
MATH 420 HOMEWORK PROBLEMS FALL 2018

Problems marked with (EC) are optional extra credit problems. These extra credit prob-
lems, however, are problems that a student interested in graduate school should try to
do.

0.3: Functions

1. Let f : R2 → R be defined by f(x, y) = x+ y.

(a) Determine, with proof, whether or not f is injective.

(b) Determine, with proof, whether or not f is surjective.

2. Let g : R→ R2 be defined by g(x) = (x2, ex).

(a) Describe the set g−1(0, 1) (by listing its elements with proper notation).

(b) Describe the set g−1(1, 1).

(c) Determine, with proof, whether or not g is injective.

(d) Determine, with proof, whether or not g is surjective.

3. Given the functions f and g defined in the previous two problems, give the domains,
codomains and rules for f ◦ g and g ◦ f .

0.6: Common proof techniques

4. Write a useful denial of each statement (recall that a denial of statement P is any
statement logically equivalent to “not P”):

(a) For all g ∈ G, there is an h ∈ G such that gh = x.

(b) There exists a function f : R→ R such that f is monstrous or f is tiny.

5. Write the contrapositive and converse of each statement:

(a) If t is a turkey, then t gobbles and we eat t on Thanksgiving.

(b) All animals are goats.

6. Prove that there is a prime number between 100 and 110.

7. Prove that there is no greatest element of the interval (0, 1).

Hint: Suppose that there is a greatest integer (say x), and produce a contradiction.

8. Prove that the sum of a rational number and an irrational number is irrational. (You
may assume that the sum of two rational numbers is rational.)

9. Let r ∈ R− {1}. Prove that for all n ∈ N,

n∑
j=0

rj =
rn+1 − 1

r − 1
.

Hint: Prove by induction on n.
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1.1: Straightedge and compass constructions

10. Show that the intersection point(s) (x, y) of two distinct circles

(x− x0)2 + (y − y0)2 = r20 and (x− x1)2 + (y − y1)2 = r21

can be computed in terms of the constants x0, y0, r0, x1, y1 and r1 using (at worst)
+,−, ·,÷ and√ .

1.2: Polynomial equations

11. Prove Theorem 1.11 in the lecture notes, which says that p : R → R is a polynomial
if and only if there exists n ∈ N such that p(n)(x) = 0. (p(n) denotes the nth derivative
of p.)

Hint: This is a biconditional proof. For the (⇒) direction, use induction on the degree
of p. For the (⇐) direction, use induction on n. In either direction, you may use
differentiation and/or integration rules you learn in calculus.

12. In class, we defined the degree of a constant polynomial like p(x) = 3 or p(x) = −
√

6
to be zero. There is a catch: the constant zero polynomial p(x) = 0 should not be
said to have degree zero. The reason is that if this polynomial has degree zero, then
Theorem 1.12 (which says that the degree of a product of two polynomials is the sum
of the degrees of the polynomials) would be false.

(a) If the degree of the constant zero polynomial p(x) = 0 is zero, give a specific
counterexample “disproving” Theorem 1.12.

(b) To make Theorem 1.12 work even if one or more of the polynomials is the zero
polynomial, how do you think the degree of the polynomial p(x) = 0 should be
defined? Explain

13. Consider the equation x3 + 3x2 + 6x+ 2 = 0.

(a) Make an appropriate substitution to transform this equation into a depressed
cubic equation of the form

y3 + py + q = 0.

(b) Compute the discriminant of this depressed cubic.

(c) Use the method of del Ferro and Tartaglia to find a real root of the depressed
cubic equation (go through all the steps; don’t just use the formula in the box
that we derived in the lecture notes).

(d) What is the root of the original equation corresponding to the root you found in
part (c)?

14. Let f(x) = x3 + px+ q. Verify the identity on page 47 of the lecture notes, which says
that

1

4
f

(
−
√
−p
3

)
f

(√
−p
3

)
=
q2

4
+
p3

27
.
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15. Suppose f(x) = x3 + px+ q has exactly two roots. Call the root where the graph of f
is tangent to the x-axis the repeated root and the other root, where the graph crosses
the x-axis, the transverse root.

(a) Show that in this situation, the discriminant of f is zero.

(b) Determine, with proof, which of the roots (the repeated one or the transverse
one) is produced by applying the method of del Ferro and Tartaglia to f .

16. (a) Use the trig identity cos(α+β) = cosα cosβ− sinα sinβ (and perhaps other trig
identities) to show that cos 3θ can be written as p(cos θ) for some polynomial p.
What is p(x)?

(b) Let x = cos 20◦ (notice that if you can trisect a 60◦ angle, then x must be a
constructible number). Write down a polynomial f(x) with integer coefficients
such that x is a root of this polynomial.
Hint: use your answer to the previous HW question.

2.1: The natural numbers

17. Consider the binary operation ⊕ on Z defined by a⊕ b = a+ b− 1.

(a) Is the operation ⊕ associative?

(b) Is the operation ⊕ commutative?

(c) Does the operation ⊕ have an identity element? If so, what is it?

(d) Does every element in Z have an inverse under the operation ⊕? If so, what is
the inverse of a under ⊕?

2.2: The integers

18. Let R be a ring (in this class, “ring” means “commutative ring with 1”) with additive
identity 0 and multiplicative identity 1. Prove that the multiplicative identity element
of R is unique. (Make sure that your proof is carefully written, and makes use only
of the properties of rings laid out in Definition 2.8 of the lecture notes.)

Hint: To prove uniqueness, suppose that there are two multiplicative identities (call
them 1 and 1′), and show they must be equal.

19. Let R be a ring with additive identity 0 and multiplicative identity 1. Prove that for
all x ∈ R, 0x = 0.

20. Let R be a ring with additive identity 0 and multiplicative identity 1. Prove that
−1(x) = −x.

21. Let R and R′ be rings. Define addition and multiplication on R × R′ by (x, y) +
(x′, y′) = (x + x′, y + y′) and (x, y)(x′, y′) = (xx′, yy′). Prove that this addition and
multiplication makes R×R′ into a ring.
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2.3: The rational numbers

22. Let Q(
√

2) = {a+ b
√

2 : a, b ∈ Q}. Prove that Q(
√

2) is a subfield of R.

2.4: Divisibility

23. Prove statement (3) of Theorem 2.24 from the lecture notes, which says: If a | b and
a | c, then a divides any linear combination of b and c.

24. Prove statement (4) of Theorem 2.24 from the lecture notes, which says: if a | b and
b | c, then a | c.

25. Suppose a, b ∈ Z are such that a | b and b | a. What conclusion can be drawn? Formu-
late your conclusion as a theorem, and prove it.

26. Let a ∈ Z. Prove that either 8 | a2 or 8 | (a2 − 1).

Hint: By the Division Theorem, a has remainder 0, 1, 2 or 3 when divided by 4. This
suggests a proof by four cases.

WARNING: This proof should be written without any reference to “ mod ”; in this
class we have not introduced this language yet.

27. Prove that if 2n − 1 is prime, then n must be prime.

28. (EC) Prove or disprove: let a, b ∈ Z. If 3 |(a2 + b2), then 3 | a and 3 | b.

2.5: Euclidean algorithm

29. Use the Euclidean algorithm to find gcd(27182, 3141) and write this gcd as a linear
combination of 27182 and 3141.

30. Use the Euclidean algorithm to find gcd(12906, 42905) and write this gcd as a linear
combination of 12906 and 42905.

31. Prove Lemma 2.37 from the lecture notes, which says that if a and b are nonzero
integers with a | b, then gcd(a, b) = |a|.

32. Let a 6= 0 be an integer. Prove that gcd(a, a+ 1) = 1.

33. Let a ∈ Z be such that |a| > 1. Formulate and prove a statement about the value of
gcd(a+ 1, a− 1).

Hint: To get an idea of what the statement should be, try some values of a.

34. Let a, b ∈ Z be nonzero. Prove that if a and b are relatively prime, then so are a2 and
b2.

35. Suppose a, b ∈ Z− {0} and let d = gcd(a, b). Prove a
d and b

d are relatively prime.

36. (EC) Let a, b ∈ Z− {0}. Prove or disprove: if gcd(a, b) = 1, then gcd(a+ b, ab) = 1.
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37. (EC)

(a) Suppose a 6= 0 is an integer. Is there a reasonable definition of gcd(a, 0)? If so,
what is it? If not, why not?

(b) Is there a reasonable definition of gcd(0, 0)? If so, what is it? If not, why not?

38. Prove Lemma 2.41 from the lecture notes, which says that if p is prime and a ∈ Z−{0}
is such that p | a, then gcd(a, p) = 1.

39. Prove Lemma 2.43 from the lecture notes, which says that if p is prime and a1, ...an ∈
Z are such that

p | a1a2a3 · · · an,

then there is some j such that p | aj .

40. Prove Lemma 2.44 from the lecture notes, which says that if a, b, c ∈ Z are such that
a | bc and gcd(a, b) = 1, then a | c.

41. Suppose A ⊆ Z is a set with the following properties:

• 0 ∈ A;
• a ∈ A and b ∈ A implies a+ b ∈ A;
• a ∈ A implies −a ∈ A.

Prove that there exists n ∈ Z such that A = nZ.

42. (EC) Prove that an equation ax + by = c, where a, b, c ∈ Z, has a solution (x, y) ∈ Z2

if and only if gcd(a, b) | c.

43. (EC) Let n ∈ N. Prove that there are n consecutive natural numbers, all of which are
composite, by following these steps:

(a) Prove that for any k ∈ {2, 3, ..., n+ 1}, k divides [(n+ 1)! + k].

(b) Use part (a) to prove the result.

44. (EC) Let Z[
√

2] = {a + b
√

2 : a, b ∈ Z}. This set is a ring under the usual operations
of + and ·.

(a) Is Z[
√

2] a field? Prove or disprove your answer.

(b) Define N : Z[
√

2]→ Z by N(a+ b
√

2) = a2− 2b2. Let x, y ∈ Z[
√

2]; prove that N
is multiplicative, i.e. N(x)N(y) = N(xy).

(c) Classify, with justification, the following elements of Z[
√

2] as a unit, prime, or
composite:

7 17 + 12
√

2 5 + 3
√

2.

45. (EC) The least common multiple of integers a and b, is the least positive integer
l = lcm(a, b) such that a | l and b | l. Prove that for any integers a and b,

gcd(a, b) lcm(a, b) = ab.
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2.6: Congruence classes modulo n

46. Prove that the sum of any three consecutive integers must be divisible by 3.

Hint: How must such a sum work in Z/3Z?

47. Let n ∈ N.

(a) Prove that 11 |n if and only if 11 divides the alternating sum of the digits in the
base 10 representation of n (as an example, the alternating sum of the digits of
7432582 is 7− 4 + 3− 2 + 5− 8 + 2).

(b) Use this fact to determine whether or not 11 divides 814518450.

48. Construct addition and multiplication tables for Z/11Z.

49. Let m,n ∈ Z. Formulate a useful theorem of the form “(a + mZ) ⊆ (a + nZ) if and
only if ...”, and prove your theorem.

50. Suppose a ≡ 7 mod 9 and b ≡ 1 mod 6. Find (a2 + 2b) mod 3.

51. Consider the binary operation ? on Z/nZ, where n ≥ 2:

(a+ nZ) ? (b+ nZ) =

{
1 + nZ if a ≡ b mod 5
0 + nZ if a 6≡ b mod 5

(a) Is ? well-defined when n = 4? Prove your answer.

(b) Is ? well-defined when n = 5? Prove your answer.

52. (EC) Is√ a well-defined function on Z/2Z? Is it well-defined on Z/3Z?

3.1: Theorems of Hippasus and Theatitus

53. Prove
√

3 is irrational, without using the Rational Roots Theorem or Corollary 3.6.

54. Prove that log2 3 is irrational.

55. Prove that the product of a nonzero rational number and an irrational number is
irrational.

56. Find two irrational numbers x, y such that xy and x+ y are both rational.

57. (EC) Prove that there exist two irrational numbers a and b such that ab is rational.

3.2: Real numbers

58. Use the IVT to prove that any polynomial with real coefficients whose degree is odd
must have a real root.

Note: In this and all other HW problems, you may use facts from pre-calculus and
calculus.
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59. Let a, b ∈ R with a < b, and suppose f : [a, b] → [a, b] is continuous. Prove f has a
fixed point, i.e. a number x ∈ [a, b] such that f(x) = x.

60. Use calculus to prove that x2 ≥ 0 for any real number x.

Hint: optimization.

3.3: Complex numbers

61. Prove the four properties of conjugation described in Lemma 3.24 of the lecture notes.

62. If z is a complex number, what is true about z? Formulate your statement as a theo-
rem, and prove it.

63. Prove Lemma 3.27 from the lecture notes, which says that if z1, z2 ∈ C, then |z1z2| =
|z1||z2|.

64. (a) Compute 2+i
3−2i , writing your answer as x+ iy.

(b) Find the reciprocal of 6− 5i, writing your answer as x+ iy.

(c) What is i4? What about i13? i−5? Based on these observations, describe all
possible values of in for n ∈ Z, based on the value of n mod 4.

(d) Find the modulus and argument of −7
√

3 + 7i.

(e) If z has modulus 8 and argument 3π
4 , write z in x+ iy form.

(f) Compute (2− 2
√

3 i)9, writing your answer in x+ iy form.

65. (EC) Prove that there is no total ordering ≤ on C which has the following properties:

z ≥ 0, w ≥ 0⇒ (z + w ≥ 0 and zw ≥ 0)

z ≥ 0⇒ −z ≤ 0

z ≤ 0⇒ −z ≥ 0

3.5: Complex roots, cubic equations and regular polygons

66. Find the three cube roots of −8− 8i. Write them in x+ iy form.

67. Suppose z = 2eiπ/12. Let w = z6. Find the other sixth roots of w, writing them in
polar form.

68. (a) Compute (2 + i)3 (by multiplying it out, not by using de Moivre’s Theorem).

(b) Find the three real roots of the polynomial x3 − 15x− 4.
Hint: What you did in (a) may come in handy.

69. Show that for every natural number n ≥ 1, cosnθ can be written as p(cos θ), where p
is a polynomial.

Hint: induction on n, together with suitable trig identities (see HW problem # 16).
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4.1: Polynomial rings (definition and basic properties)

70. Divide x3 + 1 by 2x + 1 in Q[x] (i.e. perform long division with remainder as in the
Division Theorem).

71. Use the Euclidean algorithm (which works perfectly well in F [x], you just have to
make sure everything is a polynomial rather than an integer) to find

gcd(x4 + 2x3 + x2 + 1, x2 + 2x+ 4),

and write this gcd as a linear combination of x4 +2x3 +x2 +1 and x2 +2x+4. (Think
of these polynomials as elements of R[x].)

72. Let F be a field.

(a) Prove that f ∈ F [x] is a unit if and only if f is a nonzero constant polynomial.

(b) Let F be a field. Prove F [x] is not a field.

73. (a) List all the elements of F2[x] which have degree 3.

(b) Let d be a positive integer. How many polynomials are there in Fp[x] which
have degree d?

(c) Let d be a positive integer. How many polynomials are there in Fp[x] which
have degree at most d?

74. Let f ∈ R[x]. Show that if z ∈ C is a root of f , so is z. Use that fact to prove
that the only irreducible polynomials over R are linear polynomials and quadratic
polynomials with negative discriminant.

75. Show that f(x) = x2 and g(x) = x are the same function F2 → F2. Are f and g the
same polynomial in F2[x]?

76. Prove Theorem 4.21 from the notes, which says that if F is a field and l ∈ F [x] is
nonzero, then F [x]/lF [x] is a field if and only if l is irreducible.

77. (a) Give a list of the cosets which comprise the set F3[x]/(x2 + 1)F3[x]. How many
are there?

(b) Find an irreducible polynomial l ∈ F2[x] of degree 4. List the cosets in the field
F2[x]/lF2[x]. How many cosets are there?

(c) Let p be prime and suppose l(x) ∈ Fp[x] is an irreducible polynomial of degree
n. How many cosets are there in Fp[x]/lFp[x]?

(d) Find a field with 9 elements and list its elements.

78. (EC) Let F be a field. Prove that there are infinitely many irreducible polynomials in
F [x].
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4.2: Irreducibility tests

79. Prove or disprove each statement:

(a) x4 + 3x2 + 2 is irreducible over Q.

(b) 6x3 − 7x2 + x− 6 is irreducible over Q.

(c) x6 + 14x3 − 35x+ 70 is irreducible over Q.

(d) x6 + 14x3 − 35x+ 70 is irreducible over R.

(e) x2 + 1 is irreducible over F5.

80. Let p(x) = x4 − 7x2 − 30.

(a) Factor p(x) into irreducibles over C.

(b) Factor p(x) into irreducibles over R.

(c) Factor p(x) into irreducibles over Q.

81. Prove that the polynomial x3 + x2 − 2x− 1 (that we obtained at the end of Chapter 3
dealing with the regular 7−gon) is irreducible.

Hint: let y = x+ 2 and use the substitution trick together with Eisenstein.

82. Find a monic, fourth-degree polynomial whose roots are ±
√

2±
√

3, and show this
polynomial is irreducible over Q.

5.1: Field extensions

83. Prove Q(1 +
√

2) = Q(
√

2).

84. Prove that
√

2 and
√

3 are each elements of Q(
√

2 +
√

3).

85. Prove that for any k ∈ Z, cos 2πk
n ∈ Q(cos 2π

n ).

Hint: A previous HW problem may be useful.

5.2: Algebraic extensions

86. Prove Lemma 5.7 from the notes, which says that for any number field F and any α
which is algebraic over F ,

(a) there is an irreducible polynomial h ∈ F [x] such that h(α) = 0; and

(b) any two irreducible polynomials in F [x] which have α as a root must have the
same degree.

87. Let f be a minimal polynomial for α. Prove that for any polynomial h ∈ Q[x] with
h(α) = 0, f |h.

88. (a) Show that 1 +
√

2 =
√

3 + 2
√

2.
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(b) Find a minimal polynomial for α = 1 +
√

2 over Q.
Note: When asked to find a minimal polynomial, you always have to justify that
your answer is correct.

89. Find a minimal polyomial for
√

3 +
√

5 over Q.

90. Find a minimal polynomial for
√

3 +
√

5 over Q(
√

3).

91. Find a minimal polynomial for
√

3 +
√

5 over Q(
√

15).

92. (a) Write down the cyclotomic polynomial Φ9(z).

(b) Show that Φ9(z) is irreducible over Q.
Hint: Use the substitution y = z − 1 in your answer to part (a), together with
Eisenstein.

(c) Determine, with proof, whether or not the regular 9-gon is constructible.

5.3: Linear algebra and field extensions

93. Prove Theorem 5.18 from the notes, which says that if F is a number field and α ∈ C
has degree n over F , then {1, α, α2, ..., αn−1} is a basis of F (α) over F .

94. Prove that 1 and
√

2 are linearly independent over Q.

95. Prove that 1 and
√

3 are linearly independent over Q(
√

2).

96. Use the Dedekind Product Theorem to find (with proof) the dimension of, and a basis
for, Q(

√
2,
√

3) over Q.

97. Prove Q(
√

2 +
√

3) = Q(
√

2,
√

3).

98. Find a minimal polynomial for
√

2 +
√

3 over Q (prove that the polynomial is mini-
mal), and explain how your answer to this question jives with your answer to Prob-
lem 96.

99. Let a > 0 be a rational number which is not a square (i.e. there is no b ∈ Q such that
b2 = a). Prove that 4

√
a has degree 4 over Q.

100. Let α ∈ C be a non-real root of the polynomial x3 − 3x + 4. Find the inverse of
α2 + α+ 1 ∈ Q(α) explicitly, as a linear combination of the basis {1, α, α2} of Q(α).

5.4: Classical construction problems, revisited

101. Let α be the real root of the polynomial x3+3x+1. Prove that α cannot be constructed
with straightedge and compass.

102. (EC) Is it possible to construct a square whose area is equal to that of a given triangle
(whose lengths are rational numbers)? Prove your assertion.

103. Prove that if gcd(p, q) = 1 and if the regular p-gon and regular q-gon are both con-
structible, then the regular pq-gon is constructible.
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104. (EC) In the notes, we proved that deg(ζn/Q) = φ(n). What is the degree of cos 2π
n

over Q? Prove your answer.

6.1: What is a homomorphism?

105. In each part of this question, you are given a function between algebraic structures.
Determine, with proof, whether or not the given function is a homomorphism.

(a) σ : (Z[x],+)→ (R,+) defined by σ(f) = f(2)

(b) σ : (Q[x],+)→ (Q[x],+) defined by σ(f)(x) = f(2x)

(c) σ : (Q[x], ◦)→ (Q[x], ◦) defined by σ(f)(x) = f(2x)

106. Same directions as the preceding question:

(a) σ : (Z/3Z,+)→ (Z/12Z,+) defined by σ(x+ 3Z) = (x+ 12Z)

(b) σ : (Z/3Z,+)→ (Z/12Z,+) defined by σ(x+ 3Z) = (4x+ 12Z)

(c) σ : (Z/12Z,+)→ (Z/3Z,+) defined by σ(x+ 12Z) = (x+ 3Z)

6.2: Isomorphisms and invariants

107. Let p be an odd prime. Prove that the function σ : Fp → Fp defined by σ(x) = x2 is a
field isomorphism.

108. Prove that if rings R and R′ are isomorphic, then R is an integral domain if and only
if R′ is an integral domain. (In other words, prove that being an integral domain is
an invariant of ring isomorphism.)

109. Prove that if rings R and R′ are isomorphic, then R is a field if and only if R′ is a
field.

Hint: Use part (4) of Lemma 6.8, which says that if σ : R→ R′ is a ring isomorphism,
and x ∈ R is a unit, then σ(x) is a unit in R′.

110. Solve the system of congruences{
x ≡ 12 mod 17
x ≡ 11 mod 19

111. Consider the map φ : C→M2(R) given by

φ(x+ iy) =

(
x −y
y x

)
.

Prove that φ is a ring isomorphism from (C,+, ·) to (M2(R),+, matrix multiplication).
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6.3: Ring homomorphisms

112. Let R be a ring. Determine, with proof, whether or not each given function is a ring
homomorphism.

(a) σ : R→ R×R defined by σ(x) = (x, 0)

(b) σ : R→ R×R defined by σ(x) = (x, x)

(c) σ : R×R→ R defined by σ(x, y) = x

(d) σ : R×R→ R defined by σ(x, y) = x+ y

(e) σ : R×R→ R defined by σ(x, y) = xy

Note: the product ring R×R has operations described in a previous HW problem.

113. Prove that if σ : R→ R′ is a ring homomorphism, then σ(1) = 1.

114. Let σ : R → R′ be a ring homomorphism. Prove that if x ∈ ker(σ), then xy ∈ ker(σ)
for any y ∈ R.

115. Let R be the set of continuous functions from [0, 1] to R, with the addition and mul-
tiplication operations being the usual addition and multiplication of functions (this
set forms a ring; you do not need to prove this). Let S ⊆ R be the set consisting of all
f ∈ R such that f(12) = 0. Prove R/S ∼= (R,+, ·).

116. (EC) Let R be a ring. An ideal is a nonempty subset I of R with the following two
properties:

I is closed under addition: if x, y ∈ I , then x+ y ∈ I ;
I is closed under multiplication by any ring element: if x ∈ I and r ∈ R, then rx ∈

I .

(a) If σ : R→ R′ is any ring homomorphism, prove that ker(σ) is an ideal of R.

(b) Describe all the ideals in Z.

(c) Describe all the ideals of R.

(d) Prove that any non-constant ring homomorphism σ whose domain is R must be
injective.

6.4: Automorphisms

117. (EC) Prove Theorem 6.19 from the lecture notes (the group properties of the set of
automorphisms of a ring).

7.2: What is a group?

118. Are the following objects groups? If so, just write Yes. If not, write No and give a
brief reason why (like “not associative” or “no identity”, etc.).

(a) (R, ∗) where a ∗ b = 2a+ b
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(b) (X,+) where X is the set of rational numbers whose denominator in lowest
terms is a nonnegative power of 5, and + is usual addition

(c) (E, ?) where E is a set containing 0, and a ? b = 0 for any a, b ∈ E.

(d) (G,+) where G is the set of continuous functions from [0, 1] to R, and + is the
usual addition on functions.

(e) (Z3, •) where (a, b, c) • (x, y, z) = (a+ x, b+ y, c+ z + ay).

119. Let T be the collection of non-constant linear functions from R to R (examples of
elements of T would be f and g where f(x) = 2x + 5 and g(x) = 7 − x). Prove that
T forms a group under composition.

120. Prove the uniqueness of inverses in a group (i.e. that if h and k are both inverses of
g, then h = k).

121. (EC) Let G be an abelian group. Prove that (ab)n = anbn for any n ∈ Z.

122. Let G be a finite group where |G| is even. Prove that there is an element g ∈ G, other
than the identity, such that g = g−1.

123. In each part of this problem, you are given a group G and a subset H ⊆ G. Is H is
a subgroup of G? If so, just write Yes. If not, write No and give a brief reason why
(like “not closed under group operation ” or “doesn’t contain identity”, etc.).

(a) G = (R,+); H = [0,∞)

(b) G = (R,+); H = Q
(c) G = ((0,∞), ·); H = {1}

124. Same directions as the previous problem:

(a) G = (Z,+); H = 4Z
(b) G = GL(2,R), the set of 2×2 matrices with real entries and nonzero determinant

(the group operation is matrix multiplication); H is the set of diagonal matrices
in GL(2,R)

(c) G = GL(2,R); H = {M ∈ G : M = MT }

125. Let G be a group. Suppose w, x, y, z ∈ G satisfy the equation xyz−1w = e.

(a) Solve for y in terms of the other variables.

(b) Solve for z in terms of the other variables.

126. Let H and K be subgroups of group G.

(a) Is H ∪K necessarily a subgroup of G? Prove your assertion.

(b) Is H ∩K necessarily a subgroup of G? Prove your assertion.

127. Let G and G′ be groups, and let σ : G→ G′ be a group homomorphism. Prove that if
H is a subgroup of G, then σ(H) is a subgroup of G′.
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128. Let G and G′ be groups, and let σ : G→ G′ be a group homomorphism. Prove that σ
is injective if and only if ker(σ) = {e}.

129. (EC) Let G be a finite group, and let its elements be denoted {g1, g2, ..., gn}. Let x =
g1g2 · · · gn; prove x2 = e.

130. (a) Let G be a group. Is the map σ : G → G defined by σ(g) = g−1 a homomor-
phism? Prove your assertion.

(b) Let G be an abelian group. Is the map σ : G → G defined by σ(g) = g−1 a
homomorphism? Prove your assertion.

131. Suppose G is an abelian group and σ : G → G′ is an isomorphism. Must G′ be
abelian? Prove your assertion.

132. Let G be a group, and let g ∈ G. The map ϕg : G→ G defined by

ϕg(x) = gxg−1

is called a conjugacy (or conjugation by g). Prove that conjugation by g is an auto-
morphism of G.

7.3: Examples of groups

133. Let G1 and G2 be groups. Prove that G1 ×G2 is a group, where the group operation
is defined coordinate-wise by

(g1, g2)(h1, h2) = (g1h1, g2h2).

134. Give an explicit isomorphism between (Z/12Z,+) and (Z/3Z×Z/4Z,+) (and prove
that your function is an isomorphism).

135. Prove that every group of order 2 is isomorphic to (Z/2Z,+).

Hint: Let G be a group of order 2. One of its elements is the identity, and one isn’t.
Use this to explain what the composition table of G must look like, and then write
down an isomorphism between G and (Z/2Z,+).

136. Prove that every group of order 3 is isomorphic to (Z/3Z,+).

137. Perform the following computations in the dihedral group D6, writing your final
answer in the form fri for i ∈ {0, ..., 5}:

(a) f7

(b) r−8
(c) rf2

(d) (fr4)−1
(e) rfrf

(f) frfr

(g) rfr3(r2f)−1fr2

(h) fr3ffr−2fr4

138. (EC) Let σ : G → G′ be a group isomorphism. Prove that if G is cyclic, then G′ is
cyclic.

139. Write a list of elements in the group (Z/20Z)×. Is this group cyclic? Explain.
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140. Describe the group of symmetries of a cube.

Hint: To find the group of symmetries of a regular polygon and the group of sym-
metries of a regular tetrahedron, we looked at how the vertices of the object were
permuted. For the cube, it may be easier to look at how the faces of the object are
permuted, since there are less faces than vertices.

141. Let F = Q( 4
√

2, i). Prove Aut(F ) ∼= D4.

142. (EC) Describe the group of symmetries obtained by all the ways you can flip/rotate
a twin mattress and put it back in a bed.

143. (EC) Let G be the additive group of the finite field F4. Find, with proof, another
group we have studied that is isomorphic to G.

7.4: Permutation groups

144. Perform the following computations in the symmetric group, writing your answer
in cycle notation:

(a) (1 3 2 4)−1

(b) (5 4 2)2

(c) (1 4 2)(1 3)(1 2 4)

(d) (1 5 2 4)(4 1 3 5)e

(e) (3 5)(4 3 2)(2 5 1)

(f) (1 3 6)−1(3 2 4)(2 5)

(g) (1 7)(2 7)(3 2)(5 3)(1 5)(1 6)(6 7)

(h) (1 2)(2 3 4)2(1 4)

145. Find the order of each permutation:

(a) (1 6 2)

(b) (1 3 7)(2 4, 6 8)

(c) (1 2)(3 4)−1(7 9)

(d) (1 2 3, 4, 5)(6 7 8)

146. Determine all possible cycle structures for elements in S5. For each cycle structure,
find the order of an element with that cycle structure, give the number of elements
in S5 with that cycle structure, and determine whether permutations with that cycle
structure are even or odd.

147. Repeat the instructions of the previous problem for S8.

148. True or false: there exists a positive integer N such that (1 2) can be written as the
product of some number of 3-cycles in SN . Prove your answer.

149. True or false: there is a positive integer N such that in SN , there are three transposi-
tions τ1, τ2 and τ3 such that τ1τ2τ3 = e. Prove your answer.

150. (EC) What is the largest order of any element in S13? Explain.
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7.5: Subgroups and cosets

151. Find all the left cosets, and all the right cosets of H = {e, (1 2)} in the dihedral group
A4.

152. Let G be a group, and suppose x ∈ G has order rs. What is the order of xr? Prove
your assertion.

153. Let G = S5 and let H =< (1 2 3) >. Compute the left coset (1 2)(4 5)H and the right
coset H(3 4 5).

154. Prove that the only groups of order 4 are (up to isomorphism) (Z/4Z,+) and the
Klein 4-group V .

Hint: Let G be a group of order 4. Analyze the possible orders of the elements of G.

155. Let p be a prime. Prove that every group of order p is isomorphic to (Z/pZ,+).

156. (EC) Suppose abelian groupG has an element g of orderm and an element h of order
n, where gcd(m,n) = 1. Prove G contains an element of order mn.

157. Classify all groups of order 6 up to isomorphism.

158. (EC) Classify all groups of order 8 up to isomorphism.

159. (a) Find the remainder when 41433 is divided by 131.

(b) Find the remainder when 31203 is divided by 42.

160. Prove that A4 has no subgroup of order 6.

161. Let G be a group where every element other than e has order 2. Prove G is abelian.

162. (EC) Suppose G is a group with no subgroups other than {e} and G itself. Prove
something about G.

Note: I’m looking for something considerably stronger than “G is simple”.

163. (EC) Prove that the only element in (Z/pZ)× of order 2 is (p− 1) + pZ.

Use this fact to prove Wilson’s Theorem, which says that for any prime p, (p− 1)! ≡
(−1) mod p.

164. Suppose that group G contains elements of every order from 1 to 10. What is the
smallest possible order of G?

165. List all the subgroups of the Klein 4-group V .

166. (EC) List all the subgroups of D6. Which of them are normal?

167. Let G = GL(2,R), the set of invertible 2 × 2 matrices with real entries (this forms a

group under matrix multiplication). Let H ≤ G be the subgroup <

(
1 1
−1 0

)
>.

Find another group we have studied which is isomorphic to H .
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7.6: Normal subgroups and quotient groups

168. Verify thatA3 /S3 by checking that all products of the form ghg−1 (where g ∈ S3 and
h ∈ A3) lie in A3.

169. Let H ≤ S4 be the set of permutations σ such that σ(1) = 1. Is H a normal subgroup
of S4?

170. Find, with proof, a normal subgroup of A4 that has order 4.

171. Let G be a group. Define the center of G, denoted Z(G), to be the set of elements of
G that commute with every element of G. In other words,

Z(G) = {h ∈ G : gh = hg for every g ∈ G}.

Prove that Z(G) / G.

172. Let G be a group and let A = G×G. Let H ≤ A be the subgroup {(g, g) : g ∈ G}.

(a) Prove G ∼= H .

(b) Prove H / G if and only if G is abelian.

173. Prove that any subgroup H of G with [G : H] = 2 must be normal.

174. Prove that < r > is a normal subgroup of Dn (here, r represents the smallest coun-
terclockwise rotation in Dn).

8.2: Galois groups

175. Compute the following Galois groups (i.e. find a common group to which these are
isomorphic, with justification):

(a) Gal(Q( 4
√

2, i)/Q))

(b) Gal(Q( 4
√

2, i)/Q(
√

2))

(c) Gal(Q( 4
√

2, i)/Q(i))

176. Compute Gal(Q(ζ3,
3
√

2)/Q( 3
√

2)).

177. Compute the Galois group of the root field of p(x) = x4 − 16x2 + 4 over Q (this
example was studied near the end of Section 8.1 in the notes).

178. Let p ∈ Q[x] be an irreducible polynomial of degree 5. Let z ∈ C be a root of p, and
let E = Q(z).

(a) Prove that any σ ∈ Gal(E/Q) is determined completely by the value of σ(z).

(b) Prove that for any σ ∈ Gal(E/Q), σ(z) is a root of p.

(c) Based on your answers to (a) and (b), what is the maximum possible order of
Gal(E/Q)?

179. Prove or disprove: for any n, the dihedral group Dn is solvable.
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8.3: Quintic equations, revisited

180. Prove that the Galois group of any irreducible quadratic polynomial in Q[x] is iso-
morphic to (Z/2Z,+).

Remark: The “Galois group of a polynomial” in Q[x] is Gal(E/Q), where E is the
root field of the polynomial.

181. Let x3 + px + q be an irreducible cubic polynomial, where p, q ∈ Q, which has three
distinct roots x1, x2, x3 ∈ C. Let E be the root field of this polynomial.

(a) Show ∆ = (x1 − x2)2(x1 − x3)2(x2 − x3)2, where ∆ is the discriminant defined
in Chapter 1.

(b) Prove that if ∆ is a perfect square in Q (i.e. δ =
√

∆ ∈ Q), then Gal(E/Q) ∼= A3.

(c) Prove that if ∆ is not a perfect square in Q, then Gal(E/Q) ∼= S3.

182. (a) Find a irreducible cubic polynomial in Q[x] whose Galois group is isomorphic
to A3.

(b) Find a irreducible cubic polynomial in Q[x] whose Galois group is isomorphic
to S3.


