one at a time without replacement (i.e. without putting back
each object you draw before drawing the next object).

QUESTION
What if you draw the objects with replacement (i.e. put each draw back before
drawing the next one)? We'll discuss that later.

Hypergeometric random variables

Suppose that there were only two types of objects: r of type 1 and n — r of type 2.
Then, if you draw k objects all at once, you can let X be the number of objects of
type 1 you draw.

We summarize this in the following definition:

Definition 2.24 Let n > 0, k < n and r < n be whole numbers. A hypergeo-
metric random variable with parameters n,r and k is a discrete r.v. X with range
{0, 1,2, ..., min(r, k) } whose density function is

(0

If X is hypergeometric with parameters n,r and k, we write X ~ Hyp(n,r, k).

A Hyp(n,r, k) r.v. counts the number of special objects drawn when £ objects
are drawn at once from a set of n objects, r of which are special.

Just to make sure the notation is clear, to say

“Xis Hyp(8,5,4)” or “X ~ Hyp(8,5,4)”
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2.3. Counting principles

means X is a hypergeometric r.v. whose density function is

_ (06
fx(z) = (i) -

Theorem 2.25 (Vandermonde’s Identity) Let r,n,k € N. Then

()66

PROOF By the Binomial Theorem,

Q=3 (Z)t’“. 2.1)

k=0

At the same time, (also by the Binomial Theorem),

1+t =1+t 1A+t)"" = lz <r>t$] : rz (” N T) ty]

=0 \T y=0 \ Y

=500

Next, we do an index change in the second sum: letk =z +y,ie. y =k — x.
That makes the new index k =+ +y gofrom ++0=xztor + (n —r) =n.
So the double sum above becomes (after the index change)

=22 (G2 5060

To match equation 1} above, the term inside the bracket must equal (Z) .

This is Vandermonde’s identity. [

Corollary 2.26 The density function of a hypergeometric r.v. is in fact a density func-
tion (its values sum to 1).

PROOF Take Vandermonde’s identity and divide through by (Z) .0
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2.3. Counting principles

More examples with combinatorics

EXAMPLE 18
Pick a random number with 5 digits (ex: 00312, 15923, etc.) Assuming every 5 digit
string is equally likely,

1. What is the probability that any two digits are the same?

2. What is the probability that exactly two digits are the same?

EXAMPLE 19
Roll seven fair dice. What is the probability you roll 4 sixes, 2 threes and a one?
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2.3. Counting principles

EXAMPLE 20 (THE COAT CHECK PROBLEM)

Suppose N people leave their coat at a coat check. The coats get jumbled randomly,
so when the people leave, they each get a coat at random (that said, no two people
get the same coat—each coat goes to one person).

LN =

What is the probability a specified person gets their coat back?

What is the probability n specified people get their coat back?

What is the probability at least one person gets their coat back?

Suppose there are an infinite number of people (i.e. let N — o0). What is the
probability that no one gets their coat back?

Solution:

1.

2.

3.

We apply Generalized Inclusion-Exclusion: let S,, be the event that some
group of n people get their coat back.

P(Sn) =

Therefore, by Generalized Inclusion-Exclusion,

P(> 1 person gets their coat back) = P(S;) — P(S) + P(S5) — P(S4) + ...

1 1 1 1

_ i (- |

n!

Take the limit on the answer to # 3 as NV — oo to get P(> 1 person gets their
coat back), which is

$ 0TS (—n1!>” - li GV 1] _

| |
n=1 n. n=1 n=0 n:

Finally, by the complement rule, P(no one gets their coat back) is
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2.4. Bernoulli processes

2.4 Bernoulli processes

Definition 2.27 A stochastic process {X; : ¢t € I} is a collection of random vari-
ables indexed by t. The set T of values of t is called the index set of the stochastic
process.

Almost always, the index setis {0, 1, 2, 3, ...} or Z (in which case we call the stochas-
tic process a discrete-time process and often use n instead of ¢ for the index), or the
index set is [0, 00) or R (in which case we call the stochastic process a continuous-
time process).

In MATH 414, we will focus on three stochastic processes which are of fundamen-
tal importance (we will learn a lot more about stochastic processes in MATH 416).
The first one, called the Bernoulli process, is discussed in this section.

Definition 2.28 Let p € [0,1]. A Bernoulli experiment is a probabilistic experi-
ment consisting of a “subexperiment” called a trial which is repeated over and over
again, where the trials have the following properties:

1. Each trial has two outcomes, success and failure.

2. On any one trial, the probability of success is p (so the probability of failure is
1 —p).

3. The result of any one trial is independent of the results of any other trials.

If we let, for n € {0,1,2,3,...}, X,, be the number of successes in the first n trials,
{X,, : n €{0,1,2,...}} is a stochastic process called a Bernoulli process and p is
called the success probability.

To picture a Bernoulli process in your mind, think of flipping a coin repeatedly
(which flips heads with probability p) and writing down the sequence of heads
and tails you get. X, is the number of heads you flip in the first n flips.

72



2.4. Bernoulli processes

Suppose you flip this coin repeatedly and get the following results:

THTHTTTHHTTHTT H..

You can represent the result of this process by the following picture:

>

— N W kR U 0

O 1 2 3 4 5 6 7 8 9 10111213 14 15

Each sequence of dots we get from a sequence of coin flips is called a sample func-
tion for the process.

Observations about any Bernoulli process { X;}

1. Xy = 0 (you can't flip a positive number of heads in zero flips);
2. every time you flip heads, the value of X,, goes up by 1;

3. every time you flip tails, the value of X,, stays the same;

4. X, never decreases nor jumps by more than 1 unit at a time.

The definition of a Bernoulli process alone is enough to figure out some basic con-
ditional probability questions:

EXAMPLE 21
Let {X,,} be a Bernoulli process with success probability p.

1. Compute the probability that X5 = 5, given that X = 3.
2. Compute the probability that X7 = 3, given that X3 = 3.
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2.4. Bernoulli processes

3. Let X,, be a Bernoulli process with success probability p. Find the probability
that Xg = 2, given that X; = 1.

4. In Question 3 of this example, what is really relevant? For example, if I asked
you to find the probability that X; = b given that X, = a, what matters about
s,t,a and b?

Binomial random variables

At this point, we want to define a random variable which counts the number of
successes in n trials coming from a Bernoulli experiment:

Definition 2.29 A binomial random variable with parameters n € N and p € [0, 1]
is a discrete r.v. taking values in {0, 1,2, ...n} whose density function is

n
T

fx(e) = ( )Ml e,

If X is binomial with parameters n and p, we write X ~ b(n,p) or X ~ bin(n,p).

A binomial r.v. with parameters n and p counts the number of successes in n
trials of a Bernoulli process with success probability p.

The numbers which occur as values of the density function of binomial r.v.s are
commonly encountered in probability. We denote by b(n, p, k) the number

n

b(n,p, k) = <k>pk(1 —p)"
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2.4. Bernoulli processes

Theorem 2.30 The density function of a binomial(n, p) r.v. is a density function (i.e.
its values sum to 1).

PROOF Use the binomial theorem:

;ng)fx(x) = Zn: <Z>px(1 —p) =

=0

How binomial r.v.s relate to Bernoulli processes

Let { X, } be a Bernoulli process with success probability p. Then:
1. For any fixed m and n with m < n, X,, — X,,, ~ b(n —m,p);

2. For any fixed n, X,, ~ b(n, p);
NOTE: X, is ar.v.,; {X,} is a process.

3. If m < n, P(X, =y|X,, = ) equals the number b(n —m,p,y — x).

Back to sampling with/without replacement

QUESTION
Suppose you have a bag containing 40 marbles, of which 8 are orange. If you draw
20 marbles from the bag, what is the probability that you draw exactly 5 orange
marbles?

Solution: It depends on whether you draw the marbles without replacement (in-
cluding if they are all drawn at once) or with replacement (i.e. you put each marble
back before you draw again).

If the sampling is without replacement:

If the sampling is with replacement:
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2.4. Bernoulli processes

EXAMPLE 22
Suppose you guess at every question on a 10-question multiple choice test (four
choices per question). What is the probability you get exactly 7 questions correct?

EXAMPLE 23 (CHALLENGE)
Suppose you know 75% of the questions that might be asked on a 10-question
exam. If you guess at the other 25% of the questions, what is the probability you
get all ten questions correct?

137858491849

~ .1253.
1099511627776

Remark: From Mathematica, this sum is

EXAMPLE 24
A fair coin is tossed 11 times (equivalently, 11 fair coins are tossed at once).

1. What is the probability of flipping exactly 7 heads?
2. What is the probability of at least 8 heads?

3. What is the probability of at least one head?
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2.4. Bernoulli processes

EXAMPLE 25
A machine produces parts which are defective 1% of the time. Out of 2000 parts
produced, what is the probability that exactly 30 parts are defective?

Geometric and negative binomial random variables

We earlier discussed binomial random variables, which describe the height of the
graph coming from a Bernoulli process at time n. Now we introduce random vari-
ables which describe horizontal measurements on the graph. For example, sup-
pose {X,,} is a Bernoulli process with success probability p. Let X be a r.v. which
measures the amount of time that passes before the first time the graph of {X,,}
hits height 1. X is called a geometric random variable.

T—'—H—O—'—H n
X

QUESTION
What is the density function of X?
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2.4. Bernoulli processes

Definition 2.31 A geometric random variable with parameter p € (0, 1] is a discrete
r.v. taking values in {0, 1,2, 3, ...} whose density function is

fx(x) = p(1—p)~.

If X is geometric with parameter p, we write X ~ Geom(p).

A Geom(p) r.v. counts the number of failures before the first success in a
Bernoulli process with success probability p.

Theorem 2.32 The density function of a Geom(p) r.v. is a density function (i.e. its
values sum to 1).

PROOF
> fx(@) =3 p(l—p)" = O
=0 x=0
Theorem 2.33 (Hazard law for geometric r.v.s) Let X ~ Geom(p). Then for any
n €N,
P(X >n)=
PROOF
P(X>n)=Y fx(@) = p(l-p)* = D

Geometric random variables are exactly the discrete random variables which have
an important property called memorylessness:

Definition 2.34 A random variable X is called memoryless if for all m,n > 0,

P(X>m+n|X>m)=P(X >n).

To say that a r.v. is memoryless means that if you think of the r.v. as the time it
takes for something to happen, if you know you have been waiting for m units,
the probability you will wait at least another n units is the same as the probability
you would wait at least n units from the get go (in other words, you “forget” that
you have already waited m units).
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2.4. Bernoulli processes

Theorem 2.35 A random variable X taking values in {0, 1,2, ...} is memoryless if

and only if X is geometric.

PROOF (<) Assume X ~ Geom(p).
We will show X is memorylessness by verifying that

P(X>m+n|X >m)=P(X >n).

We do this by direct computation:

PX>m+n|X>m)=

- (1-pm

PX>m+n X >n)
P(X >m)
P(X >m+n)
P(X >m)
(1= pmen

(by def'n of cond’l probability)

(by the hazard law)

(1-p)"
P(X >n) (by the hazard law in reverse).

(=) Assume X is memoryless and let p = P(X = 0).
By the definition of memorylessness, for all m,

PX>m+1|X>m)=P(X>1)=1-P(X=0)=1—p.

Therefore for all m > 0, we have

P(X>m+1)=(1-p)P(X >m). (2.2)

Since p = P(X = 0), we know

P(X>1)=1-P(X=0)=1—p

and therefore, by repeatedly applying (2.2), we see

P(X >2) =
P(X >3) =

P(X > m) = (1—p)™
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2.4. Bernoulli processes

Last,

=
S
I
-
<
I

r)=PX>z)-P(X>z+1)
=(1-p°®-01-p**
=[1-(1-p|1-p)*
=p(1 —p)*

meaning X ~ Geom(p) as wanted. [

Let’s now generalize the idea of a geometric random variable. Suppose we wanted
to count the number of failures before the " success in a Bernoulli process, where
r € N. Let X be such a r.v.; what is the density function of X?

Definition 2.36 A negative binomial random variable with parameters r € N and
p € [0, 1] is a discrete r.v. taking values in {0, 1,2, 3, ...} whose density function is

fx(z) = (36 ji; 1)29”"(1 —p)* =

If X is negative binomial with parameters r and p, we write X ~ N B(r,p).

That this function is in fact a density function will not be proven here. It uses the
Taylor series expansion of the function (1 —p)~*. (The “—" sign here is why we call
this the “negative” binomial r.v.)

A NB(r,p) r.v. counts the number of failures before the r'" success in a
Bernoulli process with success probability p.

Note that a negative binomial r.v. with parameters 1 and p is the same thing as a
geometric r.v. with parameter p. (We shorthand this fact by writing “NB(1,p) ~
Geom(p)”.)

80



2.4. Bernoulli processes

Examples with geometric and negative binomial r.v.s

EXAMPLE 26
Let X be a geometric r.v. so that P(X > 5) = .3. Whatis P(X =1)?

EXAMPLE 27
The number of hurricanes that hit Florida in a given year is assumed to be geomet-
ric with parameter .85. What is the probability that either 3 or 4 hurricanes will hit
Florida this year?

EXAMPLE 28
An urn contains 30 red, 20 green and 50 blue marbles. Marbles are drawn from the
urn, one at a time with replacement. What is the probability that the fifth time a
green marble is drawn is on the 18th draw?
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2.5. Summary of Chapter 2

2.5 Summary of Chapter 2

e A discrete random variable is a function X : @ — R? taking values in a
discrete set (like N or Z or Z%).

* We can completely describe a discrete r.v. X by giving its density function
fx : Range(X) — [0, 1], which is defined by

Such a function must take only values between 0 and 1, and its values must
sum to 1. The density function of a discrete r.v. is used to compute probabili-
ties by adding its values: if E is any subset of the range of X,

P(X € E)=>_ fx(x).

zel

¢ (Classes of commonly encountered discrete random variables include the fol-
lowing:
1. uniform r.v.s, which assign equal likelihood to all values in the range of
X;
2. hypergeometric r.v.s, which count the number of special objects drawn
when a sample is drawn without replacement;

3. binomial r.v.s, which count the number of successes in n trials of a
Bernoulli process (and also describe sampling with replacement);

4. geometric r.v.s, which count the number of failures before the first suc-
cess in a Bernoulli process (and are the only memoryless discrete r.v.s);

5. negative binomial r.v.s, which count the number of failures before the
r'" success in a Bernoulli process.

You must know (or be able to refer to on your cheat sheet) the range, density
function and other relevant facts about each of these common r.v.s.

¢ We solve probability questions associated to uniform r.v.s by counting. Tech-
niques used to count sets include inclusion-exclusion, the multiplication prin-
ciple, permutations, combinations, distinguishable arrangements, and parti-
tion formulas.
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2.6. Chapter 2 Homework

2.6 Chapter 2 Homework
Exercises from Section 2.2
1. Suppose X is a discrete r.v. with density function f given by

v | =3]-1]o0]1]2]3]5]3
fx(@)| 1] 2[a5]2].1].15[.05].05

a) Compute the probability that X is negative.

b) Compute the probability that X is not positive.
¢) Compute the probability that X is even.

d) Compute P(X € [1,8]).

e) Compute P(X = -3 | X <0).

f) Compute P(X > 3| X > 0).

2. Choose two of (a), (b), (c):

a) Suppose a box has 12 balls numbered 1 to 12. Two balls are selected from
the box independently, with replacement. Let X denote the larger of the
two numbers on the selected balls. Compute the density of X.

b) Suppose you choose a zip code (i.e. a five-digit sequence of numbers)
uniformly from all possible zip codes and let X be the number of nonzero
digits in the zip code. Calculate the density function of X.

¢) Suppose you uniformly and independently choose three whole num-
bers from 0 to 9. Let X be the first digit of the number you get when you
add these whole numbers together. Calculate the density function of X.

Exercises from Section 2.3

3. (AE) Among a group of 20000 people, 7200 are below age 40, 8200 are child-
less and 12300 are male. In the same group, there are 5400 males below age
40, 4700 childless persons below age 40 and 6000 childless males. Finally,
there are 3100 childless males below age 40. How many people are females
above 40 who have children?

4. A 7-person committee, consisting of 3 Democrats, 3 Republicans and 1 Inde-
pendent, is to be chosen from a group of 20 Democrats, 15 Republicans and
10 Independents. How many different committees are possible?

5. Abus starts with 6 people and stops at 10 different stops. Assuming that each
passenger is equally likely to depart at any stop, calculate the probability that
the 6 people get off at 6 different stops.
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2.6. Chapter 2 Homework

6. My niece’s iPhone has 100 songs on it, of which 10 are performed by Taylor
Swift. If she sets her iPod to shuffle mode, which will play all 100 songs in a
random order (without repeating any songs until they are all played once),
what is the probability that the first Taylor Swift song my niece hears is the
eighth song played?

7. A domino is a rectangular block divided into two equal subrectangles as
below, where each subrectangle has a number on it:

Z )

(The numbers =z and y might be the same or different.) Since dominos are
symmetric, the domino (z,y) is the same as (y,z). How many different
domino blocks can be made if the = and y are to be chosen from n different
numbers?

Hint: Count the dominos where = y separately from the dominos where
x # y. Then add these two separate counts.

8. How many distinct arrangements of the letters in each of the following words
are possible?

a) COFFEE b) ASSESS c¢) BOOKKEEPER

9. a) Consider the grid of points shown below. Suppose that starting at the
point A you move from point to point, moving only one unit to the right
or one unit up at a time, ending at the point 5. How many different
paths from A to B are possible?

A®

b) The above picture gives a 6 x 4 grid of dots. Answer the same question
that was posed in part (a), if the grid is m x n (i.e. it has n horizontal
rows, each containing m dots).

10. How many distinct, non-negative integer-valued vectors (zy, zs, ..., x5) sat-
isfy:cl + X2+ 23+ T4+ x5 = 12?

Hint: This has something to do with distinguishable arrangements, and might
have something to do with Problem 9} depending on how you think about it.

In Problems you are to give both a formula for the answer in terms of stan-
dard combinatorial notation, and a decimal approximation of your answer.
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2.6. Chapter 2 Homework

11.

12.

13.

14.

15.

Suppose you deal a five-card hand from a standard deck of cards. Compute
the probability of being dealt each of the following hands:

a) A royal flush (the A, K,Q,J and 10 of the same suit)
b) A flush (any five cards of the same suit)
¢) Three-of-a-kind, but not a full house or four-of-a-kind

d) A straight (five cards in a sequence, regardless of suit)
Note: An ace may be the highest card (10-J-Q-K-A) or lowest card (A-2-3-
4-5) in a straight, but a sequence like K-A-2-3-4 is not a straight because
the ace is in the middle.

e) A hand which contains no pair (nor three- nor four-of-a-kind)
In Texas Hold’Em, each player is dealt 2 cards from a standard deck.

a) What is the probability that a Texas Hold'Em player is dealt a pair?

b) What is the probability that a Texas Hold’Em player’s hand is a “Broad-
way” hand (i.e. both cards are 10 or higher)?

c) What is the probability that a Texas Hold’Em player is dealt “suited con-
nectors”, meaning that the cards are of the same suit and adjoining rank
(Like (A-2) or (8-9) or (10-]) or (K-A))?

In the card game Bridge, each player is dealt 13 cards from a standard deck.

a) A Yarborough is a (terrible) Bridge hand that contains no card higher
than a 10 (i.e. no jacks through aces). Compute the probability that a
Bridge hand is a Yarborough.

b) A Bridge hand is said to have a void if there is at least one suit for which
the hand has no cards in that suit. Compute the probability that a Bridge
hand has exactly one void.

In the card game Shanghai Rummy, two 54-card decks (each including the
standard 52 cards and 2 jokers) are shuffled together. Then, each player is
dealt a 12-card hand. What is the probability that a Shanghai Rummy hand
contains at least one joker?

Set is a card game played with a deck of 81 different cards. Unlike normal
playing cards, which have two attributes (a suit and a rank), each card in a
Set deck has four attributes: a color (one of red, green, or purple), a shape
(one of diamonds, ovals or waves), a number (1, 2 or 3), and a pattern (solid,
striped, or open).

a) If you choose five cards randomly from a Set deck, what is the probabil-
ity that your hand is a color flush (meaning all five cards are of the same
color)?
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2.6. Chapter 2 Homework

b) If you choose five cards randomly from a Set deck, what is the probabil-
ity that your hand is a color and shape flush (meaning all five cards are
of the same color and shape)?

c) If you choose five cards randomly from a Set deck, what is the probabil-
ity that your hand is a color and shape and pattern flush (meaning all
tive cards are of the same color, shape and pattern)?

d) If you choose five cards randomly from a Set deck, what is the probabil-
ity that your hand is a flush with respect to any two attributes?

e) If you choose five cards randomly from a Set deck, what is the probabil-
ity that your hand is a flush with respect to at least one attribute?

Hint: Use Inclusion-Exclusion, together with previous parts of this prob-
lem.

Exercises from Section 2.4

16.

17.

18.

19.

A fair die is rolled 12 times (independently). Compute the probability of
rolling exactly 2 sixes, and the probability of rolling at most 2 sixes.

(AE) Experience shows that 20% of the people reserving tables at a certain
restaurant never show up. If the restaurant has 50 tables and takes 52 reser-
vations, what is the probability that it will be able to accommodate everyone
who shows up?

A circular target of radius 1 is divided into four annular zones (an “annular”
shape is like a ring) of outer radii 1, 3, 2 and 1, respectively. Suppose 10 shots
are fired at the target independently, and that each shot hits a random point
in the target chosen uniformly.

a) Compute the probability that exactly four shots land in the region of
radius 1/4.

b) What is the probability that at most three shots land in the zone bounded
on the inside by the circle of radius 1/2 and on the outside by the circle
of radius 3/4?

) If exactly 5 shots land inside the circle of radius 1/2, determine the prob-
ability that at least one shot lands inside the circle of radius 1/4.

(AE) You own a business that gets bolts from two bolt manufacturers: A and
B (you get 70% of your bolts from A and 30% from B). Suppose that 5% of
all bolts from manufacturer A are defective, and that 20% of all bolts from
manufacturer B are defective. You get a shipment of 12 bolts from one of
the two manufacturers. If exactly 3 of the 12 bolts are defective, what is the
probability that the shipment came from manufacturer B?
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2.6. Chapter 2 Homework

20. There are 40 gumballs in a bag, of which 20 are red, 10 are orange, 8 are green,
and 2 are purple.

a) If you draw 10 gumballs from the bag without replacement, what is the
probability that you draw 5 red, 3 orange, and 2 purple gumballs?

b) If you draw 7 gumballs from the bag without replacement, what is the
probability that you draw exactly 4 green gumballs?

¢) If youdraw 7 gumballs from the bag with replacement, what is the prob-
ability that you draw exactly 4 green gumballs?

d) If you draw 6 gumballs from the bag without replacement, what is the
probability you draw at least 5 orange gumballs?

e) If you draw 10 gumballs from the bag with replacement, what is the
probability that you draw 3 orange gumballs?

21. Continuing with the same bag of gumballs as in the previous problem:

a) If you draw 15 gumbealls from the bag without replacement and take a
bite out of them, then put them back in the bag, and if you subsequently
draw 5 gumballs from the bag with replacement, what is the probability
that you drew 3 gumballs that you bit?

b) Suppose you draw gumbealls from the bag repeatedly, with replacement.
What is the probability that the first time you draw a purple gumball is
on the 9th draw?

¢) Suppose you draw gumballs from the bag repeatedly, with replacement.
What is the probability that the fifth time you draw a red gumball is on
the 14th draw?

d) Suppose you draw gumballs from the bag two at a time, putting each
group back after you draw it. What is the probability that the first time
you draw 2 red gumbealls (on a single draw) is the 4th time you draw 2
gumballs from the bag?

e) Divide the 40 gumballs randomly into four disjoint groups of 10. What
is the probability that the first and second groups have the same number
of green gumballs?

22. Suppose X ~ Geom(.8). Compute the following:

a) P(X > 3) ¢) P(X <2|X <3)
b) PA< X <TorX >09) d) P(X >85|X > 80)
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Calculus review

23.

24.

25.

26.

27.

Evaluate each integral:

a) /ewda: d) /e”/‘r’dx
b) /e’z dx e) /67(3/8)“dx
C) /e% dz f) /6(5$_3)/4dl‘

Based on your answers to Exercise what is / e dx? (There are two cases,
depending on whether or not r = 0.)
Based on your answer to Exercise 24} evaluate the following integrals, simpli-

tying your answer as much as possible. Try to do them quickly, i.e. without
writing a u-substitution.

"o 4z —z/4
a) /36 4 dx d) /126 dr
1 4 8
b) / —e @3 gy 7
0o 2 e) / ae™"" da
5

5
c) /2 2e" du (in (e), assume b # 0)
Evaluate each improper integral:

a) /Oo 3e " dux.
1

b) /Oo 2e " du
5

) / - re”** dx (assume in this problem that s # 0)

Determine the value of ¢ so that / de™dx = 1.
0
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Chapter 3

Continuous random variables

3.1 Density functions of continuous random variables

RECALL
Arv. X isa function X : Q — R? where (, A, P) is a probability space.

In Chapter 2, we studied discrete r.v.s, meaning those whose range is finite or
countable. Now, we will study non-discrete r.v.s. First, a definition:

Definition 3.1 A r.v. X : Q — R?is called continuous (cts) if, for every x € RY,
we have

Definition 3.2 A r.v. X : Q — R?is called mixed if if it neither discrete nor
continuous.

EXAMPLE 1
Pick a number uniformly from [0, 3] and let X be the result.
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3.1. Density functions of continuous random variables

RECALL

To describe a discrete real-valued r.v., we write down a

for that r.v. This object tells us two things:

QUESTION
What is the analogue of this for a cts r.v.?

Bad news: Unfortunately, we can’t accomplish both (1) and (2) above when X is
cts:

Definition 3.3 Let X : 2 — R be a cts r.v. We say X has a density function [y
(equivalently, fx is a density function for X) if fx : R — [0, 0o) satisfies, for any
real numbers a < b,

P(X € [a,b]) /fX

EXAMPLE 1, CONTINUED
What is a density function for the uniform r.v. on [0, 3]?
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3.1. Density functions of continuous random variables

Theorem 3.4 A function f : R — R is the density function of actsrov. X : Q@ — R
if and only if all of the following hold:

b
1. f is measurable (meaning you can compute / f(z) dx for every a and b);

2. f(z) >0 forall x;

3. /_O:of(x)dx— L.

EXAMPLE 2
Suppose X is a continuous r.v. whose density function is

cx if0o<x<3
Fx(@) = { 0 else
for some constant c.
What is the range of X?
What is the value of ¢?

Find P(X < 1).

Find P(X > 2).

Find P(X > 2).

Which is more likely, that X =1 or X = 2?

Which is more likely, that X is close to 1 or X is close to 2?

NS A L=
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3.1. Density functions of continuous random variables

Key idea: If you want to do any probabilistic calculations related to a contin-
uous r.v., all you need to be given (or all you need to figure out) is the density
function of that r.v. This is because if you are given any set F C R,

P(X € B) = /EfX(x) d,

so long as X is continuous.

Contrast this with how you compute probabilities for discrete r.v.s:

DISCRETE R.V.S CONTINUOUS R.V.S

How the density
function is

defined

How probabilities
are computed
using the density

Bad news: There are continuous r.v.s that do not have a density function.
Good news: You would not encounter these r.v.s in any normal situation.

Uniform continuous r.v.s

The most common type of continuous r.v. is where you choose from a set where
all subsets of the same size have equal probability This is called a uniform r.v.:

Definition 3.5 Let (2 C R be a union of intervals whose total length is finite.
A (continuous) uniform random variable on ) is the cts r.v. X with density function

1

fx(z) =2 total length(S2)
0 else

ifex e

If X is uniform on a single interval [a,b] C R, we write X ~ Unif([a,b]).

Example 1 describes a uniform r.v. on [0, 3], for instance.
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3.1. Density functions of continuous random variables

EXAMPLE 3
Describe a density function for the uniform r.v. on [0, 4] U [10, 11) U {13}.

Remark: The density function of a cts r.v. is never unique — it can be altered on
any finite or countable set without affecting any probability computations.

EXAMPLE 4
1
Find a density function for X, if X ~ Unif( [0, 2] ).

Remark: Unlike density functions for discrete r.v.s, density functions for cts
r.v.s can take values greater than 1.
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3.2. Distribution functions

3.2 Distribution functions

In this section, we address two questions:
1. How do we represent a r.v. which is mixed (neither discrete nor cts)?

2. Is there an object which describes r.v.s, which unifies the theory of discrete,
cts and mixed r.v.s?

The answer to these questions is given in the following definition. For now, we’ll
stick to real-valued r.v.s (and discuss vector-valued r.v.s later).

Definition 3.6 Let X : 2 — R be a r.v. The cumulative distribution function
(a.k.a. distribution function a.k.a. cdf) of X is the function Fx : R — R defined

by

Fx(z) = P(X < x).

EXAMPLE 5
What is the cdf for the uniform r.v. on [0, 4]?
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3.2. Distribution functions

EXAMPLE 6
Shown below are graphs of the cdfs for three r.v.s X, Y and Z. What can you tell
about X, Y and Z from these graphs? What are the commonalities across these
three graphs?

1. 1. & 1. ——
Fy FY *—O F/
0.8 X 0.8 el 0.8

0 0.6 o 0.6
0:4 0:4 =0 0.4
*—0
0.2 0:2 0.2
*—0
-9 -6 -3 0 3 6 9 -3 -1 1 3 5 7 9 -3 -1 1 3 5 7 9
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3.2. Distribution functions

Theorem 3.7 (Properties of distribution functions) Let X : Q2 — R be a r.o.
whose cdf is Fx. Then:

1. Fx is the only cdf of X;
2. Fx is nondecreasing;

3. lim Fx(z)=0;

T—r—00

4. lim Fx(z)=1,

5. If Range(X) C (a,b), then Fx(z) = 0forall x < a;
6. If Range(X) C (a,b), then Fx(x) =1 forall x > b;

7. Fx is right-continuous everywhere

(meaning lim Fx(z) = Fx(c) for all c).
Tr—C

Theorem 3.8 (Calculating probabilities from distribution functions) Let X :
2 — R be a r.v. whose cdf is Fx. Then:

1. P(X € (a,b]) = Fx(b) — Fx(a) forall a < b.

.
J

a

- L1

2. P(X =c¢) = Fx(c)— li}mﬁ Fx(x)

(this is the size of the jump in Fx at c).

Fyx

lim Fy(x) P
X—¢C

c

3. P(X = c¢) = 0ifand only if Fx is continuous at c.

The next theorem generalizes what we observed in Example 6:

Theorem 3.9 Let X : Q — R be a r.v. whose cdf is F'x. Then:

1. X is cts if and only if Fx is a continuous function;

2. X is discrete if and only if Fx is piecewise constant.

96



3.2. Distribution functions

EXAMPLE 7
Suppose X is a real-valued r.v. that has distribution function

ifz <0
+/r ifz e (0,1)
— 4 I
Fx(w) = so ifzell,2)
1 ifx>2

Compute each probability:

1. ( (do this for every real number z)

)
)
)
)
)

e

x
1
1
1
1

X <

'/\vam

e
D e

.O\.U‘tPPJN
e
AAAAA

N
~—

Theorem 3.10 (Relationship between density and dist. functions) Suppose that
X : Q — Ris a cts r.v. with density function fx. Then:

1. (Fx(a)) = fx(@); and

2. /_ ‘; Fx(t) dt = Fx ().

PROOF Statement (2) follows from definitions of density and distribution func-
tions:

/_; Fx(t)dt = P(X € (—o0,1]) = Fx(z).
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3.2. Distribution functions

Statement (1) follows from (2) and the Fundamental Theorem of Calculus:
d d [ (=
() = | [ x| = fx(a). O

EXAMPLE 8

Suppose X is a cts. r.v. whose distribution function is

0 z <0

) s

Fy(z) ={ sinz O<Q7CT§§ _
1 > —
7

1. Find a density function of X.
2. Compute P <X < g) using the cdf of X.

3. Compute P <X < g) using a density function of X.

Survival functions

Definition 3.11 Let X be a real-valued r.v. The survival function of X is the func-
tion Sx(z) = P(X > z) =1— Fx(x).

Note: if X is cts, then Sx(z) = P(X > z) as well.

EXAMPLE 9

Compute the survival function of X, if X ~ Unif(]0, 8]).

98



3.3. Transformations of random variables

3.3 Transformations of random variables

Let ¢ : R — R be a function and let X be a real-valued r.v. (By the way, ¢ is “phi”.)
Then Y = ¢(X) is a r.v. which is called a transformation of X. The object of this
section is to compute the density function of a transformation when you are given
a density function of the original r.v.

When X is discrete

In this situation, ¥ = (X)) must also be discrete. To compute the density function
of Y, first determine the range of Y. Then, for y belonging to the range of Y/, start
with the definitions as follows:

fr(y) = P(Y = y) = P(p(X) = y)

and then solve the equation inside the parentheses for X. Then use a density func-
tion of X to compute probabilities.

EXAMPLE 10
Suppose X ~ Unif({—2,-1,0,1,2}). Let Y = X*. Find a density function of Y.

Remark: Once you have a density function of Y, you can compute any proba-
bility associated to Y by adding values of fy (or integrating fy, if Y is contin-
uous).
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3.3. Transformations of random variables

When X is continuous

In this situation, ¥ = ¢(X) could be discrete, continuous or neither. Since you
don’t even know that Y has a density function, the best way to proceed is to find
the distribution function of Y first. First, determine the range of Y. If this range
is [a, b] or (a,b), you know that

and

Next, let y be in the range of Y. By the definition of cdf, we get
Fy(y) = P(Y <y) = P(p(X) < ).

Solve the inequality ¢(X) < y for X (this may involve multiple cases) and use
either the density or distribution function of X to obtain the cdf of Y. Finally, dif-
ferentiate Fy to obtain fy-.

EXAMPLE 11
Let X be uniform on [0,2] and let Y = X?3. Compute a density function of Y.
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3.3. Transformations of random variables

EXAMPLE 12
Suppose that an insurance company has to make two kinds of annual payments,
“direct” and “indirect”. If X is the size of the direct payment and Y is the size
of the indirect payment the company has to make, assume that (X,Y’) is mod-
eled by a uniform r.v. on the unit square (this is the square whose vertices are
(0,0),(1,0),(0,1) and (1, 1)). Determine a density function of the total annual pay-
ment the insurance company has to make.
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3.3. Transformations of random variables

EXAMPLE 13

Choose a point (X, Y') uniformly from the rectangle whose vertices are the four
points (1,0),(1,1),(4,0) and (4,1). Let Z = Y/ X; compute f5.
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3.3. Transformations of random variables

EXAMPLE 14
You and your friend decide to meet at the library to study math. Each of you
choose a random time (uniformly and independently) to arrive at the library be-
tween 6 and 7 PM. What is the density function of the length of time the first person
to arrive has to wait for the second person to arrive?
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3.3. Transformations of random variables

Definition 3.12 A continuous, real-valued r.v. Y is called Cauchy if Y = tan X,

for X uniform on [_;, g

The Cauchy r.v. measures the slope of an angle which is uniformly chosen,
because tan @ is the slope of a line at angle ¢ to the horizontal.

EXAMPLE 15
Compute a density function of the Cauchy r.v.

Solution: First, notice that since X ~ Unif([5, §]),

1 1
-Z 7

fx(z) =

s
2

for z € [5, 7] (and fx(z) = 0 otherwise).

Now, let Y = tan X; the range of Y is R. Forany y € R,

Fy(y) =P <y)
= P(tan X <)
= P(X < arctany)

rarctany

= fx(x)dx

/2

arctany |
= / —dz
/2 ™

1 s
= — (arctany — )
s 2

1
= —arctany — —.
T 2

Therefore a density function for Y is
d d 11l
fr(y) = @FY(?J) = d7y Lr arctany — 2} =

Jr(y)
] L

-5 -4 -3 -2 -1 ] 2 3 4 57
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3.4. Poisson processes

3.4 Poisson processes

In the last chapter, we discussed Bernoulli processes, which count the number of
successes occurring when time is kept track of discretely (i.e. in terms of the number
of trials that have been performed). In this section we describe a second important
type of process, which can be thought of as keeping track of the number of “suc-
cesses” called births occurring when time is kept track of continuously (i.e. in terms
of elapsed physical time). Such a process is called a Poisson process:

Definition 3.13 Suppose “births” are occurring at random times in [0, co) according
to the following three rules:

No simultaneous births: the probability of two births happening at the same time
1S zero;

Time homogeneity: the number of births happening in any interval of time depends
only on the length of that interval (and not on the starting point or endpoint of
that interval); and

Independent increments: the number of births occurring on any collection of dis-
joint intervals are mutually independent of one another.

In this setting, if we define X, to be the number of births in time interval [0, ], we
obtain a continuous-time stochastic process {X; : t € [0,00)} called a Poisson pro-
cess.

Things from the real world modeled by Poisson processes include:
¢ births of new individuals in a population;
e arrivals of customers to a service center;
¢ times of radioactive emissions;
* times when a cell phone receives a text message;
¢ times when an earthquake hits the San Andreas Fault;
¢ times at which insurance companies acquire new customers;
¢ times at which insurance companies’ customers file claims;
¢ times when an error occurs during a transmission.

In all these situations, each time when one of these things occurs is the time of a
“birth”.
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3.4. Poisson processes

To get a picture of what a Poisson process “looks like”, suppose births happen at
times 2, 7, v/30, 7.3, 9, .... If we graph X, against ¢, we get this sample function:

X

7

6

2

T

NED)

7.3

9

More generally, suppose the times of births are (in increasing order) 74,75, T, ....
This produces the following picture of a sample function, from which we can de-

tine random variables associated to the Poisson process:

X

71

6_

51

4+ o—
3t ° O

2t e——O

1+ ® O

* i n, T !
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3.4. Poisson processes

Definition 3.14 Let {X,} be a Poisson process. For j = 1,2, 3, ..., define the follow-

ing r.v.s:
T; = min{t: X; = j}

= the j" smallest time at which a birth occurs (set Ty = 0)
W; =T; —T;_, = the j'" waiting time
(the time between the (j — 1) and ;' births)

Note the parallels between these r.v.s and the r.v.s arising from a Bernoulli process:

Bernoulli process | Poisson process
time measurement discrete continuous
(t eN) (t €10,00))
success
parameter probability
p
distribution of X; binomial(z, p)
W ~ time to first success/birth Geom(p)
(memoryless)
T, ~ time to r'" success/birth NB(r,p)

Exponential random variables

Our goal is to determine the density function for each of the r.v.s associated to a
Poisson process. We start with the distribution of the waiting times W:

Quick observations about waiting times:
2. It i # j, the values of W; L W; (follows from independent increments).

3. For any j, the density function of W, is the same as the density function of
any other WW;, hence the same as the density function of W; (follows from
time homogeneity). So we can call each of the waiting times .

4. W is continuous (follows from time homogeneity).

5. W is memoryless (see next page).
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3.4. Poisson processes

Lemma 3.15 If W is the waiting time between births in a Poisson process, then W is
memoryless, meaning that for all m,n > 0,

PW >m+n|W >m)=P(W >n).

PROOF The important observation to prove this is that in a Poisson process, W >
w means there are no births in a time interval of length w. The rest of this proof is
a calculation based on this observation:

P(W > n) = P(no births take place in the time interval [0, 1))
(since waiting time to first birth is at least n)
= P(no births take place in the time interval [m, m + n))
(by time homogeneity)
( no births take place | no births take place )
= P | in the time interval | in the time interval
[m, m+n) [0,m)
(by the independent increment property)
P(no births in [0, m) N no births in [m, m + n))
- P(no births in [0,m))
(by definition of conditional probability)
P(no births in [0,m + n))
- P(no births in [0, m))
PW >m+n)
P(W >m)
PW>m+4+nNOW>m)
P(W >m)
=PW>m+n|W >m).0O

RECALL

If X is discrete, we showed that any memoryless r.v. X mustbe .
The waiting time I in a Poisson process is memoryless, but is continuous. To clas-
sify it, we use the following theorem:
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3.4. Poisson processes

Theorem 3.16 Let X be a continuous r.v. taking values in [0, co) which is memory-
less. Then X has density function

fx(z) =

PROOF First, let F'x be the cdf of X and consider the survival function
Sx(z) =1—Fx(z) =P(X >z)=P(X > x).

Note Sx(z) € (0,1) so —In Sx(1) > 0.
We can then let A = —In Sx (1), which means Sx (1) = e~
Since X is memoryless,

P(X >m+n)
P(X >m)

—P(X>n) = P(X>m+n)=PX >m)P(X >n)
=

So for any positive integer m,

Sx(m)=Sx(1+1+4..+1)=5x(1)Sx(1)---Sx(1) = [Sx(1)]™ = e ™.

Now for any positive rational number *,

xlm) = 8 (5o 0) =8 () 5 () -9 () = [+ (5)]

so by taking n'" roots of both sides of the above equation we get

Sx (:’Z) = /S (m) = /S (1) = [Sx ()" = e Am/m),

Since Sy () = e~*"™/") for all rational numbers m/n, and since S is
continuous (because X is cts by hypothesis), it must be that for all real
numbers z, Sx(z) = e~ **. Thus

Fx(z)=1—-Sx(z)=1—¢e"

and

fx(z) =
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3.4. Poisson processes

Definition 3.17 An exponential r.v. X with parameter A € (0, c0) is a continuous
r.v. whose density function is

Ae ™™ >0

Jx(z) = { 0 else

If X is exponential with parameter \, we write X ~ Exp(\).

Here are some plots of density functions of Exp(\) r.v.s for various A:

A=t A=1 A=3 A=10

1/5

Thus if X is exponential, we are more likely to get smaller values for X if ) is large,
and more likely to get larger values for X if A is small.

Theorem 3.18 (Properties of exponential r.v.s) Let X be a real-valued rv. The
following statements are equivalent:

1. X ~ Exzp()).
2. X is memoryless and continuous.

0 ifex <0

3. The cdf of X is Fx(x) :{ l—e™ x>0

4. The survival function of X is Sx(z) = e **.

5. X models the time between births in a Poisson process.

Corollary 3.19 (Waiting times are exponential) Let {X,} be a Poisson process.
Then there is a number \ > 0, called the rate or birth rate of the process, such
that the waiting times between each births are Exp(\).

An exponential r.v. with parameter )\ gives the waiting time between births
in a Poisson process with rate \.
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3.4. Poisson processes

Poisson random variables

Now, we turn our attention to figuring out the density of X, (for a fixed t). No-
tice first that each X, is discrete because it counts the number of births in [0, ¢].
Furthermore,

P(X; = x) = P(exactly = births in the time interval [0, ¢]).

Take the time interval [0, t] and divide it into n equal-length subintervals:

The length of each subinterval is
and therefore the probability of no birth in each subinterval is
so the probability of at least one birth in each subinterval is

Now, if n is large enough, then these subintervals will be very, very small, so by
the property of no simultaneous births, we will not have more than one birth any
any of these subintervals. So for large enough n, each subinterval will have

one birth (with probability 1 — e=/")
or
zero births  (with probability e=/™).

That means we can think of each subinterval as being a trial of a Bernoulli experi-
ment (where a “success” means that the subinterval contains a birth), and therefore

P(X; = x) = P(exactly z births in the time interval [0, ¢])
= P(x successes in n trials)

=b(n,1 —e " 1)

Of course, this only works if 7 is large enough. How large is large enough? Well,
oo is definitely large enough, so we conclude

P(X;=z)= lim b(n,1 — e /" z).

n—oo

and we work out this limit on the next page.
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3.4. Poisson processes

From the previous page,

P(X;=xz)= lim b (n, 1—e M ZL‘)

n—oo
i (0) -y
= lim _n (1 _ e—At/n)x o~ M(n—z)/n

n—oo gl(n — x)!

1 ! T n—=x
= — lim L' (1 — e_’\t/"> exp {—)\t (n rﬂ

xl n=oo (n — x)! n

1 ! r z .
- = lim . (1 — 6—/\t/n) exp [—)\t <1 — I)

xln=oo (n —x)! n* n

= exp [—At(1)] lim e n (1 —e )
n* 4+ smaller powers of n . (1 B e‘*t/")x

1 :
= JOxP [—At(1)] Jim =

— e M li negative powers =At/n\ |z
= 4, (1+n JIn (1 =)
- S 00 fi [ =)
e N : =At/n)\ | z
= (1))
B e~ At i 1 — efz\t/n
L e e <7¥>
=—|lim ———~
! |n—oo
= [
e_'M : ®
= — M (e”)]
B (/\t)zef/\t
N
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3.4. Poisson processes

Definition 3.20 Let A € (0,00). A Poisson r.v., denoted Pois()), is a discrete r.v.
taking values {0, 1,2, 3, ...} whose density function is

S

z!

fx(z)

A is called the parameter of the Poisson r.v.

Theorem 3.21 The density function of a Poisson r.v. is in fact a density function (its
values sum to 1).

PROOF Apply the formula for the Taylor series of e*:

. > e A= AT AA
= = e — = :1|:|
Q)= T =T e

Theorem 3.22 Let {X; : t € [0,00)} be a Poisson process with rate \. Then for each
t, Xy ~ Pois(\t).

A Poisson r.v. with parameter A counts the number of events taking place in
a Poisson process with rate \ over any one unit of time.

A Poisson r.v. with parameter A\t counts the number of events taking place in
a Poisson process with rate \ over any time period of length ¢.

There is a relationship between binomial and Poisson r.v.s:

Theorem 3.23 (Law of Small Numbers (LSN)) lim = b(n, 2) = Pois(\). Re-
stated, this means that for any x € {0,1,2,3, ...},

-\
hnll)<n,A,x> _ ¢ A .
n

PROOF HW

The LSN says that if you perform more and more trials in a Bernoulli experiment,
but simultaneously lower the probability of success on each trial so that the ex-
pected number of successes is kept equal to the constant ), you achieve a Poisson
r.v. in the limit. So a Poisson r.v. is kind of like a binomial r.v. with infinitely many
trials and an infinitely small success probability.
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3.4. Poisson processes

Gamma random variables

The last r.v. associated to a Poisson process whose density we need to find is the
time 7, to the " success in a Poisson process. We start by noting that the range of
T =T, is [0, 00); next we compute its distribution function. Let ¢ € [0, c0). Then

Fr(t)=P(T, <t)=P(X; >r)
(both these inequalities describe the
event of at least r births in [0, ¢])
=1—-P(X; <)
=1— P(Pois(At) <)

— ! dt
_ = & i [exlnt—kt}
! dt
— = & {easlntf)\t] (I’ o )\)
= ! t
r—1
AT
=55 ] ()
=0 xZ.
— Til )\93+1 taﬁe—)\t _ Sﬁ tl‘—le—)\t
= ! = !
= ! = !

. )\x z—1 _—At = )\x x—1_—At
EDSN ey R D Yy
= ( )\Tl)'tr—le—)\t

T — !

114



3.4. Poisson processes

Definition 3.24 Let A\ € (0,00) and let r € {1,2,3,...}. A gamma r.v., denoted
[(r,N), is a cts r.v. X taking values in [0, co) whose density function is

)\T r—1_—Ax 0
fX(a:){(,,,l)!x e ife >0

0 else

r and X are called the parameters of the gamma r.v.

We will prove that fx is actually a density function later.

Theorem 3.25 Let {X, : t € [0,00)} be a Poisson process with rate \. Then for each
r€{1,2,3,...}, T, (the time to the r'" birth) is T'(r, \).

In particular,a (1, \) r.v. is the same thing as an Exp(\) r.v. (i.e. |[I'(1, ) ~ Exp(X) ).

PROOF The first part of this was derived on the previous page.
For the second part, let X ~ I'(1,\):

fx(z) =

This is the same density as an Exp(\) 1.v., s0 X ~ Ezp(A). O

A T(r,\) r.v. measures the time until the r*" birth in a Poisson process with
rate \.

Problems with r.v.s related to Poisson processes

EXAMPLE 17
The number of people in a community who live to 100 years of age is a Poisson r.v.
with parameter 6.

1. Compute the probability that exactly 4 people live to 100.

2. Compute the probability that at least 2 people live to 100.
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3.4. Poisson processes

EXAMPLE 18
The time (in hours) it takes to repair a machine is an exponential r.v. with parame-

1
ter 3 Find the probability that the repair time is at least 2 hours.

EXAMPLE 19
Suppose X is exponential with parameter 4. Let Y = X? find a density function
of Y.
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3.4. Poisson processes

EXAMPLE 20
Suppose that hits to a certain website follows a Poisson process with rate 200.

1. What is the probability there are (exactly) 630 hits in the first 3 units of time?

2. Suppose there is a hit at time 10. What is the probability that there are no hits
between times 10 and 117

3. Write a density function of the r.v. measuring the time to the fifth hit.
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3.5. More on gamma random variables

3.5 More on gamma random variables

The gamma function

We begin this question by trying to determine the value of n! when n is not a whole
number. For example, what is %!? What is 7!?

More precisely, we seek a function f : R — R (or at least f : [0,00) — R) with the
following properties:

1. f(n)=n!foralln € {0,1,2,...};
2. fis continuous;
3. zf(xr —1) = f(x) for all x.

Such an f would be a “continuous version of factorial”:

n! n! n!

3!=6 .

7! .

3o}

L]

Il
%)
°
N
w =
0]
N
3

=g . 6! .

12 3 4 o 1 2 3 4 5 1 2 3 4 5

n

(o))

7 8

To do this, we will start by trying to incorporate property (3) above through some
creative integration by parts. Our attempt will be slightly off, but “close enough”.

Definition 3.26 The gamma function is the function I' : (0, c0) — R defined by

o0 1 + 1 "
11 (1+i) (this isn’t relevant to MATH 414 or 416).

n=1 n

1
It turns out that I'(r) = —
”

n! n! n!

I'(n+1)

I'(n+1)

1 2 3 3" I 2 3" 1 2 3 4 5 6 7 8"

118



3.5. More on gamma random variables

Theorem 3.27 (Properties of the gamma function) Let I be the gamma function.
Then:

1. T': (0, 00) — R is continuous.

') =1.

Foreveryr > 0,I'(r+1) =rI'(r).
Foreveryr > 1,T(r) = (r — 1)I'(r — 1).
Forn € {1,2,3,..},I'(n) = (n — 1)L

S T

Foreveryn e N,n! =T'(n+1).

PROOF (1) All functions defined as integrals are cts by the Fund. Thm. of Calculus.

@) T(1) = /°° e dr = —e P =0 — (—1) = 1.
0
(4) follows from (3) by replacing all the rs with r — 1.
(5) follows from (2) and repeated application of (4).
(6) follows from (5) by replacing each n with n + 1. That leaves (3).

To establish (3), use integration by parts with u = 2" and dv = e dx:

We can now extend the definition of gamma random variables to the situation
where r is not necessarily a whole number:

Definition 3.28 Let A € (0,00) and let r € (0,00). A gamma r.v., denoted I'(r, \),
is a cts r.v. X taking values in [0, oo) whose density function is

A r—1_—\x ;
fx<x>{r<r>$ AR

0 else

r and X are called the parameters of the gamma r.v.
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3.5. More on gamma random variables

Here are some graphs of density functions of I'(r, A) r.v.s:

fx@)
2.0

'=1/2,A=3/4

r=1.1,A=3/4
05 r=2, A=3/4

fx(x)
20,

r=1/2,1=6

r=1.1,1=6

r=2,A=6

Theorem 3.29 The density function of a I'(r, \) r.v. is in fact a density function.

PROOF Perform the u-substitution u = Az; du = X dz inside the integral:

o _ o A r—1_—Xz _
/o fX(x)d:v—/O mx Le™ " dy =

Corollary 3.30 (Gamma Integral Formula) Let r, A > 0. Then:

S Y
/ " e dr =
0

L(r)

Application: / 4287 dz =
0
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3.6. Summary of Chapter 3

3.6

Summary of Chapter 3

* A continuous random variable is a function X : Q — R such that the proba-
bility of any individual value of X is zero.

¢ We usually describe continuous r.v.s by specifying a density function fx :
R? — [0, 00), which satisfies

P(X € E) = /EfX(x) dx

for any set £. Such a function must be everywhere nonnegative and must
integrate to 1. We compute probabilities associated to a cts r.v. by integrating
the density function as above.

¢ All real-valued r.v.s can be described by giving a distribution function Fx :
R — [0, 1] defined by

Distribution functions have many properties; notably X is cts if and only if
Fx is cts; and if X is cts with density fx,

d

fx(2) = —Fx(z) and Fx(z)= /_w Fx(t) dt.

* To find the density function of a continuous transformation Y of a continuous
r.v X, first find the range of Y, then compute Fy by back-substitution. Last,
differentiate Fy to get fy.

¢ (Classes of commonly encountered continuous random variables include the
following;:

1. uniform r.v.s, which assign relatively equal likelihood to all values in
the range of X;

2. exponential r.v.s, which measure the amount of time until a birth hap-
pens in a Poisson process (and are the only memoryless cts r.v.s);

3. gamma r.v.s, which measure the amount of time until the r** birth in a
Poisson process;

4. the Cauchy r.v.,, which gives the tangent of a uniformly chosen angle.

You should know the range, distribution and density function of each of
these common r.v.s, and additional facts relevant to each class.

* One additional class of discrete r.v.s not previously encountered are Poisson
r.v.s, which count the number of births over a fixed length of time in a Poisson
process.
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3.7. Chapter 3 Homework

* The gamma function I, defined by

I(r) = /Oo e " da,
0

extends the idea of factorial to positive real numbers (for n € N, n! = I'(n+1)).

3.7 Chapter 3 Homework

Exercises from Section 3.1

1. Suppose you choose a real number X from the interval |2, 10] with a density
function of the form fx(x) = C'z, where C' is some constant.
a) What is the value of C?
b) Compute P(X > 5).
c) Compute P(X < 7).
2. a) (AE) The loss due to a fire in a commercial building is modeled by a
continuous r.v. X with density function f(z) = k(20 — z) for 0 < z <

20 (f(z) = 0 otherwise). Given that a fire loss exceeds 8, what is the
probability that it exceeds 16?
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3.7. Chapter 3 Homework

b) In part (a) of this problem, did you have to determine the value of & to
tind the answer? Why or why not?

¢) In general, for what types of probability computations would one not
need to find the value of an unknown multiplicative constant (like the &
in part (a)) in a density function?

Exercises from Section 3.2

3. Let X be a r.v. whose distribution function is

0 ifz<0
2 ifo<a<
Fx(l’) = 4
5 ffl<z<2
1 ifzx>2
Compute each quantity:
a) P(1<x<?) d P1<x<i)
b) P(L<Xx<1) e) P(1<X<2)
c) P (i <X < 1) f) P (X is an integer)
4. Suppose X is ar.v. whose cdf is
0 ifrx <1
1 .
— fl<z<3
Fx(z) = L
x
— if 3 < 4
10 H3<zr<
2 .
K—— ifz>14
T

where K is a constant. Compute each quantity:

a) K e) P(X >1)

b) P(X =3) f) P(X >4|X >4)
) P2< X <3) g) P(X <35|X <4)
d) PB< X <4) h) P(X >2|X >3)
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3.7. Chapter 3 Homework

5. Suppose X is a continuous r.v. with survival function

32 ifr>0
S(x)_{ 1 ifa<0.

a) Compute P(X > 7).

b) Compute P(X < 5).

c) Compute P(3 < X < 10).
d) Compute the cdf of X.

e) Compute a density function of X.

Exercises from Section 3.3

6. Let X be a discrete r.v. with density function fx defined as follows:

2 1

5 fx(2)=—.

fx(=1) = £ fx(0) = ¢, Jx(1) = :

a) Compute a density function of ¥ = 2.X + 1.
b) Compute a density function of Z = X~.
7. Suppose X ~ Unif([1,10]). Compute a density of Y = In X.
8. Suppose X has the density
§x—ix2 ifo0<z <4
fx(z) = 8 32
0 else

Compute a density function of Y = v/X.

9. Let X be a continuous, real-valued r.v. with some unknown distribution
function F'y and density function fx.

a) Compute (in terms of Fix) the distribution function of Y = e*.

b) Compute (in terms of fx) a density function of Y = e*.

10. Suppose a point (X, Y) is chosen uniformly from the triangle whose vertices
are (0,0), (4,0), and (4,4). Compute a density functionof W =Y — X.

11. Suppose a point (X, Y') is chosen uniformly from the rectangle whose vertices
are (1,0), (5,0), (1,2) and (5, 2). Compute a density functionof V = X + Y.

12. Compute the density function of Z = XY, where X and Y are chosen as in
the previous problem.
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13. A point is chosen uniformly from the interval (—10,10). Let X be the r.v.
defined so that X denotes the coordinate of the chosen point if the point is in
[—5,5], X = —5if the point is in the interval (—10, —5), and X = 5 if the point
is in the interval (5, 10).

a) Compute the distribution function Fx of the r.v. X.
b) Sketch the graph of Fx.

c) Classify X as discrete, continuous or mixed, with appropriate justifica-
tion.

d) Does X have a density function? Why or why not?

Exercises from Section 3.4

14. a) The number of bad checks that a bank receives during a 5-hour business
day is a Poisson r.v. with A\ = 2. What is the probability that the bank
will receive no more than 2 bad checks in its business day?

b) The mileage (in thousands of miles) that car owners get with a certain
kind of radial tire is a r.v. whose distribution is exponential with param-

1
eter o Compute the probability that one of these tires will last at least
20,000 miles.

15. (AE) You are given the following information about N, the annual number of
claims for a randomly selected insured person:

Let S denote the total annual claim amount for an insured. When N =1, S'is

1
exponentially distributed with parameter 6 When N > 1, S is exponentially
1
distributed with parameter 10 Compute P(4 < S < 8).
Hint: Use the Law of Total Probability.

16. Suppose that births occur according to a Poisson process with hourly rate
A = 3, where ¢ = 0 corresponds to midnight. Let p be the probability that no
births occur between 8 AM and 10 AM.

a) Compute p, using the density function of an appropriate discrete r.v.

b) Compute p, using the density function of an appropriate continuous r.v.

17. Suppose that births occur according to a Poisson process with hourly rate
A = 3, where t = 0 corresponds to midnight.
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3.7. Chapter 3 Homework

a) What is the probability that exactly 5 births occur by 2 AM?
b) What is the probability that at least 3 births have occurred by 7 AM?

c) What is the probability that exactly one birth occurs between 8 and 9
AM and exactly two births occur between 2 and 4 PM?

d) What is the conditional probability that at least one birth takes place
between 8 AM and noon, given that no births take place between 8 AM
and 10 AM?

e) What is the probability that exactly one birth occurs between 8 and 10
AM and exactly one birth occurs between 9 and 11 AM?

Hint: Split this situation into two disjoint events; compute the probabil-
ity of each event, and add.

18. Suppose that births occur according to a Poisson process with rate \.

a) Suppose you are given that v births occur between times 0 and ¢. Let s <
t; compute the probability that exactly x of the v births occur between
times 0 and s.

b) Suppose you are given that v births occur between times 0 and ¢. Let
s < t. If X records the number of births occurring between times 0 and
s, what kind of r.v. is X? Include its parameters.
Hint: You computed the density function of X in part (a). Simplify this
density function and identify it as the density of a common r.v.

¢) Suppose nine births occur between times 15 and 27. What is the proba-
bility that (exactly) three of those births occurred after time 22?

NOTE: You should remember the result you derived in part (b) of the preced-
ing problem.

17. Suppose X is exponential with parameter A\, where \ is such that P(X >
.02) = .35. Determine the number ¢ such that P(X > t) = .85.

18. (AE) Suppose the number of claims filed by an insurance policyholder is a
Poisson r.v. If the filing of (exactly) one claim is four times as likely as the fil-
ing of (exactly) two claims, find the probability the policyholder files exactly
five claims.

19. Choose (a) or (b):

a) Let X have an exponential density with parameter \. Compute the den-
sity of Y = c¢X, where ¢ > 0 is a positive constant.
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3.7. Chapter 3 Homework

b) Let X have the Cauchy density. Compute the density of ¥ = a + bX,
where a and b are constants such that b > 0.

20. Prove the Law of Small Numbers, which says that for any constant A > 0,

-\
limb<n,)\,x>:e A .
n

Hint: As a model, follow the (long) computation done on the page before
Definition 3.20]

21. (AE) The damage done to a house by a natural disaster is an exponential r.v.
with P(X > 30) = .3. If a natural disaster strikes 15 houses, and the damages
to each house are independent, what is the probability that of the 15 houses,
at least 2 of them suffer damage at least 20?

Exercises from Section 3.5

22. a) Evaluate I'(7).

b) Simplify FE?;;

¢) Suppose z is some number so that I'(x) = 100000. Compute I'(x — 2), in
terms of x.

A useful and amazing fact to know about the gamma function is the follow-
ing:
™

L(r)l(l—r)=

sin(7r)”

Use this fact to evaluate each given expression:
HrE)rE)
9T (E)r ()

23. Evaluate each integral:
a) /OO zTe /3 du C) /OO 8233727 dx
0 0

b) /OOO 4o dx d) /OOO(?m)teym dx

Calculus review

of of &f o*f 4 Of

24. For each given function f, compute 90’ a—y, 922" 0y a 900y’
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3.7. Chapter 3 Homework

25.

26.

27.

a) f(z,y) =2+ 2xy + 3y? b) flz,y) = >3
For each given function f, compute gi; and gi
) f(z,y) = e+ e — b) f(r,y) = e 2" 2

In each part of this exercise, you are given an iterated integral. Some of them
represent valid mathematics, and some of them are nonsense. Determine
whether each expression is valid, or nonsense:

a) /Ol/olf(x,y)dxdy f) /Ow/oxf(:v,y)dxdy
b) /Ol/oxf(x,y)dydx g) /Oy/;f(x,y)dydx
9 [ [ pydyaz b [ [ @y dody
d) /Ol/oyf(:c,y)dydx i) /Om/:f(:c,wdydw
o [ [ 1) sy D[]y deay
Compute each iterated integral:

a) /()1/()y6x2y3dxdy d) /Ol/yz_ydxdy

b) /0 h /y etV da dy Note:

I didn’t forget anything in (d).

1 4
Q) / / xydydx
0 Jx

128



Chapter 4

Joint distributions

4.1 Introducing joint distributions

Suppose that in a probabilistic experiment you are taking more than one measure-
ment, say d distinct (real-valued) random variables. Often, the right way to think
of these d quantities is as a single random variable which takes values in R%

EXAMPLE 1
Pick a sample of 6 marbles (simultaneously) from an urn with 10 red, 12 blue, 18
black and 20 green marbles in it. Let

X1 = # of red marbles drawn
X5 = # of blue marbles drawn
X3 = # of black marbles drawn
X4 = # of green marbles drawn

Obtain X = ? =X = (X1, Xy, X3, Xy) : Q — R* (discrete, 4—diml r.v.)

EXAMPLE 2
Pick a point uniformly from the unit square. Let

X = z — coordinate of the chosen point
Y = y — coordinate of the chosen point

Obtain X = X — (X,Y): Q — R? (cts, 2—diml r.v.)
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4.1. Introducing joint distributions

EXAMPLE 3
Pick a point uniformly (or not) from the triangle whose vertices are (0, 0), (0,2) and
(4,0). Let

X =z — coordinate of the chosen point
Y = y — coordinate of the chosen point

Obtain X = X = (X,Y): Q — R?(cts, 2—diml r.v.)

Notice: In Example 2, you obtain no information about either X or ¥ when
you are told the value of the other coordinate. This is not the case in Examples
1 and 3; as you learn information about one or more coordinates, your belief
about the values of the remaining coordinates changes.

Definition 4.1 A d—dimensional random variable (a.k.a. d—dimensional ran-
dom vector is a random variable whose range is a subset of R?. We denote such a r.v.

beorXorY.

Definition 4.2 Let X : Q — R? be a discrete d—dim'l r.v. with density function fx.
The coordinates X1, Xo, ..., X4 of X are called its marginals, and any such X is called
a joint distribution of its marginals. fx is called the joint density (function) of
X.

Note: Given a bunch of marginals X1, ..., X4, one can construct lots of different
joint distributions X of those marginals (see Examples 4 and 5 coming up).
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4.2. Discrete joint distributions

4.2 Discrete joint distributions

Similar to real-valued discrete r.v.s, a discrete d—dim’l r.v. is determined by a den-
sity function

Ix=Ix=/fz R — [0, 00)
satisfying
fx(x) = P(X = x) forall x € R?

and

P(XeFE)=> fx(x)

xeE

for any event E.

Theorem 4.3 (Density function of marginals, discrete case) Let X : Q — R¢
be a discrete d—dim’l r.v. with density function fx. Then the density function of the
§™" marginal X is

fx,(@)=PX;=2)= 3  fx(x)

{xeR%:x;=z}

In other words, this theorem says that to find the density function of a marginal,
you add up the values of the joint density over all the coordinates other than the
marginal you want. As a special case, given a two-dimensional joint density fx y,

fx(x)IZfX,Y(l’ay) and fY(y):ZfX,Y(xay)'

EXAMPLE 4
Independently roll a fair die and flip a fair coin. Let X record the number on the
die and let Y record 0 for tails and 1 for heads. Describe the joint density of X and
Y, and the marginals.
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4.2. Discrete joint distributions

EXAMPLE 5
Roll a fair die and flip a coin, with the assumption that the coin “knows” what
number is rolled, i.e. if you roll an even number then the coin flips heads with
probability 2/3 and if you roll an odd number then the coin flips heads with prob-
ability 1/3. Let X record the number on the die and let Y record 0 for tails and 1
for heads. Describe the joint density of X and Y, and the marginals.
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4.2. Discrete joint distributions

EXAMPLE 6
Draw 4 balls without replacement from an urn with 15 green and 5 black balls in it.
Let X and Y be the number of green and black balls drawn, respectively. Describe
the joint density of X and Y, and the marginals.

EXAMPLE 7
1000 people are surveyed, and the results are summarized in the following table:

SMOKERS | NON-SMOKERS
UNDER AGE 30 10% 38%
AGE 30+ 18% 34%

For each question, give the correct notation for what the question is asking, and
answer the question.

1. What % of those surveyed are under age 30?
2. What is the probability that a surveyed person aged 30+ smokes?
3. What is the probability that a given non-smoker is under 30?
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4.2. Discrete joint distributions

EXAMPLE 8
Suppose X and Y are integer-valued r.v.s with joint density

C
— if0<z<

else

where c is a constant.

1. Determine the value of c.

2. Compute P(X =5,Y =8).

3. Compute the density function of the marginal X.
4. Compute P(X —Y = 3).
5

. Write an expression involving sums and /or integrals that could be evaluated
to give P(X +Y < 12). (You do not need to evaluate this expression.)
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4.2. Discrete joint distributions

4. First, sketch a picture of the points (X,Y) so that X —Y = 3:

J 7 8 9 10 11

X

Now compute the probability by adding up values of the density function

over all the (z, y) marked in the picture:

> 9

P(X—Y:S):P(Y:X—3):§:fx,1/($al’—3):zW
=3

r=3

52 ()

=0

SN (UL
S \1-1) |4]

5. First, sketch a picture of the set £ of (X,Y) € 1sothat X +Y < 12:

v

1 2 3 4 5 6 7

X

8 9 10 11 12 13

Now compute the probability by adding up values of the density function

over all (z,y) € E:
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4.2. Discrete joint distributions

EXAMPLE 9
Suppose X and Y are discrete r.v.s with joint distribution

_ pa(l=p)*(1—¢q)¥ forz>0,y>0
fxv(@y) = { 0 else

where p and ¢ are constants.
1. Compute the density of the marginal Y.
2. Compute the density of Z = min(X,Y).
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4.3. Multinomial and hypergeometric distributions

4.3 Multinomial and hypergeometric distributions

MOTIVATING PROBLEM: SAMPLING
A jar contains 100 marbles of various colors: 30 red, 25 white, 15 green, and 40
black. You draw a sample of 8 marbles from the jar. Let

X = (R,W,G, B)

record the number of marbles of each color you draw. This is a 4-dimensional r.v.

Question: What is the joint density function of X?

Answer:

Sampling without replacement

In this setting, the joint density comes from the partition problem formula we de-
scribed in Chapter 2:

Definition 4.4 Let n € Nand let ny,...,ng € N be such that 3-;n; = n. Let k < n.
A discrete joint distribution X : Q — R? is called hypergeometric (or d—dim’l
hypergeometric if it has density function

() 5) G

. .
= xzn L4 for (21, ..., x4) € N satisfying dzi=k
fx(ZL’l,...,Jid) = k J=1

0 else

In this case, we write X ~ Hyp(n, (n1,na,...,nq), k) or X ~ Hyp(n, k) where n =
(n1, ..., ng).

d-dimensional hypergeometric r.v.s model the situation where you have n; ob-
jects of type j in a jar (for a total of n objects) and you draw k objects without
replacement. If you let X; be the number of objects of type j you draw, then
X = (X1,...,Xq) ~ Hyp(n, (n1, ..., nq), k).
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4.3. Multinomial and hypergeometric distributions

In our motivating example above, if the sampling is without replacement the joint
density of X would be

and the probability of drawing 3 red, 1 white, 2 green and 2 black marbles is

Theorem 4.5 Suppose X ~ Hyp(n, (n1,ne,...,nq), k). Then X; ~ Hyp(n,n;, k),
where X is the j'* marginal of X.

Sampling with replacement

In this setting, we can think of each draw from the jar as an independent repetition
of a “Bernoulli-like” trial, except that the trial has d different outcomes (d = 4 in
our example; this is the number of different colors). Now, the probability of getting
the j outcome z; times in n trials is
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4.3. Multinomial and hypergeometric distributions

Definition 4.6 Let n € Nand let pi,...,pq > 0 be such that 3~;p; = 1. A discrete
joint distribution X : Q — R? is said to be multinomial with parameters n and
p = (p1, ..., pa) if it has joint density

n il n!
_ Tj __ . Z1 T2 Zd
fx(z1,...,2q) = [[p" = ————p0'p5% - D
L1, %2,y %d ) ;5 xylwe! - -yl

d
(for nonnegative integers x1, ..., xq satisfying >. x; = n; the joint density is 0 oth-
j=1

erwise). In this setting, we write X ~ multi(n, (p1,p2, ..., pa)) or X ~ multi(n, p).

Multinomial r.v.s describe sampling with replacement.

In our motivating example above, if the sampling is with replacement then the
joint density of X would be

and the probability of drawing 3 red, 1 white, 2 green and 2 black marbles is

Theorem 4.7 Suppose X ~ multi(n, p). Then X; ~ b(n,p;), where X; is the j™*
marginal of X.
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4.4  Continuous joint distributions

In this section, we take the usual language associated to non-discrete, real-valued
r.v.s and extend it to joint distributions.
As usual, given 2 real-valued r.v.s X and YV, we think of X = (XY : Q — R%,

(Similarly, write X = (X1, ..., X4) : © — R%)

Joint distribution functions

DEFINITION OF APPLICATION TO
DIMENSION DIST. FUNCTION PROBABILITIES
d=1 Fy :R—[0,1] Pla< X <b)=
d=2
(X:Q—R?
X = (X,Y))
general d
X:0Q—RY
Moral Distribution functions are not as useful for joint distributions as

they are for real-valued r.v.s.
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4.4. Continuous joint distributions

Theorem 4.8 (Properties of joint distribution functions) Let X : Q — R¢ bea
joint distribution with joint cdf Fx : R? — [0, 1]. Then:

1. lim  Fx(x) =1

x;—00 Vj

2. lim Fx(x)=0.

zj——00Vj

3. If all but one coordinate is fixed, Fx is increasing with respect to that coordinate.

Marginal distribution functions

As with the discrete case, the coordinates of a joint non-discrete r.v. are called its
marginals. We can compute the cdf of a marginal from a joint cdf by taking limits:

Theorem 4.9 (Distribution functions of marginals) Let X : Q — R? be a joint
distribution with joint cdf Fx : R* — [0,1]. Then the cdf Fx, of the j™ marginal X
is

FX]-< j) :P(X] SZE]) = lim Fx(l‘l,...,l’d).

x;—00 Vi#]

PROOF

Fx,(z;) = P(X; < )
= P(Xl < 00, Xy < 00, ---an—l < OO,Xj < l'jan—&—l < 00,...,Xg < OO)

£“"
= "Fx(00, 00, ...,00, %}, 00, ..., 00)

= lim Fx(z1,29,...,2q). O
T;—>00Vi#£]

As a special case, given joint distribution (X, Y') with joint cdf Fx y, we have

Fx(z) = lim Fxy(z,y) and  Fy(y) = lim Fxy(z,y).
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4.4. Continuous joint distributions

Density functions for continuous joint distributions

RECALL
Arv. X : Q — R%is called continuous if P(X = x) = 0 for every x € R%.

When d = 1, most cts r.v.s have a density function which is used to compute prob-
abilities: if X : 2 — R is continuous with density function fy, then

Definition 4.10 Let X : Q — R? be a rv. We say that a function fx : R? —
0, 00) is a (joint) density function for X if for every subset E C R® whose size (i.e.
length/area/volume/etc.) can be computed using calculus,

P(X € E) = /E Fx(x) dx.

Note: The integral in the above definition is really a multiple integral:

b
d=1: /Efx(x) dx means /a fx(x)dz
d=2: /E fx(x) dx means //E fxy(z,y)dA
d=3: /Efx(x) dx means ///E fxyz(z,y, z)dV

etc.

Note: Density functions for a specific cts joint distribution X are not unique
(they can be changed at single points, etc. without affecting probability com-
putations).
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4.4. Continuous joint distributions

Theorem 4.11 (Properties of joint density functions) Let X : Q — R? be a d-
dimensional 1.v.

1. If X is mixed, then it has no density function.

2. A (measurable) function f : R? — R is the density function of a cts joint
distribution X if and only if
(i) f(x)>0forall x € R and
(ii) / f(x)dx = 1.
R4

3. Suppose continuous X : Q — R? has joint distribution function Fx and joint
density function fx. Then for all x € RY,
ad
(x) =
8x18x2 cee aZEd

Jx Fx(x).

Remark: There are continuous joint distributions that do not have a density
function, but we don’t have to worry about those in MATH 414 or 416.

As a special case of (3), we see that if (X, Y') is a cts joint distribution with joint cdf
Fxy(z,y) and joint density fx y(z,y), then

2
fxy(zy) = mFx,y(x,y) )

PROOF (WHEN d = 2) Let z,y € R. Then
/ /y Ixy(s,t)dtds = P(X <x2,Y <y) = Fxy(z,y)

Differentiate both sides of this equation with respect to x:

a [r (v 0
%/_OO /_OO [xy(s,t)dtds = %FX,Y(%Q)

Now differentiate both sides with respect to y:

o v olo
Y dt= 2 |2 F
ay [00 fxy(z,t)dt oy lax X,Y(l'a?/)]
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4.4. Continuous joint distributions

EXAMPLE 10
Suppose X and Y are cts r.v.s with joint density

[ 6y f0<ax<1,0<y<1
fX,Y(xay)_{ 0 else .

1
Compute P (X +Y < 2).
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4.4. Continuous joint distributions

Density functions of marginals (continuous case)

Theorem 4.12 (Density functions of marginals, continuous case) Let X : 2 —
RY be a cts joint distribution with joint density function fx : R? — [0, 00). Then:

1. Each marginal X is continuous and has a density function;

2. For each j,

fXj (.ZIZ'J) = [ L tee [ fx(X) dxldl'g cee d.%j,ldl'jqu tee diL’d.

This theorem tells us that to find the density function of the marginal of a continu-
ous joint distribution, you integrate the joint density with respect to all the other
coordinates.

As a special case, if X and Y are cts r.v.s with joint density function fxy(x,y), then

fx@) = [ fxr(eydy) and Ay = [ fory)de,

PROOF (WHEN d = 2) Let z € R. Then:

P(X <) = P(X € (—o00,]) = / Fx(s) ds.

—0o0

At the same time,
P(X <z)=P(X € (—0,z]) = P(X € (—o0,z],Y € (—00,0))

= s,y)dA
//(—oo,:c]x(—oo,oo) fX’Y( y)
= [ [ ferlswydyds

By equating the two expressions above we found for P(X < z), we get

/_zoo Ix(s)ds = /_zoo /_O:o fxvy(s,y)dyds.

Differentiate both sides of this with respect to x; by the FTC we get

fx(z) = /_O:O fxy(z,y)dy. O

145



4.5. Independence of random variables

4.5 Independence of random variables

RECALL
Earlier in the course we talked about what it means for two events to be independent:

Now, we want to extend the notion of independence to random variables.

Definition 4.13 Let Xy, ..., Xy be real-valued r.v.s with joint distribution X. The
r.v.s (just as well, the distribution) are (is) called (mutually) independent if

Fx(x) 21:[1 Fx,(z;)

forall x = (21, ..., xq) € R?, where Fx is the joint cdf and the Fx, are the cdfs of the
marginals.

Notation: If two r.v.s X and Y are independent, we write X L Y; otherwise we
write X [ Y.

Idea: To say two r.v.s are independent means that given any information about one
of them does not affect your assessment of any probability associated to the other
one.

IMPORTANT: Whether r.v.s are independent depends on the joint distribu-
tion, and not just on the marginals. Look back at Examples 4 and 5 from earlier
in this chapter, which have the same marginals X and Y.

¢ In Example4, X LY.

¢ In Example5, X LY.
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4.5. Independence of random variables

Theorem 4.14 Let Xy, ..., X, be continuous real-valued r.v.s with joint density fx :
R? — [0, 00). Then the X; are independent if and only if

d
fX b1l g ooo H Ij fOT[le (1‘1,...,l'd) S Rd.

As a special case, we see that| X L Y iff fxy(z,y) = fx(z)fy(y)|for all z,y.

PROOF (WHEN d = 2)
(=) Suppose X LY.

Then Fx y(z,y) = Fx(z)Fy(y) by definition of L.
Take mixed second-order partials of both sides of this to get

02 0 0

92y —Fxy(z,y) = 9z 0y — Fx(2)Fy(y)
fxy(z,y) = ;;FX(JU) aayFy(y)

fX,Y(%y) = fx(z)fr(v).
(<) Suppose fxy(z,y) = fx(z)fy(y). Then

Fxy(z,y) = P(X <z,Y <y)= /x /y Ixy(s,t)dtds

:/_:/_:fx< ) v (1) dt ds
= [ txyds - [* pvar
= Fx(z)Fy(y)

so X 1Y by definition. [J

A similar result holds for density functions of discrete r.v.s:

Theorem 4.15 Let X, ..., X, be discrete, real-valued r.v.s with joint distribution X.
The r.v.s are independent if and only if

forall x = (21, ...,z4) € R
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4.6. Example computations with joint distributions

4.6 Example computations with joint distributions

EXAMPLE 11

1
Pick a point (X,Y") uniformly from the region {(x, y):0< 2z <6,y < Qx}.

1. Determine the joint density of X and Y.
2. Determine the density functions of the marginals.

3. Determine whether X and Y are independent.
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4.6. Example computations with joint distributions

EXAMPLE 12
Suppose X ~ Geom(p). Find the density of X + X.
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4.6. Example computations with joint distributions

EXAMPLE 13
Suppose X and Y are continuous r.v.s whose joint density

¢
fxy(z,y) = { (z +y)*

ife>1,y>1

0 else

1. Determine the value of C.
2. Compute P(Y < 2X).
3. Compute the densities of the marginals.

4. Determineif X 1 Y.
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4.6. Example computations with joint distributions

3. We compute the density of X first, by integrating with respectto

fx(z) = /O:O Ixy(z,y)dy = /1OO (33_2:2)4@

= 8z +y)°[
=0—(=8(z+1)7%)
=8(x+1)7%

This holds when = > 1; otherwise fx(z) = 0. So formally, the density is

3
fx(x) = { 8(x—51) 1eflsxeZ 1

Next, we compute the density of Y by integrating with respect to x:

rw = [ roepdr= [T

= —8(z+y) |
=0—(-8(1+y)™)

=8(1+y)~".

Formally, the answer is

-3 .
- {0 e

4. To determine whether or not X 1 Y, we test as follows:
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4.7. Conditional density

4.7 Conditional density

RECALL
Given a probability space (€2, A, P) and an event E with P(E) > 0, we defined the
conditional probability of I’ given E by

P(ENF)

P(FIB)= =5

Our goal is to create something similar on the level of random variables:
QUESTION

Let X, Y be real-valued r.v.s. (either cts or discrete). What is the “probability” of X
given a particular value of Y? e.g.

“PX=z|Y=y)=

Definition 4.16 Let X and Y be real-valued r.v.s with joint density function fxy-.
The conditional density of X given Y is the function fyy : R* — [0, o) defined
by

fxy(2,y)

fX|Y(x|y) = W,

where fy is the density of the marginal Y (if fy(y) = 0, we say fxy(x|y) = 0).
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4.7. Conditional density

Theorem 4.17 (Properties of conditional densities) Let X and Y be real-valued
r.v.s. Then:

Conditional densities are densities: For every y such that fy(y) > 0, fx)v(z|y)
is a density function for a random variable X |Y (whose value is x), i.e.

/_O:O fxyy(zly) de = 1.

Multiplicative property: We can compute the joint density of X and Y by multi-
plying the density of one marginal times the conditional density of the other one,
given the first:

fxiy (@ly) - fr () = fxy(z, ).

Conditional probability calculations: We compute conditional probabilities asso-
ciated to one r.v. given the value of the other as follows:

/ fxp (zly)de if X is cts
E
> fxv(zly)  if X is discrete

x

P(X€EE|Y =y) =

EXAMPLE 14
Suppose X and Y have joint density

fX,Y@,y):{ vz=r=y) if(zy) €01

1. Find the conditional density of Y given X.

1
2. Find the conditional density of ¥ given X = 3"

3. Find the probability that Y € Lll’ ﬂ given that X = Zl%

Solution: 1.
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4.7. Conditional density

2. Having computed fy|x in # 1, we compute this simply by plugging in z = 3:

Tyix (ylé) = W =|2y <2 — y) fory € [0,1] |

3. Integrate the conditional density found in # 2:

1 3 1 3/4 1
P Y -, — X = — | = _ d
< € [4,4} | 3) ” fY|X(CU|3) Yy
3/4 5
= 2y ( —y> dy
1/4 3

3/4 /10
[ (o) o
1/4 \ 3

_[5 s 2 3}3/4 9

3V 73 1/4 16 |

3Y —3Y

REMARK: If X is cts, there is a big difference between

13 1 13 1
-, = == -, = < -):
P(YGLL’ALHX 3> and P(YGLMHX—?))
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4.7. Conditional density

EXAMPLE 15
Suppose that X ~ Ezp()), and that Y|X ~ Ezp(z).

1. Determine the joint density of X and Y.

2. Compute a density function of Y.
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4.8 Transformations of continuous joint distributions

We want to consider two types of transformation problems:

Class 1: Compute the density of a real-valued r.v. U obtained as a function of
several r.v.s X, ..., X4y which have some given joint distribution.

Example: Given a joint density of X and Y, find a density of Z = X + 2Y.

Class 2: Compute the joint density of some r.v.s Uy, ..., U, obtained as functions
of several r.v.s X1, ..., X; which have some given joint distribution.

Example: Given a joint density of X and Y, find a joint density of U and V/,
whereU = X +Yand V =

X
X+Y

We handle problems in each of these two classes separately.

Class 1 Examples

Setup: ¢ : R? — R is some function; U = p(X1, ..., X4) = @(7) is real-valued.

Method of solution:

1.
2.
3.

Classify U as discrete or continuous.
Find the range of U.
If U is discrete, compute the density by back-substitution:
fo(u) = P(U = u) = P(p(X) = u) = P(X € ¢~ (u))
[ xx)dx ifXiscts
¢~ Hw)
> fx(x) if Xis discrete
)

x€p~1(u
If U is continuous, first compute the cdf of ¥ by back-substitution:
Fy(u) = P(U < u) = P(p(X) < u) = P(X € ¢~ (—00,ul)
/ L X0 i X cis
e~ (—oo,u

Z fx(x) if X is discrete '

x€p~1(—o0,ul

Then differentiate Fy; with respect to u to obtain fi;.
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EXAMPLE 16
Let (X,Y’) be independent, exponential r.v.s, both with parameter A. Determine a
density of X + Y.
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4.8. Transformations of continuous joint distributions

EXAMPLE 17
Suppose that the amount X an insurance company pays in claims and the amount
Y it collects in premiums are modeled by a joint density

Foy (o) 5301’ fo<ax<y<10
xy(T,y) =
0 else

Let R be the ratio of premiums to claims; find the distribution function of R.
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4.8. Transformations of continuous joint distributions

Class 2 Examples

Setup: ¢ : RY — R?is some function (we will assume that ¢ is invertible, otherwise
the problem is much harder); U = (Uy,..,Us) = ¢o(X1,..., X4) = »(X) is a joint
distribution. fy(u)="7?

Let’s write ¢(z1, ..., z4) = (ug, ..., ug) for convenience.

This problem has a theoretical solution: suppose for now that d = 2. Then, the
joint density of U should satisfy, for every (measurable) set E C R?,

Motivation from Calculus 1: u-substitutions

Since this holds for every E C R?, we have

fulur,ug) - [J(p)| = fx(z1,22) = | fulu,ug) = mfx(flalé)

where J(y) is the Jacobian of ¢:

0u1 8u1
87171 871'2 (ul)xl (ul)m
J(p) = det = det = det Dep.
% % <u2)$1 (u2)$2
61’1 8@

This generalizes:
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4.8. Transformations of continuous joint distributions

Theorem 4.18 (Transformation theorem, higher-dimensions)

Suppose X = (X1, ..., X4) has joint density fx : R* — [0, c0).

Suppose that U = (Uy, ..., Uy) = p(X1, ..., X4) = @(X), where p : R — R¥isa C*
functionf

If the Jacobian determinant

Oou, Ouyg Oouq

21 92 GTcd
Jp)=det| i .

8ud 8ud 8ud

9ty Oxy  0xa / 4ua

is everywhere nonzero, then the U, are all continuous and have joint density given by

1
fU(ul, ...,Ud) = mfx(ail, ...,J,’d),

ie.

1
fu(u) = =— fx(p™" (u)).
[ 7(#)l
“A function is called C' if all its partial derivatives exist everywhere and are continuous.
EXAMPLE 18

Let (X1, X2) be uniform on [0, 1]°. Compute a joint density of Y; = X; + X, and
Yo = X7 — Xo.
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4.8. Transformations of continuous joint distributions

EXAMPLE 19
Suppose X; ~ I'(a, A), Xo ~ I'(5,A) and X; L X,. Find the joint density of Y; =
X
Xi+Xoand Yy = ——.
1 2 2= X L X,
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4.9 Chapter 4 Homework

Exercises from Section 4.2
1. Suppose X and Y are discrete, integer-valued r.v.s with joint density function

9 9o
9 3ety
0

ifx >0,y >0
fxy(z,y) =
ifr<Oory<0

a) Verify that this fyy is in fact a density function (by showing that its
values sum to 1).

b) Compute the probability that X =3 and Y = 4.
Note: This is one question, asking for the probability that (X = 3 and
Y = 4).

¢) Compute the probability that X = 2.

d) Calculate a density function of the marginal Y.

e) Based on the computation you did in part (d), how would you describe
Y as a common r.v.? (Include any appropriate parameters.)

2. Suppose you have two dice numbered 1 to 6 that you can load however you
want (i.e. you can assign whatever probabilities you want to each number on
each die). Is it possible to load the dice in such a manner that makes every
sum from 2 to 12 equally likely when the dice are rolled independently? If
so, explain how. If not, explain why not.

Hint: Call the two dice X and Y. Letp; = fx(1) = P(X = 1), ps = fx(6) =
P(X =6),¢1= fy(1)=P(Y =1)and g5 = fy(6) = P(Y = 6). Now, consider
the probability that the sum of the numbers rolled is 2 and the probability that
the sum of the numbers rolled is 11. What must each of these probabilities
be, in terms of pi, ps, ¢1 and ¢s? What must these equal, since every sum
is supposed to be equally likely? This gives you two equations involving
D1, 6, ¢1 and ge. Finally, consider the probability that the sum of the numbers
rolled is 7. This will lead you to an inequality involving p, ps, ¢: and ¢ from
which you can derive something useful.

3. Let X and Y be r.v.s having joint density function given by the following

table:

vy Xl =110 21]6

1 1 1 1

2| % | 3|5 %

1 1 2

1 1 531013513

2 1 2

3105|393
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a) Compute the probability that X is even.
b) Compute the probability that XY is odd.

4. Let X and Y have the joint density given in Exercise

a) Compute the probability that X > 0and Y > 0.
b) Compute the probability that X > 0 or Y > 0.

5. Let X and Y have the joint density given in Exercise

a) Compute the density function of X.
b) Compute the density function of Y.

6. Let X ~ Unif({0,1}) and Y ~ Unif({0,1}). Characterize all possible joint
distributions of X and Y. For each of these joint distributions, compute the
density of X + Y.

Hint: The idea here is to think about the most general way in which you
could make a chart similar to the ones we made for Examples 4, 5 and 6. For
instance, if you put a number a in one of the boxes in that chart, what would
have to go in the other boxes?

7. Suppose X and Y are discrete r.v.s, each taking values on the nonnegative
integers, with joint density function fxy. For each given probability, write
an expression, involving one or more sums, which gives the probability.

As an example, if asked to compute P(0 < X < 5,2 <Y < 4), one possible
correct answer is

5 4
PO<X<52<Y<4)=> 3 fey(z,y).

=0 y=2

a) P6<X <10,0<Y <4)
Note: in this type of statement, the comma always means “and”.
b) P(X =6,9<Y)
c) P(X=5orY >14)
d) P(X =1)

8. Same directions as Exercise [/}

a) PB<X,12<Y <20)

(
b) P(X+Y—11)
o) P(X =9)
d) P(0 X<Y)
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9. Same directions as Exercise [7t

a) P(0< X <Y < 10)

b) P(X +Y < 15)

¢) P(X +Y = z), where z is a constant
(

d) P(Y — X = z), where z is a nonnegative constant
10. Suppose X and Y are as described in Exercise

a) Compute the probability that X +Y = 8.

Hint: I want an answer with no “X”s in it. To evaluate your sum, you
will need the formula for a finite geometric sum given on the pink sheet.

b) Compute the probability that X +Y > 12 (again, no “~”s in your answer
are allowed).

Exercises from Section 4.3

11. There are 40 gumballs in a bag, of which 20 are red, 10 are orange, 8 are green,
and 2 are purple.

a) Suppose you randomly draw 15 gumballs from the bag, one at a time,
with replacement. What is the probability you draw 5 red, 5 orange, and
5 green gumballs?

b) Suppose you randomly draw 15 gumballs from the bag simultaneously.
What is the probability you draw 5 red, 5 orange, and 5 green gumballs?

Exercises from Sections 4.4 to 4.6

12. Suppose X and Y are continuous r.v.s such that X > 0 and Y > 0, with
joint density function fxy. For each given probability, write an expression
involving integrals which gives the probability. As an example, if asked to
compute P(0 < X < 5,2 <Y < 4), one possible correct answer is

5 rd
PO<X <522y <) = [ [ fry(ay)dydo.

a) PB< X <8,0<Y <5h) c) P(X+Y <38)
b) P(X > 4) d) P(min(X,Y) <6)

13. Same directions as Exercise
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a) P(max(X,Y) <6) c) P(Y/X <5)
b) P(X <Y) d) P(X —2Y > 5)

14. Repeat Exercise[I2, but under the extra assumptions that X and Y take values
only in the square whose vertices are (0, 0), (10,0), (0,10) and (10, 10).

15. Suppose X and Y are continuous r.v.s such that 0 < Y < X, with joint den-
sity function fx y. For each given probability, write an expression involving
integrals which gives the probability.

a) P(X > 14) c) P(X+Y <8)
b) P(Y < 2) d) P3< X <10,5<Y <8)

16. Suppose X and Y are two continuous real-valued r.v.s with joint density
function

C<x2+x2y) ifo<r<1,0<y<?2
fX7Y<:E7y) =
0 else

where C'is some constant. Compute each quantity:
a) C ) P(X >Y)
1 1
b) fx(z) d)P(Y>2‘X<2>

17. Let §2 be the triangle in the xy—plane whose vertices are (0,0), (2,0) and (0, 2).
Suppose X and Y are r.v.s with joint density

ety if (z,y) €Q
fX,Y<x7y) - { 0 else

where c is some constant.

a) Compute c.
b) Calculate the probability that X > 1.

c) Calculate the probability that both X and Y are greater than ;

d) Determine a density function of the marginal Y.

e) Are X and Y independent? Why or why not?

166



4.9. Chapter 4 Homework

18.

19.

20.

21.

22.

(AE) A device runs until either of two components fails, at which point the
device stops running. The joint density function of the lifetimes of the two
components, both measured in hours, is

Flry) = é(“y) 0<zy<2
7 0 else

What is the probability that the device fails during its first hour of operation?

(AE) An insurance company insures a large number of drivers. Let X be the
r.v. representing the company’s losses under collision insurance, and let Y’
represent the company’s losses under liability insurance. X and Y have joint
density function

flx,y) = { i(2x+2_y> z € (0,1),y € (0,2)

0 else
What is the probability that the total loss is at least 1?
Suppose X and Y are real-valued r.v.s with joint density

Ne M 0<z<y
0 else )

fxy(z,y) :{

a) Compute the marginal densities of X and Y.
b) Compute the probability that Y < 4.

Let X and Y denote the coordinates of a point chosen uniformly from the
unit square. Let Z; = X?,let Z, = Y?and let Z3 = X + Y.

a) Are 7, and Z, independent? Why or why not? (Give a heuristic argu-
ment only.)

b) Are Z; and Z; independent? Why or why not? (Give a heuristic argu-
ment only.)

Let X and Y be independent r.v.s, where X ~ Geom(p) and Y ~ Geom(q) (do
not assume any relationship between p and ¢ in this problem).

a) Compute P(X =Y). b) Compute P(X >Y).
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Exercises from Section 4.7

23.

24.

25.

26.

27.

28.

29.

Suppose X and Y are continuous r.v.s with joint density

re W) ifr >0,y >0
fxy(z,y) = { 0 else :

Compute the conditional density of X given Y.

Suppose X and Y are discrete r.v.s, taking values in the integers, whose joint
density is

1
—/\xe_’\_x_l(:v +1)Y if0<xz,0<y
fxy(z,y) =3 =¥
0 else

Compute the conditional density of Y given X = 3.

(AE) An insurance company supposes that each person has an accident pa-
rameter a and that the yearly number of accidents of someone who has ac-
cident parameter a is a Poisson r.v. X with parameter a. The company also
supposes that the parameter of a newly insured person is itself a I'(r, \) r.v. If
a newly insured person has n accidents in his first year,

a) Compute the conditional density of his accident parameter.
b) Identify the conditional density you found in part (a) as the density of a
common r.v. (including appropriate parameters).

LetY ~ Exp(X), where Aisitselfarv. A ~ I'(r, ).

a) Compute a density of Y.
b) Compute the conditional density of A given Y = y.

The distribution of Y, given X, is uniform on [0, X|. The marginal density of
Xis fx(z) =2z for 0 < z < 1 (fx(x) = 0 otherwise). Find the conditional
density of X given Y = y (where this conditional density is positive).

Compute the conditional density fyx, for the joint density given in Exercise

20

(AE) An auto insurance policy will pay for damage to both the policyholder’s
car and the other driver’s car in the event that the policyholder is responsible
for an accident. Assume that the size X of the payment for damage to the
policyholder’s car is uniform on (0, 1), and that given X = z, the size Y of the
payment to the other driver’s car is uniform on (z, x + 1). If the policyholder
is responsible for an accident, what is the probability that the payment for

damage to the other driver’s car is greater than 5?
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30.

Suppose X and Y are discrete r.v.s whose joint density is given in the chart
in Exercise 3l

a) Calculate P(X <4|Y =1).
b) Calculate P(Y < 3| X = 6).

Exercises from Section 4.8

31.

32.

33.

34.
35.

36.

37.

Let X and Y be independent r.v.s, where X ~ Pois(\;) and Y ~ Pois()q).
Prove that X + Y is Poisson; what is its parameter? (The way you do this for
now is to explicitly compute the density function of X 4 Y.)

NOTE: The fact you just proved in Exercise 31| should be memorized
(and will be generalized later).

Suppose (X, Y') have joint density

dry if0<zx<1,0<y<1
0 else

fX,Y(xa y) = {
Compute the density of W = X + Y.

Hint: The computation requires separate cases, depending on whether W > 1
or W < L.

(AE) A company offers earthquake insurance. Annual premiums are mod-
eled by an exponential random variable with parameter 1. Annual claims
are modeled by an exponential random variable with parameter 2. Assume
that the annual premiums and claims are independent; let X' denote the ratio
of claims to premiums. What is the density function of X?

If X ~T'(r,\), what is the density of Y = v/X?
(AE) The time T that a computer is not working is a random variable whose

1
cumulative distribution function is F'(t) = 1 — 175_2 for ¢t > 2. The resulting

cost X to the business as a result of the computer malfunctioning is X = 7%
Find the density function of X (when X > 4).

Let X and Y be independent exponential r.v.s, with respective parameters A
and .. Compute the joint density of X and Z = X + Y.

Let X and Y be continuous r.v.s with joint density function

e f0<z<y
fX7Y<x>y) - { 0 else' .

Compute the joint density of W and Z, where W =Y/X and Z = X + Y.
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38. Let X and Y be continuous r.v.s with 0 < X and 0 < Y that have some
unknown density function f. Compute, in terms of f, the joint density of
T=X*%andU = XY.

39. Let X and Y be independent Poisson r.v.s, with respective parameters A and
p.LetZ=X+Y.

a) Compute the joint density of X and Z.
Hint: In terms of X and Z, the joint density of X and Z is fx z(z, z) =
P(X = z,Z = z). Back-substitute to see what this is in terms of X and
Y.

b) Compute the conditional density of X given Z.

Hint: You should know what the density of Z is without computing its
marginal again (since you studied this situation in Exercise [31).

40. Suppose X7, ..., X, are independent, continuous r.v.s.
a) Let MAX = max(X;, ..., X;) be the maximum of the Xs. Derive a for-
mula for Fj/4x in terms of the Fy,.

b) (AE) A company decides to accept the highest of five sealed bids on a
property. The sealed bids are regarded as five independent r.v.s, each
with common cumulative distribution function

_ a2
F(z) = (z 43) for3 <ax <5.

Find the density function of the accepted bid.
41. Suppose X3, ..., X, are independent, continuous r.v.s.
a) Let MIN = min(Xy, ..., Xy). Derive a formula for the survival Sy;;y of

the minimum, in terms of the survival functions S X; of the marginals.

b) Prove thatif Xj, ..., X,; are independent exponential r.v.s with respective
parameters Ay, ..., A4, then min( Xy, ..., X;;) is exponential with parameter
A+ .+ A

NOTE: The facts you prove in Exercises 0] (a) and 1] (a) and (b) are good
to memorize for the actuarial exam, and for MATH 416. The maximum and
minimum of the r.v.is X, ..., X; are part of what are called the order statistics
of the X;.
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Chapter 5

Expected value

5.1 Definition of expected value

MOTIVATING QUESTION
What is the “average” value of a random variable?

EXAMPLE 1
You and your friend play a game with a spinner. You spin the spinner and then
exchange money depending on where the spinner lands:

+10
+3
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Flawed definition: The expected value of a discrete, real-valued r.v. X, denoted
EX,is

zE€Range(X)
Technical point: The range of X might be an infinite set (i.e. it might be Z). Then
there are potential issues with the convergence of the infinite series

> xfx(x)

z€Range(X)

if we try to rearrange terms. To get around any problems, we require that this se-
ries converge absolutely.

RECALL FROM CALCULUS 2
A series Y a,, is said to converge absolutely if 3" |a,| converges. Absolutely con-
vergent sequences can be rearranged and/or regrouped without changing the sum
of the series.

In our setting, tosay > xfx(z) converges absolutely means
z€Range(X)

With this in mind, we make the following definition:

Definition 5.1 Let X : 2 — R be a discrete r.v., with density fx. We say X has
finite expectation (and write EX < oo) if

Z 2| fx(z) < oo;

zE€Range(X)

in which case we say the expected value (a.k.a. mean a.k.a. expectation) of X is
the real number

EX= Y zfx(a).

z€ Range(X)
If > |z fx(z) = oo, we say X does not have finite expectation and we
xE€Range(X)
write EX = oo.

A similar definition works for continuous, real-valued r.v.s:
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Definition 5.2 Let X : 2 — R be a continuous r.v., with density fx. We say X has
finite expectation (and write EX < oo) if

/O:O |z| fx(z) dx < 0o

in which case we say the expected value (a.k.a. mean a.k.a. expectation) of X is
the real number

EX = /jo z fx(z)d.

If / |z| fx (x) diverges, we say X does not have finite expectation and we write
EX = oo.

Notation: £ X is also denoted 1, p1x, E[X], E(X) and E(X).

Note: If X : 2 — R is neither discrete nor cts, then it makes no sense to talk
about £ X.

Also, if X isn’t real-valued (such as when X : Q — R is a joint distribution), it
makes no sense to talk about £.X.

EXAMPLE 2

Suppose X has density function fx(z) = 238352 for -1 < z < 3 (and fx(z) =0

otherwise). Compute the expected value of X.
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Note: If the range of X is bounded above and bounded below (like in Example
2), then EX < oo is automatic.

If the range of X is either bounded above or bounded below, then you can
simultaneously check that X has finite expectation and compute £X by com-
puting

> zfx(x) (if X is discrete) or / - zfx(x)dx (if X is continuous).

T o0

So in practice, you never actually have to mess with computing  _ |z|fx(z) dx

or / || fx (x) dx.

LOTUS (Expected values of transformations)

QUESTION
Suppose you know the density of r.v. X. To get the expected value of X, you
compute

EX =) zf.(x) or EX = /xfx(m) d.

How would you compute the expected value of a transformation of X, i.e. what is
EY itY = ¢(X)?

Long way:

Seemingly dumb way:

Actually, this seemingly dumb way works! It’s called “LOTUS”, which is an acronym
for the Law of the Unconscious Statistician:
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Theorem 5.3 (LOTUS) Suppose X : 1 — R? is a r.v. with density fx. Let U =
©(X) where p : R — R is a real-valued function of d variables. Then:

(a) U has finite expectation if and only if

Z lo(x)| fx (x if X is discrete
/C>o lo(@)| fx(x)dr < oo if X = X is cts and real-valued
/ lo(x)|fx(x)dx < oo if X is cts and vector-valued

R4

(b) if EU < oo, then

> o(x) fx(x) if X is discrete
EU = / ~ o(@)fx(z) de if X = X cts and real-valued
/ o(x dx if X is cts and vector-valued
Rd

Remark 1: In practice, we’ll never have to worry about part (a) of this theorem,
because we will deal with r.v.s that have finite expectation.

Remark 2: If X is a joint distribution, then the integrals here are actually mul-
tiple integrals. For instance, if U = ¢(X,Y), then

EU = / / o(x,y)fxy(x,y)dA.

PROOF (WHEN X IS DISCRETE) In this case, U is also discrete, so we can denote
the values in the range of U uy, u, ....

For each j, let 4; = ¢~ (u;) = {x € Range(X) : p(x) = u;}.
The A; form a partition of the range of X.
Now, since X € A; if and only if U = u;, we see that

fuluj) = P(U=u;) =P(X € A;)= > fx(x

XEA;
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Therefore
E|U| = Z |w;| fo(u;) = Z ;| Z fx(x) (from the previous page)
J J TEA;
=3 > lulfx(x)
7 XGAj
= > le@)]fx(x).
x€Range(X)

Therefore EU < oo if and only if Y |p(x)|fx(x) < oo, proving statement (a).

For statement (b), repeat the argument that proved part (a), but with no
absolute values around the u;.

The proof of LOTUS when X is continuous is beyond the scope of this course,
as it uses a branch of mathematics called measure theory. (]

EXAMPLE 3

1
Suppose X has density function fx(z) = = + 3 for0 < z < 1 (and fx(z) =0
otherwise). Let Y = 3X? + 6X + 7. Find EY.
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EXAMPLE 4
Let X ~ Pois(\). Find E[e*].

Expected values and survival functions

A useful, alternate method to compute expected values is by means of the survival
function. Recall that for a real-valued r.v. X, Sx(z) = P(X > x) =1 — Fx(x).

Theorem 5.4 (Expected value from survival function) Suppose X is a random
variable taking values in [0, c0). Then:

1. if X is discrete, then EX = ioj Sx ().

z=0

2. if X is continuous, then EX :/ Sx(x) dx.
0

PROOF If X is discrete, then

EX =Y afx(z)
=0

(1) + 2(2) + 3/x(3) + 4/ (1) +
= [fx(1) + fx(2) + fxB) + ]+ [fx(2) + fx )+ ] + [[x(3) +...]

=PX>0+PX>1)+P(X>2)+..

= i P(X >z) = f:oSX(x).

=0
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If X is continuous, then

b b
EX = blim xfx(z)dx = blim leX(xﬂg —/ Fx(x) dx]
—00.J0 —00 0
I b
= Jim |bFx(b) - / Fy(z) dx]
—00 0
[/ rb b
= lim (/ 1dr1:> FX(b)—l/ Fx(x) d:v]
b—o0 | \/0 0
[ b b
= lim FX(b)/ 1(1:17] — {lim Fx(b) / Fx(z)dx
b—o0 i Jo b—o0 0
| b ) b
= Jim |Fx(t) /0 1dx] — lim [Fx(b) /O Fy(z) d:c]
[ b
= blim FX(b)/ [1— Fx(x)] d;z:}
—00 0
b
=1- blggo ; 1 — Fx(x)] dx
:/ Sx(z)dz. O
0
EXAMPLE 5
2
Suppose X is a continuous, real-valued r.v. with cdf Fy(z) = 1 — (90;:1)2 for

x> 0 (Fx(z) = 0for < 0.) Compute the expected value of X.
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5.1. Definition of expected value

EXAMPLE 6
A dishwasher manufacturer offers a warranty program, under which they agree to
cover the full cost of repair of a broken dishwasher within the first five years after
purchase and agree to cover one-fourth of the cost of a repair after five years have
elapsed from the purchase. If the cost of a repair is $160, and the time until the

3 1
dishwasher breaks has density fr(t) = §t_4 for t > 3 (and fr(t) = 0 otherwise),
compute the expected amount the manufacturer pays to cover repairs.

179



5.2. Properties of expected value

5.2 Properties of expected value

RECALL (FROM LINEAR ALGEBRA)
Let V and W be vector spaces. A transformation 7" : V' — W is called linear if

The first thing to know about expected value is that it is a linear transformation
from the vector space of random variables to the vector space R:

Theorem 5.5 (Linearity of Expected Value) Suppose X andY are real-valued r.v.s
with EX < oo and EY < oo. Then:

1. X +Y has finite expectation and E[X + Y| = EX + EY.

2. For any constant ¢, cX has finite expectation and E[cX] = c EX.

PROOF Suppose X and Y have finite expectation.
For the first statement, let Z = X + Y = ¢(X,Y). Then if X and Y are discrete,

Dolz+ylfxy (e y) <D (o] + ly) fxy (z,y)

x?y m7y

= lzlfxy(zy) + > [yl fxy ().
T,y l’,y
and if X and Y are continuous,

Lo+l fxr (@ dA < [ (ol + 1y Sy (e, y) dA

= [ lelfxr e dA+ [yl (@) dA.

Since EX < oo, the red sum/integral is finite, and since E'Y" < oo, the blue
sum/integral is finite.
So the entire (red + blue) expression is finite, so by LOTUS, E[X + Y] < oc.

Now, again using LOTUS,
EBIX+Y]=Y (z+y)fxy(@y) => afx(@,y)+ Y yfxy(x,y) = EX + EY.
z,y x,y z,y

180



5.2. Properties of expected value

Now for the second statement: if X is discrete, then so is ¢X and

> lexlfx(@) = le| 3 |x]fx(z) < o0

xT

so by LOTUS cX has finite expectation. Then, again using LOTUS,
EleX] =Y cafx(z)=c¢) afx(z) = cEX.

If X is continuous, the same proof works using integrals instead of sums. [

Theorem 5.6 (Expectation preserves constants) Let X be a real-valued r.v. If
P(X =c¢) =1, then EX = c.

PROOF If P(X = ¢) = 1, then X is discrete and fx(c) = 1. So

EX = zfx(z)=c-1=cO

EXAMPLE 7
Suppose EX = 8 and EY = —3. Compute the expected value of 2X + 5Y + 3.

Inequality properties

Theorem 5.7 (Inequality Properties of Expected Value) Suppose X and Y are
real-valued r.v.s with EX < oo and EY < oo. Then:

Positivity: If P(X > 0) =1, then EX > 0.

Monotonicity: If P(X >Y) =1, then EX > EY.

Triangle inequality: |EX| < E|X].

Preservation of bounds: If P(|.X| < M) =1, then |EX| < M.
Definiteness: If P(X >Y)=1and EX = EY then P(X =Y) = 1.

PROOF We begin by proving positivity. If P(X > 0) = 1 and X is discrete, then

EX =) zfx(z)>0
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5.2. Properties of expected value

since all the numbers in the sum are nonnegative.
If P(X > 0) = 1and X is continuous, then Range(X) C [0, 00) so

EX:/_OO fo(x)dx:/OooscfX(x)d:cz()

since the integrand is positive. This proves positivity.

Next, we prove monotonicity: let Z = X —Y; by linearity, £Z = EX — LY.
If P(X>Y)=1,then P(Z>0)=1.
So by positivity, EZ > 0.
Thus EX — EY > 0so EX > EY, proving monotonicity.

To establish the triangle inequality, suppose —| X| < X < |X].
This implies —E|X| < EX < E|X|by monotonicity. Thus |[EX| < E|X]|.

Preservation of bounds follows from the triangle inequality and monotonicity.

For definiteness, again let Z = X — Y, since EX = EY we have £EZ = 0.

Assuming Z is discrete, repeating the argument we made for positivity, we
have (since P(Z > 0) = 1)

EZ = izfz(z) =0
z=0

and since all the zs in the sum are > 0 and all the f7(z)s are > 0, the only
way this can be consistent with Y f(z) = 1isif f;(0) = 1 (otherwise there

would be a positive term without any negative term that could cancel it).
Thus P(Z=0)=1soP(X -Y =0)=1soP(X =Y)=1.
If Z is continuous, the proof of definiteness is harder (take MATH 430). O

Theorem 5.8 (Independence Properties of Expected Value) Suppose X and Y
are real-valued r.v.s with EX < ooand EY < oco. If X LY, then for any functions
0, : R = R, if o(X)and (Y') both have finite expectation, then so does p(X ) (Y),
and

Blp(X)(Y)] = E[p(X)] - E[p(Y)]

In particular, E[XY| = EX - EY.
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5.2. Properties of expected value

WARNING: The converse of this is false, i.e. E[XY] = EX - EY does not
imply X LY.

PROOF Note that X L Y implies fxy(z,y) = fx(z)fy(y).
Then, if X and Y are discrete,

leo P fxy(z,y) = ZZI@D ()| fx () f (y)
=(Zr¢ i) (Slelsm).

and if X and Y are continuous,

[ le@)fxr @y da= [ [ Je@) el fx(@)fr(y) de dy

- (/_ (@)l fx(w)d )(/_O:O |¢(y)|fy(y)dy).

Since E[p(X)] < oo, the red sum/integral is finite.

Since E[1)(Y)] < oo, the blue sum/integral is finite.

Thus the entire expression is finite so by LOTUS, E[p(X)y(Y)] < cc.
So if o(X)y(Y) is discrete,

E[p(X Zso y) fxy(z,y) = ZZ@ (=) fv (y)

_ (z @(ﬂf)fx(@) (z S0

= Elp(X)] - E[$(Y)].

(and if (X)) (Y) is cts, the same type of computation works with integrals). [J
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5.3. Variance

5.3 Variance

MOTIVATION
Here are some random variables, all of which have mean 10:

X=10 X ~Unif({9,11}) X ~ Unif([0,20])

To distinguish these r.v.s, we can think of how much the values of the r.v. are
spread out. To do this, we use a quantity called variance:

Definition 5.9 Let X : Q — R be a r.v. such that EX < oo and E[(X — FX)?] <
0. The variance of X, denoted Var(X) (or V(X) or o® or 0%), is

Var(X) = E[(X — EX)?).

The standard deviation of X, denoted o or ox, is 0 = /Var(X).

Observations:
1. Var(X) > 0.

2. The more spread out X is, the further from zero X — F'X is, so the greater
Var(X) is. Thus variance is a measure of spread of a random variable.

Theorem 5.10 (Variance of a constant) Let X be a real-valued r.v. Var(X) = 0 if
and only if X is constant (i.e. Acs.t. P(X =c¢) = 1).

PROOF (=) Suppose Var(X) = 0. Then E[(X — EX)?] = 0.
Since (X — EX)? > 0, by definiteness, that means P((X — EX)? =0) = 1.
This is equivalent to P(X = EX) = 1, i.e. X is constant with probability 1.

(<) Suppose X is constant, say X = c.
Then EX = cso (X — EX)? = (c—¢)? = 0, and therefore Var(X) = E[0] = 0.

Theorem 5.11 (Variance Formula) Let X be a real-valued r.v. so that Var(X) ex-
ists. Then

Var(X) = EX? — (EX)?
= “second moment” — “mean squared”.

PROOF This is just algebra, together with properties of expected value:
Var(X) = B[(X — EX)?

(X — EX)(X — EX)]

[(X? —2(EX)X + (EX)?]

E
E
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5.3. Variance

EXAMPLE 8

1
Suppose X is a continuous r.v. with density fx(z) = ng for 0 < z < 2. Compute
the variance of X.

Theorem 5.12 (Properties of Variance) Let X be a r.v. with finite variance. Then:
1. For any constant b, Var(X +b) = Var(X);
2. For any constant a, Var(aX) = a*Var(X).

PROOF HW (as a hint, these follow from either the definition of variance or the
variance formula)

EXAMPLE 9
Suppose X is a r.v. with variance 12. Compute the variance of 5X + 8.
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5.4. Expected values and variances of common random variables

5.4 Expected values and variances of common random variables

Theorem 5.13 Expected values and variances of common r.v.s are as follows:
X EX Var(X)
Unif({1,2,...,n}) ”;1 ni; !
1—p l—p
Geom(p) T P2
1—p 1—p
A (5) (%)
binomial(n, p) np np(1 —p)
Pois()\) A A
Hyp(n,r, k) IZ ]Z(n;r)zj
Unif([a, b)) ol ® I;)Q
Exp(\) i\ /\12
I'(r,\) ; %
Cauchy 00 DNE
std. normal n(0,1) 0 1
normal n(u, c?) u o?

Remark: “Standard normal” and “normal” random variables will be introduced
in Chapter 6.

PROOF (OF SOME OF THESE) In the homework, you will prove the expected value

formulas when X is hypergeometric, exponential, and gamma, and the variance
formulas when X is continuous uniform, exponential and gamma.
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5.4. Expected values and variances of common random variables

X ~Unif({1,2,...,n}):
EX =Y afx(z) :le _
ZmeX Z 2 1 iz:lxgzi[n(n—&-l)@n—kl)]:(n+1)(2n+1);

6 6
_ _(+DEn+1)  (n1N__n?-1

Var(X) = EX? - (EX)? = c —( 5 ) ==

X ~ Pois(A):
o) B AT
EX = szx(m) = Zoxe )‘E =
ZfoX ZxZ 7)\)\ _

Var(X) = EX? — (EX)? = A2+ 0] - A2 =[]

X ~ b(n, p):
n n '
EX =) afx(x)= Zow(z>p‘”(1 -p)"" = lex!(nn; A
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5.4. Expected values and variances of common random variables

X ~ Unif(la,b)):

X ~ Cauchy:
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5.5. Covariance and correlation

5.5 Covariance and correlation

MOTIVATING QUESTION
We have seen variance is not linear, because Var(aX) = a*Var(X), not a Var(X).

But we haven’t looked at whether or not variance respects addition. In particular,
does Var(X +Y) = Var(X) + Var(Y)? If not, what is a formula for Var(X +Y)
in terms of Var(X) and Var(Y)?

Answer:

Definition 5.14 Given two r.v.s X and Y, each having finite variance, the covari-
ance between X and Y, denoted Cov(X,Y) (or C(X,Y) or oxy or oxy) is

Cov(X,Y) = E[(X — EX)(Y — EY)].

The covariance between two random variables measures the “tendency of the r.v.s
to change together”. In other words:
e If Cov(X,Y) > 0, then as X increases, we expect Y to increase and as X
decreases, we expect Y to decrease.
o If Cou(X,Y) < 0, then as X increases, we expect Y to decrease and as X
decreases, we expect Y to increase.
e If Cou(X,Y) = 0, then changes in X should not lead to any expected change
inY.
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5.5. Covariance and correlation

Properties of covariance

Theorem 5.15 (Bilinearity of covariance) Suppose that all the r.v.s mentioned in
these equations are real-valued, and have finite mean and variance. Then:

1. Cov(X;+ X5,Y) = Cov(X1,Y) + Cov(Xy,Y);
2. Cov(X,Y1+Ys) =Cov(X, Y1)+ Cov(X,Ys);

3. For any constant a, Cov(aX,Y) = aCov(X,Y) = Cov(X,aY).

PROOF HW

Theorem 5.16 (Properties of covariance) Let X and Y be real-valued r.v.s having
finite variance. Then:

Covariance formula: Cov(X,Y) = E[XY| - EX - EY.
Symmetry: Cov(X,Y) = Cou(Y, X).
Self-covariance is variance: Cov(X, X) = Var(X).

Variance sum formula: Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y).

PROOF The variance sum formula was established earlier.

For the covariance formula, notice

Cou(X,Y) = E[(X — EX)(Y — EY)]

XY —EX.Y —EY - X + EX - EY]

[XY] - E|[EX -Y] - E|[EY - X] + E|[EX - EY]
[

[

XY|-EX-EY —EY  -EX+ EX-EY

E
E
E
E[XY]|—- EX - EY.

Symmetry of covariance is obvious from the definition.

To prove that self-covariance is variance, observe

Cov(X,X)=FE[XX]-EX -EX =EX?— (EX)*=Var(X).O
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5.5. Covariance and correlation

Theorem 5.17 (Independent r.v.s have zero covariance) Suppose that X and Y
are real-valued r.v.s with finite mean and variance. If X L Y, then Cov(X,Y) = 0
and Var(X +Y) =Var(X) + Var(Y).

WARNING: The converse of this is false. There are r.v.s X and Y with covari-
ance 0 that are not independent.

PROOF If X 1 Y, then F[XY] = EX - EY by a previous theorem.
Therefore Cov(X,Y) = E[XY]| - EX -EY =0.0

A PROBLEM WITH COVARIANCE
Suppose X and Y, both measured in hours, have covariance 2. Then if we let X,
and Y), be the same quantities as X and Y, but measured in minutes rather than hours,
we have

CO’U(XM7 YM) =

Thus the covariance between two quantities depends greatly on the units the quantities
are measured in. We don’t really want this, because the covariance is “supposed”
to measure how correlated the random variables are. To fix this, we invent a new
quantity called “correlation”:

Definition 5.18 Given two r.v.s X and Y, each having finite variance, the correla-
tion between X and Y, denoted p(X,Y) (or pxy or pxy) is

_ Cov(X,Y)
\/Var(X) Var(Y) '

p(X,Y)

X and Y are uncorrelated if p(X,Y') = 0 (equivalently, if Cov(X,Y") = 0).

From Theorem independent r.v.s are uncorrelated, but heed the warning af-
ter Theorem uncorrelated r.v.s may not be independent (we’ll see a specific
example in the HW).
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5.5. Covariance and correlation

Theorem 5.19 (Schwarz Inequality) Let X and Y be real-valued r.v.s with finite
variances. Then

(E[XY))? < EX? - EY?

PROOF The proof of the Schwarz inequality has two cases:
Case1: If P(Y =0) =1, then
E(XY])*=0<0=EX?.0=FEX?.-EY?
as desired.

Case 2: Suppose P(Y =0) < 1.
This implies P(Y? = 0) < 1 so F[Y?] > 0; this will allow us to divide through
by EY? later on (which we couldn’t do in Case 1).
Now, define a function f : R — R by

f(t) = E[(X —tY)?].

Note that f(¢) > 0 for all ¢ since f is the expected value of a nonnegative r.v.
Expanding f, we get

f(t) = B[(X —tY)(X —tY)] = B[X? - 2tXY + £’Y?]
= EX? - 2E[XY] +?EY?>.
Thus f is a quadratic function of ¢ whose graph is a parabola that opens

upward. Since f(t) > 0 for all ¢, the vertex (a, ) of this parabola must lie
above the t-axis:

Now, let’s find the coordinates of this vertex using some calculus:
f'(t) =2tEY? — 2E[XY]

E[XY]

Set f'(t) = 0 and solve for ¢ (a.k.a. a) to get a = Zye
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5.5. Covariance and correlation

The y-coordinate of the vertex is therefore

5:f@0:f<%gg?):EXQ—ZC%XH>EMW1+<EMYUQEW

- B BY? T TRy
EXY
pxe - (B
Putting this all together, we have
0<p

E[XY])?
= OgEXQ—(£”J>

(Eg(;;])Q < EX2

= (BE[XY))? < EX?.EY?
which is the Schwarz inequality. [

SOME CONTEXT
You may recall from linear algebra another inequality called the Cauchy-Schwarz
Inequality (important in the context of computing projections of one vector onto
another, angles between vectors, etc.). That inequality is basically the same as this
one; it says that for two vectors x,y € R¢, we have

[x -y <[]yl

where || || denotes the norm or length of a vector (recall that ||x|| = v/x - x). Denot-
ing the “dot product” of two random variables as “X - Y” = E[XY], the Schwarz
inequality here is exactly the same thing as the C-S inequality from linear algebra...
if you square both sides of the C-S inequality you get

(x-y)* < |Ix|[* Iyl
(x-y)’<(x-x)(y-y)
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5.5. Covariance and correlation

Properties of correlation

Theorem 5.20 (Properties of Correlation) Let X and Y be r.v.s with finite vari-
ance. Then:

Correlation is symmetric: p(X,Y) = p(Y, X).

Self-correlation is 1: p(X, X) = 1.

Correlation is between —1 and 1: |[p(X,Y)| < 1.

1 r.v.s are uncorrelated: If X LY, then p(X,Y) = 0 (the converse of this is false).

Correlation is unchanged under linear transformations: For any positive con-
stants a and b, and any constants c and d,

plaX +¢c,bY +d) = p(X,Y).

Correlation of +1 implies linear relationship: p(X,Y') = +1if and only if there
are constants a and b (with a # 0) such that Y = aX + 0.

PROOF The first statement is clear, since Cov(X,Y) = Cov(Y, X).
The second is a direct calculation:
Cov(X, X) ~ Var(X)  Var(X)
\/Var -Var(X) B \/(Var(X))2 ~ Var(X)

p(X, X) = ~1.

For the bounds on p, apply the Schwarz Inequality to X — EX and Y — EY:
E[(X — EX)(Y — EY)]> < E[(X — EX)Y - E[(Y — EY)?]

ie. Cov(X,Y)2 < Var(X) - Var(Y).
Take the square root of both sides to get

[Cov(X,Y)| < \/Var(X) - Var(Y)

i.e.
|Cov(X,Y)|

\/Vav" Var(Y)

(X, Y)] =

The fact that independent r.v.s are uncorrelated follows from the fact that
X 1Y implies Cov(X,Y) = 0.

The last two statements are HW problems. [J
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5.5. Covariance and correlation

EXAMPLE 10
Suppose X and Y are chosen from [0, 1]* with joint density fxy(z,y) = x+y. Com-
pute the correlation between X and Y.

Solution: Compute a lot of expected values using LOTUS:

1,1 7
EXZ//x(chry)dydx:"':*
- 12
gy = [ [ dy d ‘
_// x+y)yl‘—“'—§
// (x+y)dyde = -- 152
// (x+y)dyde = 152
1
EXY:/ / wy(r+y)dyde =--- =3
0 JO 3
Then
Var(X) = EX? — (EX 7)
12 144
B 2
Var(Y) = EY? - (EY (12) 144
—1
Cov(X,Y)=EXY —EX -EY = —
144
and finally,
XY = Cov(X,Y) _ T :ﬁ: L

\/Var War(Y) \/<1{414) (%) 144 1]
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5.6. Conditional expectation and conditional variance

5.6 Conditional expectation and conditional variance

Definition 5.21 Let X and Y be real-valued r.v.s. The conditional expectation of
Y given X, also called the regression of Y on X, is the function

S yfvix(ylz)  ifY|X is discrete
EYIx) =1 7

/_ yfvix(ylz)dy ifY|X iscts

In this setting, there is also a conditional expectation of X given Y, defined by

S zfxy(zly)  if X|Y is discrete
EXY)=19 .2
/ rfxy(zly)dr if X|Y is cts

Important: £(Y|X) is a function of z, not a number.

(Similarly, £(X|Y) is a function of y.)
That said, we can think of E(Y'|X) as a r.v. by thinking of it as a function of X:
as an example, if E(Y|X)(z) = 2% — 3z, we can also write E(Y]X) = X? — 3X.

What does conditional expectation mean? As an example, suppose X and Y are
chosen from this set (2 with some joint density function:

Y
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5.6. Conditional expectation and conditional variance

Theorem 5.22 (Properties of conditional expectation) Suppose that any r.v.s men-
tioned in this theorem have finite expectation, and let c be an arbitrary constant. Then:

Law of Total Expectation: E[E(Y|X)| = EY. This means:

/Oo E(Y|X)(x)fx(z) dz = EY if X is cts

or Y E(Y|X)(z)fx(xz) = EY if X is disrete

Linearity: E(Y; + Y2 | X) = E(Y1|X) + E(Y2|X) and E(cY|X) = cE(Y|X)

Independence: The following are equivalent:

e X 1Y
* E(Y|X) is a constant function.
e E(Y|X)=FEY forall x.

Preservation of constants: E[c|X| = ¢ for any constant c.
Stability/“pulling out what’s given”: For any function ¢,
E[p(X)Y|X] = o(X) E[Y|X].

In particular, E(X|X) = X.

Useful integral formulas when computing conditional expectations

% r
Gamma integral formula: / e M dr = )(\:)
0
. ' oo- - L(@)T(B)
Beta integral f 1:/"‘11—/31d:7
eta integral formula: | (1—-2) x Tt 5)
Gaussian 1n.tegra1 formula: /00 . Nor
(coming later) —oo
Note: If you recognize the conditional density fy|x as a common density,

then you can immediately conclude the value of E(Y|X) from the
facts known about expected values of common r.v.s.

EXAMPLE 11
Suppose the conditional density of Y given X is (for z,y > 0)

frix(ylz) = ve™™.

Then we know
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5.6. Conditional expectation and conditional variance

EXAMPLE 12
Let X and Y have joint density

frrlog) = { Sue—v—y) i@y e

0 else

Find the conditional expectation of ¥ given X and the conditional expectation of

1
Y given X = 3"
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5.6. Conditional expectation and conditional variance

EXAMPLE 13
Three contestants on a game show are given the same question, and each person
answers the question correctly with probability 1 — z (their answers are indepen-
dent). The difficulty z of the question is itself a r.v. chosen from (0, 1) with density
function 6z(1 — x). Find the expected difficulty level of the question, given that all
three contestants answer incorrectly.
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Conditional variance

Definition 5.23 Let X and Y be real-valued r.v.s. The conditional variance of YV
given X, is the function
Var(Y|X) = E[(Y — E[Y|X])?| X]
= E(Y2 | X) — E(Y]X)2.

That the two formulas given in the box above are the same is a HW problem.

As with conditional expectation, the conditional variance is a function of x (and
can be thought of as a random variable).

Theorem 5.24 (Law of Total Variance) Let X and Y be real-valued r.v.s. Then

Var(Y) = ElVar(Y|X)] + Var[E(Y|X)].

PROOF HW (use the definitions and crunch the symbols appropriately)

This theorem is extremely useful for computing the variance of Y/, when X and
Y| X are given as common random variables:

EXAMPLE 14
The number of accidents on a stretch of highway is uniformon {1, 2, 3, ..., 9}. Given
N accidents on the stretch of highway, the total amount of damage caused by the
accidents is exponential with mean 2/N. Find the variance of the total amount of
damage caused by accidents on this stretch of highway.
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5.7 Probability generating functions

What is a generating function?

Take a sequence of numbers ay, a;, as, as, .... To record this sequence, you can write
down the entire sequence, or take the numbers and put them in as terms in a power
series

ft) = Z ant”™ = ag + ait + ast® + ast® + agtt + ...

n=0

This gives you a function of ¢, called the generating function of the sequence {a,, }.
There are a couple of reasons why we would want to do this:

e the formula for f(¢) may be easier/shorter to write than the formula for a,,;

* properties of the generating function may give you useful information about
the sequence.

In our setting, we start with a discrete r.v. X taking values in {0, 1,2,3,...}. This
naturally gives you a sequence coming from the probabilities of each value of X:

fx(0), fx(1), fx(2), fx(3), fx(4), ...

The generating function associated to this sequence is therefore

This is called the probability generating function of X, and it turns out that this func-
tion has many useful properties.

Definition 5.25 Let X : Q — Nbeadiscrete r.v., taking values only in {0, 1,2, 3, ... }.
The probability generating function of X (a.k.a. pgf or generating function),
denoted G x or ®x, is the function Gx : [—1, 1] — R defined by

Gx(t) = E[t*] :iﬂ fx(z)t".

Note: The t in this definition is just a dummy variable. It doesn’t really have any
meaning.
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5.7. Probability generating functions

Properties of probability generating functions

Theorem 5.26 (Properties of PGFs) Let X be a discrete r.v. taking values in N.
Then:

1. Gx is a continuous and differentiable function of t on [—1, 1].
2. Gx(1) =1

3. Gx(0) = fx(0) = P(X = 0) (the constant term on Gx).

4. |Gx(t)] <1 forallt.

PROOF Statement (1) follows from the fact that G'x is a power series (in Calculus
2, we learn that all power series are cts and diffble).

For statement (2), observe Gx(1) = E[1¥] = E[1] = 1.
For (3), notice Gx(0) = fx(0) = P(X = 0), the constant term on G x.
For the last statement, note |Gx (t)| = |E[tX]| < E|t¥| < E[1] =1. O

Theorem 5.27 (PGFs and expectations) Let X be a discrete r.v. taking values in
N. Then:

1. G%(1) = EX.
2. G%(1)=E[X(X —-1)]=EX? - EX.
3. G =EX(X-1)(X =2)(X —=3)--- (X —7)].
(This quantity is called the r'* factorial moment of X.)
4. Var(X) = G%(1) + G (1) — [Gx ()]~
5. The equation Gx (t) = t has a solution in (0, 1) if and only if EX > 1.

PROOF For statement (1), notice G'x (¢ Z " fx(z) s0 Gy (t) =>_ at™ ' fx(x).
=1

Therefore G's (1) :i 2171 fy () :gl fo( ) = z vfx(z) = EX.

To prove statement (2), differentiate Gy (t) to get G’ (t) =Y x(z — 1)t fx(z).

This means "
G% (1) IZ_; w(z — 1177 fx (x) 222 z(z — 1) fx(z)

z (¢~ 1)fx(x) = BIX(X - 1))
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5.7. Probability generating functions

Statement (3) has a similar proof as (2), but uses induction.
Statement (4) follows from (1), (2) and the variance formula.

For the last statement, notice that the graph of G'x:

* is continuous (part (1) of Theorem [5.26),

* passes through (1, 1) (part (2) of Theorem with slope £ X (statement (1)
of this theorem),

* and passes through (0, fx(0)) (part (1) of this theorem).

So the graph of G x looks like

1 r's 1 r's
or
fx(0) e fx(0)®
0 1 0 1

Theorem 5.28 (Independence property of PGFs) Let X : @ — NandY : Q} —
N be independent r.v.s with respective PGFs G'x and Gy. Then

G)(+y(t) = Gx(t) Gy(t)

PROOF This is a direct calculation:

Gxyy(t) = E[t"Y] = E[t*t"] = E[t*|E[tY] (since X 1Y)

Theorem 5.29 (Uniqueness of PGFs) Let X and Y be discrete r.v.s taking values
in N. Then:

GP(0)

n!

Inversion formula for PGFs: fx(n) = foralln € {0,1,2,3,...}

Uniqueness of PGFs: If Gx(t) = Gy(t), then X ~Y.

PROOF The first part of this is the uniqueness of power series from Calculus 2.
That means we can determine a r.v.’s density from its PGE. Thus if Gx = Gy,
fX = fy, e X ~Y. O
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5.7. Probability generating functions

Theorem 5.30 (PGFs of common r.v.s) For the discrete r.v.s encountered in Chap-
ter 2, their probability generating functions are as follows:

X Gx(t)
Unif({1,2, ..., n}) M
Geom(p) i)
NB(r,p) L_tg_p)] T
binomial(n, p) (pt+1—p)"
Pois(\) g =

PROOFS (OF SOME OF THESE) The uniform discrete r.v. is left as HW.
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5.7. Probability generating functions

A main application of probability generating functions is to derive facts about
the sums of independent random variables. These arguments combine the PGFs

of common r.v.s with the independence property of PGFs and the uniqueness of
PGFs:

Theorem 5.31 Suppose X1, ..., X, are independent r.v.s, and let S = X; + ... + X,
Then:

1. Ifeach X; ~ Pois();), then S ~ Pois(A\ + ... + Ag).
2. Ifeach X; ~ b(n;,p) (same p), then S ~ b(ny + ... + ng, p).
3. Ifeach X; ~ Geom(p) (same p), then S ~ NB(d,p).

4. Ifeach X; ~ NB(rj,p) (same p), then S ~ NB(r; + ... + 14, D).

PROOF First, we prove statement (1).

For statement (2), suppose X; ~ b(n;,p). Then Gx,(t) = (pt + 1 — p)™ for each
J, 80

d d
— Tl Gy (pt+1—p)=(pt+1—pXi™ =G t).
jl;[l ]];[1 p (p p) b(z].nj,p)()

By uniqueness of PGFs, S ~ b (Zj nj, p).

Statement (3) is HW; the proof of statement (4) is similar and omitted. [J
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5.8 Moments and moment generating functions

A DRAWBACK OF PGFs

Definition 5.32 Let X : Q@ — Rand let r € {0,1,2,3,...}. If X" has finite expec-
tation, then we define the r'" moment of X, denoted y,., to be E[X"]. Otherwise, we
say X does not have a moment of order r.

Heuristic analogy:

r interpretation of f(0) interpretation of EX"

0 f(0) =heightof fatz =0 EX°=1

1 1'(0) =slopeof fatz =0 EX'= FX = mean

2 f"(0) = concavity of f atz =0 EX? = variance (sort of)
3 f"(0) =jerk EX3 = skewness (sort of)

Let’s take the moments of r.v. X and put them in a sequence:
1,EX,EX? EX? EX*, ..

We could directly construct a generating function from this sequence, but since
these moments are supposed to be like derivatives, we'll take some inspiration
from Calculus 2 and divide the 7" moment by r! (kind of like how you divide
f7(0) by 7! to get the coefficient on z” in the Taylor series of f). This gives us a

sequence

1 1 1
1, EX, —EX? —EX3 —EX* | ..
2 3! 41
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5.8. Moments and moment generating functions

which has generating function

1 1 1
1+ EXt+ §EX2t2 + —‘EX?’tS + —EX% 4 .

= E[l] + B[tX] + E thzy] +E4l!(t§!>3] p [(ti)j .
-pfreer 7GR G

This leads to the following definition:

Definition 5.33 Given real-valued r.v. X (X can be cts or discrete), the moment
generating function (MGF) of X, denoted Mx or gx, is defined by

Mx(t) = E[e*¥].

The domain of My is the set of all t € R such that e'* has finite expectation.

EXAMPLE 15

Suppose X is a continuous r.v. taking values in [0, 1] with density fx(z) = Te"
e J—
Compute the moment generating function of X.
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Properties of moment generating functions

Many properties of MGFs are similar to those of PGFs:

Theorem 5.34 (Properties of MGFs) Let X : Q — R be a rv. with mgf Mx(t).
Then:

1. Mx(0) = 1.

2. Expected value from MGF: M (0) = EX = 1.

3. MU(0) = EX? = p,.

4. Moment formula: Forall r € {1,2,3,...}, M)((T)(O) = u, = E[X"].
5. Variance from MGF: Var(X) = M4 (0) — [M%(0)]%

6. Linear translation formula: For any a and b, M,x ,(t) = € Mx (at).

PROOF The first five statements come from equating coefficients on two different
ways of writing My as a power series:

1 1 ‘
Mx(t) =1+ EXt+ §EX2t2 + §EX'%E” + th+ .
! 1 " 2 1 el 3 4

The last statement is a direct computation:

Moxss(t) = E [e(aX—i-b)t} —F {ebteX(at)} —tp [eX(at)} _ ethX(at). 0

Theorem 5.35 (Independence property of MGFs) Let X : Q — RandY : Q —
R be independent r.v.s with respective mgfs Mx and My. Then

Mx v (t) = Mx(t) My(t).

Similarly, if X, ..., X, are independent r.v.s with respective mgfs Mx,, Mx,, ..., Mx,,
then:

d
M 4 =] Mx, ().
&, (O =11 M0

j=1

PROOF HW (similar to proof for PGFs)
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Moment generating functions of common random variables

Theorem 5.36 (MGFs of common r.v.s) For the common classes of random vari-
ables encountered in Chapters 2 and 3, their moment generating functions are as fol-
lows:
X Mx(t)
) €t<€nt _ 1)
1,2, ... —
p
Geom(p) —1-p)e
P
NB _—
) ll - (1 —p)et]
binomial(n, p) (1 —p+ pet)n
Pois(\) XD
6tb - eta
' b
Unif(fo, ) e
Exp(\) . Zffort <A
A T
F(T, )\) ()\—]f) fOT't <A
std. normal n(0,1) et*/?
o242
normal n(u, o?) exp (,ut - 2)

PROOFS (OF SOME OF THESE) First, whenever X is discrete, then

Mx(t) = E[e"] = E[(¢')"] = Gx(e")

so the MGFs of all the discrete r.v.s come from replacing any ts in the PGF with e’.

Exponential and gamma r.v.s are left as HW; let’s do the uniform cts r.v. here:
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5.9 Uniqueness of MGFs

It turns out that you can explicitly recover the density function of a real-valued r.v.
from its moment generating function:

Theorem 5.37 (Inversion formula) Let X : Q — R have mgf Mx. Then:

1. If X is discrete and integer-valued, then for every x € Z,

(@) = = / " e My (it) di.

2 J-
2. If X is continuous, then X has density

1 [~
/ e M (it) dt.

I =az ).

WARNING: If you are ever using these formulas to do a MATH 414 or 416
problem, you are doing the problem wrong.

We’ll use formula (2) once, to discover one important fact later in the course.

Gaussian integral formula

To prove the inversion formulas, we first need the following important integral
formulas (which will also be used for other purposes later):

Lemma 5.38 (Basic Gaussian Integral Formula)

/ e dp = vV 2.
—00

PROOF Let A = / e~"/% dz. (A > 0 since the integrand is positive.) Then

= ([ ) ([ e as)
([ man) ([ o)

/ e e V2 dy

I
:// (=2 4+4%)/2 g 4

A?
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5.9. Uniqueness of MGFs

Continuing from the previous page, we next perform the u-sub

2
u=—.du=rdr
2’

on the inside integral to get

2T OO 9 2w poo
A? :/ / e " /27‘d7‘d9:/ / e “dudb
0 0 0 0
2 )
:/0 [—e }0 do
2T
= do
0
= 2.

Since A2 =mand A > 0, A = /27 as wanted. [J

Theorem 5.39 (Gaussian Integral Formula) Let i, 0 be constants with o > 0.
Then

—00

— 1 . .
PROOF Perform the u-sub u = u, du = —dz in the integral to obtain
o o

o | ZE = 1)’ _/°° 1<x—u>2
/Ooexp[ 52 der = 7ooexp —3 > dx
00 u?
:[wexp l—Q] o du
:0/00 e 12 dy

=oV2r. U

Observe: The value of this integral does not depend on p (only on o).

The Gaussian Integral Formula can be combined with an algebraic technique called
completing the square to compute lots of integrals:
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5.9. Uniqueness of MGFs

EXAMPLE 16
Compute this integral:

o 9224904-39
/ e 2T 202=39 1.
— 00

Solution: The goal is to rewrite the integral so that it matches the Gaussian
Integral Formula given on the previous page:

/°° exp [_@_”)2] dr = or/7

—00 20’2

/OO exp [—29&2 + 20z — 39} dx

—0o0

At this point, our integral becomes

00 [e§) r 1
/ exp [—2(1; — 5)2} edr = 611/ exp —5(4)(1‘ — 5)2} dx
- o E)2
=ell / exp M dx

o 2(3)
o0 — -5 2
=el! / exp (3:12> dx
= 20)
This matches the Gaussian Integral Formula with 1 = 5, o =  so the

. 1
integral evaluates to euéﬁ :
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5.9. Uniqueness of MGFs

Proof of the inversion formula

Here is a proof of the inversion formula when X is continuous (the proof when X
is discrete is similar, but omitted from these notes). Recall that our goal is to show

1

= / e~ My (it) dt.

fx(z) = o |

The proof is just a long calculation. The first step is to start with the right-hand
side and insert an additional term in the inversion formula needed to make it look
more like a Gaussian integral:

1 e 1 e
= / e M (it) dt = o / e~ (1) M (it) dt
S T J_

2w J-
1 o —ixt s —et? .
= 5/7006 <6gu5£0 ) Mx (it) dt
1 ,
= lim — MX(zt) et gt

e—0t 271

The second step is to expand the Mx(it) term using the definition of MGF and
LOTUS. This gives

lim —/ Mx(it)e_5t2e_m dt = lim —/ E {e”x] et eiwt gt

e—0t 27 J— e—0t 27 J-x

TR T A Y ity —et? izt
- L I e e
— lim 7/ / Fx(y)et =2 e~ gy g

e—0+ 27

:hm—/ / Fr(y)e=2e= dt gy

e—0t+ 27

Now, pull the fx(y) out of the dt integral, and evaluate the inside integral by com-
pleting the square and using the Gaussian Integral Formula:

hm—/ / Fx ()t *etzdtdy

e—0+ 271

oo 222
— lim 1/ Fxly )/OO exp | —e (tz_ i(y_x)t+ —(y — x)? n <y4_€2$)2>] dt dy

e—0t+ 27 —00 € 4€?
i i(y—x) 2
1 oo 0 —(t—152) —(y —z)?
=l o [ Sxl) [ ew | Eu e T
L 2€
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5.9. Uniqueness of MGFs

1 /1
= lim — fX \/ 21 exp l — ) ] dy
e—0t 27'('

. . i(y — ) 1
Gaussian Integral Formula with y = — , 0= ——
( g f e 0= )
o1 —(y —x)?
= —— | dy.
e—0+ 2y/me J— y) exp l 4e 4
Next, use the u-sub u = y2?/_€90, du = 5 \[ dy to write the integral as

Jy 2\/—/ Jx(y) exp [_(94_ J”)Q] dy
- 5;>0+ 2\/—/ fX T +2ﬁu)exp{ } 2\ﬁdu
= lim \/7;/00 Frla +2veu) e du

e—0t

Finally, move the limit back inside the integral and use the Gaussian Integral For-
mula one more time:

f/ [hm fy m+2\/Eu)} e du

\/_/ — du
1 00 —u?
= 7fx(x)/ exp {2] du
—00 1
v 2 (%)
1 1
= ﬁfx(l’)ﬁm
(Gaussian Integral Formula with ¢ =0, o = \}5)
= fx(ﬂf)

This proves the inversion formula (when X is continuous). [

The significance of the inversion formulas is that they explain the following prin-
ciple:

Corollary 5.40 (Uniqueness of MGFs) Let X : Q@ — Rand Y : Q — R be any
two real-valued r.v.s so that Mx (t) = My (t). Then X ~ Y.
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Sums of independent common r.v.s

As with PGFs, an important application of MGFs is to establish results about the
sum of independent random variables:

Theorem 5.41 (Sums of L r.v.s) Suppose X1, ..., X, are independent r.v.s, and let
S =X, +..+ X4 Then:

1.

S R

If each X; ~ Pois(\;), then S ~ Pois(A + ... + A\g).

Ifeach X; ~ b(n;,p) (same p), then S ~ b(ny + ... + ng, p).

If each X; ~ Geom(p) (same p), then S ~ NB(d, p).

Ifeach X; ~ NB(r;,p) (same p), then S ~ NB(ry + ... + 74, D).
Ifeach X; ~ Exp(\) (same \), then S ~ T'(d, \).

Ifeach X; ~ T'(rj, \) (same \), then S ~ I'(r; + ... + 14, A).

PROOF (OF SOME OF THESE) Statement (6) is left as HW.
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5.10 Joint moment generating functions

Definition 5.42 Let X;, ..., Xy be real-valued r.v.s with some joint distribution X.
The joint moment generating function of X, denoted Mx or gx, is the function
Mx : R? — R defined by

Mx(t) = E[e*¥].

The domain of Mx is the set of all t € R? such that e** has finite expectation.

Many of the same properties of MGFs carry over to the joint case:

Theorem 5.43 (Properties of joint MGFs) Let X1, ..., X, be real-valued r.v.s with
joint MGF M = Mx. Then:

M(0) = 1.
MGSEF of marginals: Foreach j € {1,...,d},

Mx (t) = Mx(0,0,...,0,t,0,...,0) (thet is in the " position).

J

MGTF of linear combination of marginals:
For any constants ay, ..., ag, Mo, x,+.. 4ayx,(t) = Mx(ait, ..., agt).

In vector language, this says that for any a = (ay, ..., aq), Max(t) = Mx(ta).
Moment formulas: Foreach j € {1,...,d},

0" My
ot

 OMx

ElX)] = —
J

and E[X]] =

J
t=0

t=0
Product moment formulas: For any nonnegative integers r1, ..., 4,

8T1+...+T‘dMX

BIXTXG? - Xa'] = ot oLy - - Oty

t=0

Linear translation formula: Forany a € Rand b € RY,

Max+b(t) = €b.th(CL t)
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Theorem 5.44 Let X and Y be two joint distributions of the same dimension.
Inversion formula for joint MGFs: If X is continuous, then

1
(2r)?

fx(x) = /]Rd e ™t Mx (t) dt.

Uniqueness of joint MGFs: If Mx = My, then X ~Y.

Theorem 5.45 (Independence test using joint MGF) Let X, ..., X, be real-valued
rv.s. Then Xy, ..., X, are independent if and only if

Mx (t) :1:[ Mx, (t5)

forall t = (t,...,tq) € R%

PROOF (=) Suppose the X; are independent. Then

Mx(t) = E [¢"X] =

(<) Suppose Mx(t) :ﬁ My, (t;).

By uniqueness of joint MGFs, it must be that the r.v.s are independent (for if
they weren't, their joint MGF would have to be something other than what we
computed in the (=) direction). [J
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5.10. Joint moment generating functions

EXAMPLE 17
Suppose X and Y are real-valued r.v.s with joint MGF

Mxy(s,t) =exp (—32 — 35 — 6st — 2t2) .
1. Compute the moment generating function of X.

2. Compute the expected value of 3X — 2Y.
3. Compute Cov(X,Y).
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5.11 Markov and Chebyshev inequalities

In this section we discuss inequalities which give us quick bounds on certain prob-
abilities related to the mean and variance of a random variable.

Theorem 5.46 (Markov inequality) Let X : Q — [0,00) be a nonnegative r.v.
with finite expected value. Then for all a > 0,

E
P(X >a) < ==,
a

PROOF Let I :Q — {0,a} be defined by

Notice that X > I, so

EX>El=a-P(I=a)+0-P(I=0)
=aP(X > a).

Divide both sides by a to get the result. [

EXAMPLE 18
Suppose the time it takes for a radioactive element to decay is a random variable
whose mean is 23. Use the Markov inequality to find an upper bound on the prob-
ability that it will take at least 230 units of time for the element to decay.
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Theorem 5.47 (Chebyshev inequality) Let X : Q@ — R be a r.v. with finite ex-
pected value i and finite variance o*. Then for all t > 0,

t t 2 VvV X
—— P(X 2 1) < 7 = VXD

PROOF Apply the Markov inequality to the r.v. (X — u)? with a = ¢ to get

E[(X — ) _ Var(X)
12 t2 ’

P(X = p)? 2 ) <
But P(|X — u| >t) = P((X — p)? > t?). This proves the result. [J

EXAMPLE 19
Suppose the number of items produced in a factory is a random variable with
mean 100 and variance 40. Use the Chebyshev inequality to find a lower bound on
the probability that between 90 and 110 items will be produced by the factory.
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5.12 Chapter 5 Homework

Exercises from Section 5.1

1. Compute the expected value of each given r.v. X:

a) X is cts and has density function f(z) defined by f(z) = i(l — 2?) for
xr € (—1,1) and f(z) = 0 otherwise.

b) X has cdf Fx(z) defined by Fx(z) = 1 — 5 ifx > 5and Fx(z) =0
i
otherwise.

c) X is the marginal of the joint distribution obtained when one selects a
point (X,Y’) uniformly from the triangle with vertices (0,0), (4,0) and
(0,4).

1

d) X takes valuesin {0, 1,2,...} and has survival function Sx(z) = -
xT.

NOTE: in all HW exercises from this point forward, you may assume without
proof that all r.v.s under consideration have finite expectation.

2. a) Suppose W ~ binomial(4, 3). Compute E [sin (%)], evaluating all the
trig expressions and simplifying your answer.

b) Suppose X ~ Pois(5). Calculate the mean of (1 + X)~'.

c) LetY be the sine of an angle chosen uniformly from (—7/2,7/3). Com-
pute the expected value of Y.

3. Suppose you play a carnival game that works like this: there are two bags,
each with discs numbered 1 to 5 in them. You draw one disc uniformly
from each bag. Whatever disc is the smaller number you draw, you win
that amount of money (for example, if you draw a 2 and a 4, you would win
2).

a) How much would you expect to win if you played this game 100 times?

b) How much should the person running the game charge you if she ex-
pects to make a profit of .30 per game?

c) Suppose that there were n discs in each bag, numbered 1 to n. How
much would you now expect to win if you played the same game 100
times?
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Hint: The summation formulas

zn: = n+ )and/or Zz =

nn+1)2n+1)
6

may be useful.

4. (AE) A new plasma TV costs $650. The lifetime of the TV is exponentially

1
distributed with parameter A = —. Best Buy sells a warranty where they give

a full refund to a buyer if the TV fails within the first two years, they give
a half refund to a buyer if the TV fails during the third or fourth year, and
they give no refund otherwise. How much should Best Buy expect to pay in
refunds, if they sell 1000 plasma TVs?

5. (AE) Let T} be the time between a car accident and the reporting of a claim to
an insurance company; let 75 be the time between the reporting of this claim
and the payment of this claim. Assume that (77, 75) is uniform on the region
of points (1, t2) satisfying 0 < t; < 16; 0 < t5 < 16; 0 < t; +t2 < 20. Find the
expected amount of time between the accident and the payment of the claim.

6. Suppose that the density function fx of X is:

a+br?: fo<z<l1
fx(f):{ - T

0 else

If FEX = i, determine the values of a and b.

Exercises from Section 5.2

7. Suppose X has expected value 3 and Y has expected value —1.
a) What is the expected value of 3X — 5Y7?
b) What is the expected value of 2X + 4?
c) What is the range of possible values of E|Y|?
d) If P(Z < X) = 1, what is the range of possible values of £2?
e) If X 1 Y,whatis F[3XY]?

Exercises from Section 5.3

8. Suppose X is a cts r.v. with density f given by f(z) = cz® for 0 < 2 < 4 and
f(z) = 0 otherwise. Calculate the variance of X.

9. Let X be a r.v. with finite expectation and finite variance. Prove:
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a) For any constant a, Var(aX) = a* Var(X).
b) For any constant b, Var(X + b) = Var(X).

10. a) Suppose X and Y are two independent r.v.s such that FX* = 2, EY? =
1, EX? =1and EY = 0. Compute the variance of X?Y.

b) Let S and T be two independentr.v.s with S =5, ET = =3, Var(S) =8
and Var(T) = 7. Let W = 25 4 3T — 4; compute the mean and variance
of W.

Exercises from Section 5.4

1
11.  a) Prove that the expected value of an Exp(\) r.v. is 3

b) Prove that the expected value of an I'(r, \) r.v. is g

k
c) Verify that the expected value of a Hyp(n,r, k) r.v. is iy
n

Hint: You will have to do an index change in your summation, and then
apply Vandermonde’s identity.

12. a) Let X ~ Exp(\). Compute E(X?) directly (using the change of vari-
ables formula together with the Gamma integral formula) and use your

answer to verify that the variance of X is PeR

b) Prove that the variance of the uniform distribution on the interval (a, b)

(b—a)?
1S 12 .

c) Prove that the variance of a I'(r, ) r.v. is %

13. A pond contains equal numbers of four different types of fish. You go fishing,

and each time you cast, you catch one of the four types of fish (each type is

equally likely). What is the expected number of casts it will take you to have
caught at least one of all four types of fish?

14. Choose two of (a),(b),(c):

a) (AE) An actuary has discovered that policyholders are six times as likely
to file three claims as they are to file four claims. If the number of claims
filed has a Poisson distribution, what is the variance of the number of
claims filed?

b) (AE) A company has two electric generators. The time until failure for
each generator is exponential with mean 13. The company will begin
using the second generator immediately after the first one fails. What is
the variance of the total time the generators produce electricity?
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15.

16.

¢) (AE) The profit for a new product is given by Z = 5X — 4Y + 8, where
X 1Y, Var(X) =3and Var(Y) = 2. What is the variance of the profit
for the new product?

(AE) Let X represent the number of customers arriving during the morning
hours, and let Y be the number of customers arriving during the evening
hours to a restaurant. Assuming that X and Y are both Poisson, and that the
first moment of X is 8 less than the first moment of Y, and that the second
moment of X is 60% of the second moment of Y, what is the variance of Y?

Suppose that the departure of a tour is delayed by an amount of time that is
modeled by an exponential r.v. with variance 9 hours. If the departure of the
tour is delayed by less than 2 hours, the tour company pays no refund, but if
the tour is delayed 2 to 4 hours, then the tour company pays a refund of 20t,
where t is the number of hours the tour is delayed. If the tour is delayed by
more than 4 hours, the tour company pays a flat refund of 80. Compute the
variance of the refund paid by the tour company.

Exercises from Section 5.5

17.

18.

19.

20.

21.

Compute the covariance of X and Y, if they have joint density

2 ifx>0,y>0,andr+y<1
0 else '

fxy(z,y) = {

Suppose a box contains three balls numbered 1 to 3. Two balls are selected
without replacement from the box. Let U be the number on the first ball
selected, and let V' be the number on the second ball selected. Compute
Cov(U, V) and p(U, V).

Hint: Start by making a chart which describes the joint density of U and V.

(AE) Let X and Y denote the price of two stocks at the end of a five-year
period. Suppose X is uniform on [0, 6] and that given X = z, Y is uniform
on [0, z]. Determine Cov(X,Y).

Let (X, Y) be a point chosen uniformly from the finite set of four points

{(07 1)7 (17 0)’ (O’ _1)a (_L O)}
Prove that X and Y are uncorrelated, but not independent.

(AE) Let X denote the size of a surgical claim, and let Y denote the size of
the associated hospital claim. An actuary is using a model in which EX = 6,
EX?=474,EY =3,EY?=21.4and Var(X +Y) = 13.5. Let C; = X +Y be
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22.

23.

24.

the size of the combined claims before the application of a 20% surcharge on
the hospital portion of the claim, and let C'; denote the size of the combined
claims after the surcharge. Calculate C'ov(C}, Cy).

Prove any two of the following three statements:
a) Cov(X,Y)=Cov(Y, X)
b) Cov(X; + X5,Y) = Cov(X1,Y) + Cov(Xs,Y)
c) Cov(aX,Y)=aCov(X,Y)

Note: These three statements generalize to the following important property
of covariance called bilinearity:

Cov (Z CZiXi, Zb]}/]) = ZzaibjOOU(Xi,Y})
=1 j=1

i=1j=1

Prove that correlation is unchanged under linear transformations, meaning
that p(aX + ¢,bY + d) = p(X,Y) for any constants a, b, ¢,d with a > 0 and
b > 0.

a) Prove that if Y = aX + b for constants a and b (with a # 0), then
p(X,Y) =+1.

b) In this setting, under what conditions is p(X,Y") = 1 (as opposed to —1)?

In the next two exercises, we will prove that a correlation of 1 implies a linear
relationship between the r.vs, i.e. thatif p(X,Y) = +1, then Y = aX + b where a
and b are constants.

25.

26.

Define

X = é(X —EX)andY = é(Y — EY).
Var(X) Var(Y)

a) Compute £ P(\ } and F {f/}

b) Compute E P(\Q] and £ {}72}.

c) Prove that p(X,Y) = Cov (X, Y).
d) Prove that Cov (X,Y) = E [XY].

a) Use the results of Exercise 25|to prove that

E

(¥ - o(x, Y)X\)Q] — 11— p(X,Y)2 (%)
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b) Use part (a) to prove that if p(X,Y) = +1, then Y = p(X, V)X where a
and b are constants.

Hint: If p(X,Y) = +1, what must the right-hand side of (%] be? What
does that imply about (}7 - p(X, Y)X\)Q?

c) Use part (b) to deduce that Y = a.X + b for suitable constants a and b.

Hint: Start with what you proved in (b), and back-substitute for X and
Y. Rearrange what you get to show Y =(constant) X +constant, as wanted.

Exercises from Section 5.6

27. Let X and Y be r.v.s having joint density function given by the following

table:

vXl-1]lo]216

1 1 1 1

2| % |3l | a

1 1 2

I 153101353

2 1 2

3| 05|33

a) Calculate E(Y | X).
b) Calculate E(X3|Y = 1).
c) Calculate Var(X |Y = 3).

28. Let (X,Y) be chosen uniformly from the triangle whose vertices are (0,0),
(2,0) and (1,2). Compute the conditional expectation of Y given X.

29. (AE) A fair die is rolled repeatedly. Let X be the number of rolls needed to

obtain a 5 and let Y be the number of rolls needed to obtain a 6. Calculate
E[X|Y =2].

30. Let X and Y be independent, where X is I'(r, A\) and Y is I'(s, A). Compute
EX|X +Y].

Hint: First calculate the joint density of X and X + Y.
31. Suppose E[Y|X] =2z + 1 and E[Z|X]| = 3.

a) Compute E[3Y — 47 + 7|X].
b) Compute E[2X?Y|X = 2].
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32. (AE) Let Ny and N, represent the numbers of claims submitted to a life in-
surance company in January and February, respectively. The joint density
function of N; and N, is

2 /1N\™ n
o= {300 oz

0 else

Calculate the expected number of claims that will be submitted to the com-
pany in February, if exactly 2 claims were submitted in January.

33. (AE) A driver and a passenger are in a car accident. Each of them indepen-
dently has a probability .3 of being hospitalized. If they are hospitalized, the
loss is uniform on [0, 1]. When two hospitalizations occur, the losses are in-
dependent. Calculate the expected number of people who are hospitalized,
given that the total loss due to hospitalizations from the accident is less than
1.

34. The time it takes an insurance company to process a claim of size S is uniform
. . I . 1
on [S,S + 1]. If S is itself exponentially distributed with parameter 5 what
is the expected time to process a claim?
35. a) Prove that the two formulas given in the notes as definitions of condi-
tional variance are the same.

b) Prove the Law of Total Variance, which says:

EVar(X|Y)] + Var[E(X|Y)] = Var(X).

36. a) (AE) The number of workplace injuries, N, occuring in a factory on any
given day is Poisson with mean \. The parameter \ is itself a r.v. de-
pending on the level of activity in the factory, and is assumed to be uni-
formly distributed on the interval [0, 6]. Compute Var(N).

b) (AE) The stock prices of two companies at the end of any given year are
modeled with r.v.s X and Y whose joint density function is

Flay) = 2r forO<z<l,z<y<z+1
YT 0 otherwise '

What is the conditional variance of Y given X = z?

Exercises from Section 5.7

37. Suppose X ~ Unif({1,2,3,...,n}). Compute the probability generating func-
tion of X.
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38.

39.

40.
41.

42.

43.

Let X ~ binomial(n,p). Use the probability generating function of X to com-
pute the expected value and variance of X.

Let X be a discrete r.v. taking values in {0,1,2,3,...} with pgf Gx(f) =
exp(2t + 3t~! — 5). Compute the variance of X.

Suppose X is geometric with mean 2. Compute E[X (X — 1)(X —2)(X —3)].
Let X be a discrete r.v. taking values in {0, 1,2, 3, ...} with pgf Gx(t) = ' 1.
a) Whatis P(X = 0)?
b) Whatis P(X = 4)?
Hint: Since Gx(t) = ioj fx(@)t*, fx(4) = P(X = 4) is the coefficient on
t* in the Taylor serie;:eoxpansion of Gx(t). So start by writing the Taylor

series of Gx ().

Prove that if X, ..., X, are independent geometric r.v.s, each with parameter
p, then their sum S = X; + ... + X, is negative binomial with parameters d
and p.

(AE) The number N of babies born in a hospital during any one week is a r.v.
satisfying P(N = n) = 5+, forn € {0,1,2,...}. Suppose that the number of
babies born in any one week is independent of the number of babies born in
any other week. Determine the probability that exactly seventeen babies are
born in a given four-week period.

Exercises from Section 5.8

44.

45.

A
A—t

a) Prove that the moment generating function of an Exp()\) r.v. is

b) Prove that the moment generating function of a I'(r, A) r.v. is ( )\>\z€> .

a) Compute the first and second moments of X, if its moment generating

1
function is Mx (t) = ——== fort < —.

V1—4t 4
b) Suppose X and Y are exponential r.v.s with respective means 3 and 7. If
X 1Y, whatis the moment generating function of 4X + Y?

c) (AE) Assume that the number of claims related to traffic accidents on a
certain road is a r.v. X whose moment generating function is Mx(t) =
(1 —2500¢)~*. Find the standard deviation of the claim size for this class
of accidents.
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46. (AE) Let X,Y and Z be i.i.d. r.v.s, each taking the value 0 with probability p
and the value 1 with probability (1 — p). Compute the moment generating
function of W = XY Z.

47. Let X be a continuous r.v. having the density fx(z) = Le7/*l for all z. Com-
pute the moment generating function of X.

48. Explain why each of the following functions cannot be the moment generat-
ing function of a real-valued r.v. X:

—t

a) h(t) = ze_tfort <2
b) j(t) = 1tif0rt<1;

_ 42

c) k(t) =exp <2> for —oco < t < oc.

49. Prove the independence property of MGFs, which says that if X 1 Y then
Mxiy(t) = Mx(t)My(t).

50. In this problem we will derive the Beta integral formula (which can be useful
to solve certain expected value and conditional expectation problems):

Loas -1 _ ['(a) D(B)
/0 u (1 —u)’ du_if(a—l—ﬁ)'

a) Let X be I'(a, \) and let Y be I'(3, \). Suppose that X L Y. Determine
the density function of Z = X + Y using moment generating functions.

b) Given X and Y as above, compute the joint density function of X and
Z = X +Y by the transformation method of Chapter 4.

c) Use your answer to part (b) to compute the marginal density of Z (write
your answer as an integral with respect to ).

d) Derive the Beta integral formula by equating the answers to part (a)
and (c) of this problem, and solving the resulting equation for the Beta
integral above.

Hint: in the integral you obtain from part (c), use the u—substitution
T

U= —.
z

51. A Betarandom variable with parameters; > 0 and r, > 0 (denoted B(ry,2)
is a continuous r.v. whose density is

L(ry +7g)
flz) =3 Tr)l(r)

1)t ifo<a <1
0 else
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a) Prove that the function above is in fact a density function.

b) Determine the expected value of a Beta B(ry,rs) r.v.

Exercises from Section 5.9
52. Suppose Y is a discrete r.v. taking the values 0,1,4 and 10 with respective

1
probabilities and G Compute My ().

8'83
53. Suppose X is a r.v. with EX = J whose moment generating function is

1 2
Mx(t) = = + ?et + Ce " + De*,

where C and D are constants.

a) Find C and D.

b) Find a density function of X.

Hint: Look at the moment generating function you computed in Exer-
cise 52, and use that to make an educated guess as to the density of X.
(Uniqueness of MGFs can be used to show that your guess is correct.)

¢) Find P(X > 0).
d) Find the variance of X.

54. (AE) Let X and Y be ii.d. r.v.s such that the moment generating function of
X+Yis
My y(t) = .09e™ % + 24e™" + .34 + .24 + .09e*

for all t. Calculate P(X < 0).

55. Evaluate each integral:

00 _ 2 o0 )
a) /_ exp [(‘Tl—g?’)l dx b) /_OO Ve 12t gy

56. Prove that if X3, ..., X, are independent r.v.s with X; ~ I'(r;,A), then S =
Xi+ .o+ X, ~T(r 4o+ ra, A).

Exercises from Section 5.10

57. (AE) Suppose X and Y are independent r.v.s which have the same moment
generating function: Mx(t) = My(t) = . Determine the joint moment
generating functionof W =X +Yand Z =Y — X.
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58.

Suppose X and Y are real-valued r.v.s whose joint moment generating func-
tion is
64

Mxy(s:t) = s v =22

a) Compute EY.
b) Compute Cov(X,Y).
¢) Compute the moment generating function of ¥ — X.

d) Based on your answer to part (c), what common r.v. is ¥ — X?

Exercises from Section 5.11

59.

60.

61.

62.

63.

Suppose X is a gamma r.v. with mean 2 and variance 4. Use the Markov
inequality to find the largest possible value of P(X > 6).
Use the Markov inequality to prove that for every ¢ > 0, e~ < 1.

Hint: Consider an exponential r.v. X with a particular value of ), and use the
Markov inequality with a particular value of a. At least one of the A\ and/or
a should have a t in it.

Let X be a discrete r.v. whose density is

T 1 2 3
1 16 1
Ix@) | 15| 15 | 18
Var(X)

Show that when 6 = 1, P(|X — p| > 9) = .

is to show that in general, the < sign in Chebyshev’s inequality cannot be
replaced by a <).

(the point of this problem

A bolt manufacturer knows that 5% of his production is defective. He gives
a guarantee on his shipment of 10000 parts by promising that no more than a
bolts are defective. Use Chebyshev’s inequality to find the smallest number a
can be, so that the manufacturer is assured of not paying a refund more than
1% of the time.

Let X be Poisson with mean ).

S|

a) Use Chebyshev’s inequality to verify that P (X < ;) <

> =

b) Use Chebyshev’s inequality to verify that P(X > 2)) <
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64. Suppose X is a r.v. with mean and variance both equal to 20. From Cheby-
shev’s inequality, what can be said about P(0 < X < 40)? (In particular, what
is the maximum or minimum value of this expression?)

65. Suppose X and Y are two real-valued r.v.s with
EX =75 EY =75, Var(X) =10, Var(Y) =12, Cov(X,Y) = —3.

Based on Chebyshev’s inequality, what can be said about P(|X — Y| > 15)?
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Chapter 6

l.i.d. processes and normal
random variables

6.1 l.i.d. processes

We are interested in studying the results of an experiment which is repeated over
and over. Examples include:

e attributes of items that are produced by a manufacturing process;
* measurement errors in experiments;
* claim sizes filed by a series of insurance policyholders;

* heights, weights, lifespans, etc. taken from a sample of organisms;

daily medical readings of a patient (blood pressure, heart rate, blood sugar,
etc.); etc.

Definition 6.1 A discrete-time stochastic process {X; : t € N} is called an i.i.d.
process if the process is “independent and identically distributed”, i.e.

* X; L Xy forall j #k,and
* the X; have the same distribution for all j.

In this setting, we denote the mean of each X; by p and the variance of each X; by o

The prototype example of an i.i.d. process is coin flipping: if you flip the same coin
over and over again and let

i j" flip is heads
771 0 if 5 flip is tails
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6.1. Li.d. processes

What we are most interested in is either the sum or the average behavior of such a
process.

Definition 6.2 Given an i.i.d. process { X,}, define the following processes:
1. {S, }nen, the sequence of sums, is S, = X; + Xy + ... + X,
2. {A,}nen the sequence of averages, is

An:lSnZXl—i—...—i—Xn;

n n

3. {A! }nen, the sequence of normalized averages, is

D [ = N S

A
Var(A,) By ay/n

Notice that if each X, has mean p and variance 02, then

E[An] =

Var(A,) =
ElA]] =

Var(Ay) =

EXAMPLE 1

Suppose { X;}is ani.i.d. process where each X; ~ Unif([0, 1]). Compute the values
of ther.v.s S, A, and A’ for n € {1,2,3}, if the values of the X, are
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6.2. Laws of Large Numbers

EXAMPLE 2
Suppose we have ani.i.d. process { X;} where each X, is uniformon {1, 2,3,4,5,6}.
(This process models repeated rolling of a fair die.) If the sequence of die rolls is

3,5 1,3,2,6,4, 1, 1, ...

compute the first six values of the corresponding sequence of averages.

6.2 Laws of Large Numbers
In this section, we investigate some results which give us information about the

averages coming from an i.i.d. process. Recall that if {X,} is i.i.d., we denote each
EX; by ppand each Var(X;) by o2

Quantitative Weak Law of Large Numbers

Theorem 6.3 (Quantitative Weak Law of Large Numbers (QWLLN)) Let { X;}
1

be an i.i.d. process, and for eachn € N, set A,, = —(X1+...+X,,). Then forall § > 0,
n

P(|An_ﬂ|26>§

52
no?’

2
PROOF From the previous section, E[A,| = p and Var(A,) = %. Apply Cheby-

shev’s inequality to A, to get the QWLLN. [J
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Idea: The QWLLN says that if you fix an “error tolerance” §, if you take enough
measurements (say n measurements), then the probability that the average of your
measurements A,, is within ¢ of the theoretical average p is high.

EXAMPLE 3
Marbles are drawn from a jar containing 3 red and 5 marbles, one at a time with
replacement. What is the smallest number n such that you can be 99% assured that
between 37% and 38% of the first n marbles drawn are red?

Weak Law of Large Numbers

Theorem 6.4 (Weak Law of Large Numbers (WLLN)) Let {X,} be an i.i.d. pro-

cess, where each X is a r.v. with finite expected value y and finite variance o*. For

X ..+ X,
eachn € N, set A,, = 1+n+ Then for all § > 0,

lim P(]A, —p| >0)=0.

n—oo

PROOF Take the limit of each side of the inequality in the QWLLN as n — co. [

REMARK
One can derive the WLLN without the assumption that the .X; have finite variance.
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INTERPRETING THE WLLN
Loosely speaking, the WLLN says that if you take a large sample, the probability
that the average of your sample is within ¢ of the “theoretical average” of each
measurement (i.e. the expected value p) is large, and that as the size of the sample
increases, this probability goes to 1. Let’s think about what this means in terms of
flipping a fair coin repeatedly:

Let {X;} be an i.i.d sequence of r.v.s, each uniform on {0, 1} (think of X; =1
as corresponding to the ;% flip being heads and X; = 0 meaning the ;" flip
being tails). In this setting, u = EX; = 3.

Under these assumptions, what is A,,?

1
Leto = 1o Let’s say that a sequence of flips is “n-good” (or “n, j-good”) if
6

4
|A,,—u| < 0, 1i.e. the proportion of heads in the first n flips is between 10 and 10

1 1
Example: HH,HH,T,T,TT,.. is not 4, E-good, but is 8§, E-good.

The WLLN says: if you fix §, and then choose a large enough n, most sequences
are n, 0-good.

HOWEVER: what the WLLN doesn’t tell you (and why it is called the “Weak”
LLN) is any relationship between sequences that are good at different values of n.
For example, the WLLN does not guarantee that most sequences are “eventually
good”, i.e. are n-good for all sufficiently large n.

In particular, it might be the case that typical sequences of heads and tails are n-
bad for infinitely many, very sparsely spaced n).

This weakness is fixed with the following stronger result, which says (among other
things) that with probability 1, a randomly chosen sequence of heads and tails from
a fair coin is eventually good (i.e. the proportion of heads in the sequence becomes
close to 3 and stays close to 5 forever:

2