Problems marked with (EC) are optional extra credit problems. These extra credit problems, however, are problems that a student interested in graduate school should try to do.

0.3: Functions

- 1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x, y) = x + y.
 - (a) Determine, with proof, whether or not f is injective.
 - (b) Determine, with proof, whether or not f is surjective.
- 2. Let $g : \mathbb{R} \to \mathbb{R}^2$ be defined by $g(x) = (x^2, e^x)$.
 - (a) Describe the set $g^{-1}(0,1)$ (by listing its elements with proper notation).
 - (b) Describe the set $g^{-1}(1,1)$.
 - (c) Determine, with proof, whether or not *g* is injective.
 - (d) Determine, with proof, whether or not *g* is surjective.
- 3. Given the functions f and g defined in the previous two problems, give the domains, codomains and rules for $f \circ g$ and $g \circ f$.

0.6: Common proof techniques

- 4. Write a useful denial of each statement (recall that a denial of statement *P* is any statement logically equivalent to "not *P*"):
 - (a) For all $g \in G$, there is an $h \in G$ such that gh = x.
 - (b) There exists a function $f : \mathbb{R} \to \mathbb{R}$ such that f is monstrous or f is tiny.
- 5. Write the contrapositive and converse of each statement:
 - (a) If *t* is a turkey, then *t* gobbles and we eat *t* on Thanksgiving.
 - (b) All animals are goats.
- 6. Prove that there is a prime number between 100 and 110.
- 7. Prove that there is no greatest element of the interval (0, 1).

Hint: Suppose that there is a greatest integer (say *x*), and produce a contradiction.

- 8. Prove that the sum of a rational number and an irrational number is irrational. (You may assume that the sum of two rational numbers is rational.)
- 9. Let $r \in \mathbb{R} \{1\}$. Prove that for all $n \in \mathbb{N}$,

$$\sum_{j=0}^{n} r^{j} = \frac{r^{n+1} - 1}{r - 1}.$$

Hint: Prove by induction on *n*.

1.1: Straightedge and compass constructions

10. Show that the intersection point(s) (x, y) of two distinct circles

$$(x - x_0)^2 + (y - y_0)^2 = r_0^2$$
 and $(x - x_1)^2 + (y - y_1)^2 = r_1^2$

can be computed in terms of the constants x_0, y_0, r_0, x_1, y_1 and r_1 using (at worst) $+, -, \cdot, \div$ and $\sqrt{.}$

1.2: Polynomial equations

11. Prove Theorem 1.11 in the lecture notes, which says that $p : \mathbb{R} \to \mathbb{R}$ is a polynomial if and only if there exists $n \in \mathbb{N}$ such that $p^{(n)}(x) = 0$. ($p^{(n)}$ denotes the n^{th} derivative of p.)

Hint: This is a biconditional proof. For the (\Rightarrow) direction, use induction on the degree of *p*. For the (\Leftarrow) direction, use induction on *n*. In either direction, you may use differentiation and/or integration rules you learn in calculus.

- 12. In class, we defined the degree of a constant polynomial like p(x) = 3 or $p(x) = -\sqrt{6}$ to be zero. There is a catch: the constant zero polynomial p(x) = 0 should not be said to have degree zero. The reason is that if this polynomial has degree zero, then Theorem 1.12 (which says that the degree of a product of two polynomials is the sum of the degrees of the polynomials) would be false.
 - (a) If the degree of the constant zero polynomial p(x) = 0 is zero, give a specific counterexample "disproving" Theorem 1.12.
 - (b) To make Theorem 1.12 work even if one or more of the polynomials is the zero polynomial, how do you think the degree of the polynomial p(x) = 0 should be defined? Explain
- 13. Consider the equation $x^3 + 3x^2 + 6x + 2 = 0$.
 - (a) Make an appropriate substitution to transform this equation into a depressed cubic equation of the form

$$y^3 + py + q = 0.$$

- (b) Compute the discriminant of this depressed cubic.
- (c) Use the method of del Ferro and Tartaglia to find a real root of the depressed cubic equation (go through all the steps; don't just use the formula in the box that we derived in the lecture notes).
- (d) What is the root of the original equation corresponding to the root you found in part (c)?
- 14. Let $f(x) = x^3 + px + q$. Verify the identity on page 47 of the lecture notes, which says that

$$\frac{1}{4}f\left(-\sqrt{\frac{-p}{3}}\right)f\left(\sqrt{\frac{-p}{3}}\right) = \frac{q^2}{4} + \frac{p^3}{27}.$$

- 15. Suppose $f(x) = x^3 + px + q$ has exactly two roots. Call the root where the graph of f is tangent to the *x*-axis the **repeated root** and the other root, where the graph crosses the *x*-axis, the **transverse root**.
 - (a) Show that in this situation, the discriminant of f is zero.
 - (b) Determine, with proof, which of the roots (the repeated one or the transverse one) is produced by applying the method of del Ferro and Tartaglia to *f*.
- 16. (a) Use the trig identity cos(α + β) = cos α cos β sin α sin β (and perhaps other trig identities) to show that cos 3θ can be written as p(cos θ) for some polynomial p. What is p(x)?
 - (b) Let $x = \cos 20^{\circ}$ (notice that if you can trisect a 60° angle, then x must be a constructible number). Write down a polynomial f(x) with integer coefficients such that x is a root of this polynomial.

Hint: use your answer to the previous HW question.

2.1: The natural numbers

- 17. Consider the binary operation \oplus on \mathbb{Z} defined by $a \oplus b = a + b 1$.
 - (a) Is the operation \oplus associative?
 - (b) Is the operation \oplus commutative?
 - (c) Does the operation \oplus have an identity element? If so, what is it?
 - (d) Does every element in \mathbb{Z} have an inverse under the operation \oplus ? If so, what is the inverse of *a* under \oplus ?

2.2: The integers

18. Let *R* be a ring (in this class, "ring" means "commutative ring with 1") with additive identity 0 and multiplicative identity 1. Prove that the multiplicative identity element of *R* is unique. (Make sure that your proof is carefully written, and makes use only of the properties of rings laid out in Definition 2.8 of the lecture notes.)

Hint: To prove uniqueness, suppose that there are two multiplicative identities (call them 1 and 1'), and show they must be equal.

- 19. Let *R* be a ring with additive identity 0 and multiplicative identity 1. Prove that for all $x \in R$, 0x = 0.
- 20. Let *R* be a ring with additive identity 0 and multiplicative identity 1. Prove that -1(x) = -x.
- 21. Let *R* and *R'* be rings. Define addition and multiplication on $R \times R'$ by (x, y) + (x', y') = (x + x', y + y') and (x, y)(x', y') = (xx', yy'). Prove that this addition and multiplication makes $R \times R'$ into a ring.

2.3: The rational numbers

22. Let $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$. Prove that $\mathbb{Q}(\sqrt{2})$ is a subfield of \mathbb{R} .

2.4: Divisibility

- 23. Prove statement (3) of Theorem 2.24 from the lecture notes, which says: If $a \mid b$ and $a \mid c$, then a divides any linear combination of b and c.
- 24. Prove statement (4) of Theorem 2.24 from the lecture notes, which says: if *a* | *b* and *b* | *c*, then *a* | *c*.
- 25. Suppose $a, b \in \mathbb{Z}$ are such that $a \mid b$ and $b \mid a$. What conclusion can be drawn? Formulate your conclusion as a theorem, and prove it.
- 26. Let $a \in \mathbb{Z}$. Prove that either $8 \mid a^2$ or $8 \mid (a^2 1)$.

Hint: By the Division Theorem, a has remainder 0, 1, 2 or 3 when divided by 4. This suggests a proof by four cases.

WARNING: This proof should be written without any reference to " mod "; in this class we have not introduced this language yet.

- 27. Prove that if $2^n 1$ is prime, then *n* must be prime.
- 28. (EC) Prove or disprove: let $a, b \in \mathbb{Z}$. If $3 | (a^2 + b^2)$, then 3 | a and 3 | b.

2.5: Euclidean algorithm

- 29. Use the Euclidean algorithm to find gcd(27182, 3141) and write this gcd as a linear combination of 27182 and 3141.
- 30. Use the Euclidean algorithm to find gcd(12906, 42905) and write this gcd as a linear combination of 12906 and 42905.
- 31. Prove Lemma 2.37 from the lecture notes, which says that if *a* and *b* are nonzero integers with $a \mid b$, then gcd(a, b) = |a|.
- 32. Let $a \neq 0$ be an integer. Prove that gcd(a, a + 1) = 1.
- 33. Let $a \in \mathbb{Z}$ be such that |a| > 1. Formulate and prove a statement about the value of gcd(a + 1, a 1).

Hint: To get an idea of what the statement should be, try some values of *a*.

- 34. Let $a, b \in \mathbb{Z}$ be nonzero. Prove that if a and b are relatively prime, then so are a^2 and b^2 .
- 35. Suppose $a, b \in \mathbb{Z} \{0\}$ and let d = gcd(a, b). Prove $\frac{a}{d}$ and $\frac{b}{d}$ are relatively prime.
- 36. (EC) Let $a, b \in \mathbb{Z} \{0\}$. Prove or disprove: if gcd(a, b) = 1, then gcd(a + b, ab) = 1.

- 37. (EC)
 - (a) Suppose $a \neq 0$ is an integer. Is there a reasonable definition of gcd(a, 0)? If so, what is it? If not, why not?
 - (b) Is there a reasonable definition of gcd(0,0)? If so, what is it? If not, why not?
- 38. Prove Lemma 2.41 from the lecture notes, which says that if *p* is prime and $a \in \mathbb{Z} \{0\}$ is such that $p \mid a$, then gcd(a, p) = 1.
- 39. Prove Lemma 2.43 from the lecture notes, which says that if *p* is prime and $a_1, ..., a_n \in \mathbb{Z}$ are such that

 $p \mid a_1 a_2 a_3 \cdots a_n,$

then there is some *j* such that $p \mid a_j$.

- 40. Prove Lemma 2.44 from the lecture notes, which says that if $a, b, c \in \mathbb{Z}$ are such that $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$.
- 41. Suppose $A \subseteq \mathbb{Z}$ is a set with the following properties:
 - $0 \in A$;
 - $a \in A$ and $b \in A$ implies $a + b \in A$;
 - $a \in A$ implies $-a \in A$.

Prove that there exists $n \in \mathbb{Z}$ such that $A = n\mathbb{Z}$.

- 42. (EC) Prove that an equation ax + by = c, where $a, b, c \in \mathbb{Z}$, has a solution $(x, y) \in \mathbb{Z}^2$ if and only if gcd(a, b) | c.
- 43. (EC) Let $n \in \mathbb{N}$. Prove that there are *n* consecutive natural numbers, all of which are composite, by following these steps:
 - (a) Prove that for any $k \in \{2, 3, ..., n+1\}$, k divides [(n+1)! + k].
 - (b) Use part (a) to prove the result.
- 44. (EC) Let $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$. This set is a ring under the usual operations of + and \cdot .
 - (a) Is $\mathbb{Z}[\sqrt{2}]$ a field? Prove or disprove your answer.
 - (b) Define $N : \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}$ by $N(a + b\sqrt{2}) = a^2 2b^2$. Let $x, y \in \mathbb{Z}[\sqrt{2}]$; prove that N is multiplicative, i.e. N(x)N(y) = N(xy).
 - (c) Classify, with justification, the following elements of $\mathbb{Z}[\sqrt{2}]$ as a *unit*, *prime*, or *composite*:

7 $17 + 12\sqrt{2}$ $5 + 3\sqrt{2}$.

45. (EC) The **least common multiple** of integers *a* and *b*, is the least positive integer l = lcm(a, b) such that $a \mid l$ and $b \mid l$. Prove that for any integers *a* and *b*,

$$gcd(a, b)$$
 lcm $(a, b) = ab$.

2.6: Congruence classes modulo *n*

- 46. Prove that the sum of any three consecutive integers must be divisible by 3. *Hint:* How must such a sum work in $\mathbb{Z}/3\mathbb{Z}$?
- 47. Let $n \in \mathbb{N}$.
 - (a) Prove that 11 | n if and only if 11 divides the alternating sum of the digits in the base 10 representation of n (as an example, the alternating sum of the digits of 7432582 is 7 4 + 3 2 + 5 8 + 2).
 - (b) Use this fact to determine whether or not 11 divides 814518450.
- 48. Construct addition and multiplication tables for $\mathbb{Z}/11\mathbb{Z}$.
- 49. Let $m, n \in \mathbb{Z}$. Formulate a useful theorem of the form " $(a + m\mathbb{Z}) \subseteq (a + n\mathbb{Z})$ if and only if ...", and prove your theorem.
- 50. Suppose $a \equiv 7 \mod 9$ and $b \equiv 1 \mod 6$. Find $(a^2 + 2b) \mod 3$.
- 51. Consider the binary operation \star on $\mathbb{Z}/n\mathbb{Z}$, where $n \geq 2$:

 $(a+n\mathbb{Z})\star(b+n\mathbb{Z}) = \begin{cases} 1+n\mathbb{Z} & \text{if } a \equiv b \mod 5\\ 0+n\mathbb{Z} & \text{if } a \not\equiv b \mod 5 \end{cases}$

- (a) Is \star well-defined when n = 4? Prove your answer.
- (b) Is \star well-defined when n = 5? Prove your answer.
- 52. (EC) Is \sqrt{a} well-defined function on $\mathbb{Z}/2\mathbb{Z}$? Is it well-defined on $\mathbb{Z}/3\mathbb{Z}$?

3.1: Theorems of Hippasus and Theatitus

- 53. Prove $\sqrt{3}$ is irrational, without using the Rational Roots Theorem or Corollary 3.6.
- 54. Prove that $\log_2 3$ is irrational.
- 55. Prove that the product of a nonzero rational number and an irrational number is irrational.
- 56. Find two irrational numbers x, y such that xy and x + y are both rational.
- 57. (EC) Prove that there exist two irrational numbers a and b such that a^b is rational.

3.2: Real numbers

58. Use the IVT to prove that any polynomial with real coefficients whose degree is odd must have a real root.

Note: In this and all other HW problems, you may use facts from pre-calculus and calculus.

- 59. Let $a, b \in \mathbb{R}$ with a < b, and suppose $f : [a, b] \to [a, b]$ is continuous. Prove f has a *fixed point*, i.e. a number $x \in [a, b]$ such that f(x) = x.
- 60. <u>Use calculus</u> to prove that $x^2 \ge 0$ for any real number *x*. *Hint:* optimization.

3.3: Complex numbers

- 61. Prove the four properties of conjugation described in Lemma 3.24 of the lecture notes.
- 62. If z is a complex number, what is true about $\overline{\overline{z}}$? Formulate your statement as a theorem, and prove it.
- 63. Prove Lemma 3.27 from the lecture notes, which says that if $z_1, z_2 \in \mathbb{C}$, then $|z_1z_2| = |z_1||z_2|$.
- 64. (a) Compute $\frac{2+i}{3-2i}$, writing your answer as x + iy.
 - (b) Find the reciprocal of 6 5i, writing your answer as x + iy.
 - (c) What is i^4 ? What about i^{13} ? i^{-5} ? Based on these observations, describe all possible values of i^n for $n \in \mathbb{Z}$, based on the value of $n \mod 4$.
 - (d) Find the modulus and argument of $-7\sqrt{3} + 7i$.
 - (e) If z has modulus 8 and argument $\frac{3\pi}{4}$, write z in x + iy form.
 - (f) Compute $(2 2\sqrt{3}i)^9$, writing your answer in x + iy form.
- 65. (EC) Prove that there is no total ordering \leq on \mathbb{C} which has the following properties:

$$z \ge 0, w \ge 0 \Rightarrow (z + w \ge 0 \text{ and } zw \ge 0)$$

 $z \ge 0 \Rightarrow -z \le 0$
 $z \le 0 \Rightarrow -z \ge 0$

3.5: Complex roots, cubic equations and regular polygons

- 66. Find the three cube roots of -8 8i. Write them in x + iy form.
- 67. Suppose $z = 2e^{i\pi/12}$. Let $w = z^6$. Find the other sixth roots of w, writing them in polar form.
- 68. (a) Compute $(2 + i)^3$ (by multiplying it out, not by using de Moivre's Theorem).
 - (b) Find the three real roots of the polynomial x³ 15x 4.
 Hint: What you did in (a) may come in handy.
- 69. Show that for every natural number $n \ge 1$, $\cos n\theta$ can be written as $p(\cos \theta)$, where p is a polynomial.

Hint: induction on *n*, together with suitable trig identities (see HW problem # 16).

4.1: Polynomial rings (definition and basic properties)

- 70. Divide $x^3 + 1$ by 2x + 1 in $\mathbb{Q}[x]$ (i.e. perform long division with remainder as in the Division Theorem).
- 71. Use the Euclidean algorithm (which works perfectly well in F[x], you just have to make sure everything is a polynomial rather than an integer) to find

$$gcd(x^4 + 2x^3 + x^2 + 1, x^2 + 2x + 4),$$

and write this gcd as a linear combination of $x^4 + 2x^3 + x^2 + 1$ and $x^2 + 2x + 4$. (Think of these polynomials as elements of $\mathbb{R}[x]$.)

- 72. Let F be a field.
 - (a) Prove that $f \in F[x]$ is a unit if and only if f is a nonzero constant polynomial.
 - (b) Let *F* be a field. Prove F[x] is <u>not</u> a field.
- 73. (a) List <u>all</u> the elements of $\mathbb{F}_2[x]$ which have degree 3.
 - (b) Let *d* be a positive integer. How many polynomials are there in $\mathbb{F}_p[x]$ which have degree *d*?
 - (c) Let *d* be a positive integer. How many polynomials are there in $\mathbb{F}_p[x]$ which have degree at most *d*?
- 74. Let $f \in \mathbb{R}[x]$. Show that if $z \in \mathbb{C}$ is a root of f, so is \overline{z} . Use that fact to prove that the only irreducible polynomials over \mathbb{R} are linear polynomials and quadratic polynomials with negative discriminant.
- 75. Show that $f(x) = x^2$ and g(x) = x are the same function $\mathbb{F}_2 \to \mathbb{F}_2$. Are f and g the same polynomial in $\mathbb{F}_2[x]$?
- 76. Prove Theorem 4.21 from the notes, which says that if *F* is a field and $l \in F[x]$ is nonzero, then F[x]/lF[x] is a field if and only if *l* is irreducible.
- 77. (a) Give a list of the cosets which comprise the set $\mathbb{F}_3[x]/(x^2+1)\mathbb{F}_3[x]$. How many are there?
 - (b) Find an irreducible polynomial $l \in \mathbb{F}_2[x]$ of degree 4. List the cosets in the field $\mathbb{F}_2[x]/l\mathbb{F}_2[x]$. How many cosets are there?
 - (c) Let *p* be prime and suppose $l(x) \in \mathbb{F}_p[x]$ is an irreducible polynomial of degree *n*. How many cosets are there in $\mathbb{F}_p[x]/l\mathbb{F}_p[x]$?
 - (d) Find a field with 9 elements and list its elements.
- 78. (EC) Let *F* be a field. Prove that there are infinitely many irreducible polynomials in F[x].

4.2: Irreducibility tests

- 79. Prove or disprove each statement:
 - (a) $x^4 + 3x^2 + 2$ is irreducible over \mathbb{Q} .
 - (b) $6x^3 7x^2 + x 6$ is irreducible over \mathbb{Q} .
 - (c) $x^6 + 14x^3 35x + 70$ is irreducible over \mathbb{Q} .
 - (d) $x^6 + 14x^3 35x + 70$ is irreducible over \mathbb{R} .
 - (e) $x^2 + 1$ is irreducible over \mathbb{F}_5 .
- 80. Let $p(x) = x^4 7x^2 30$.
 - (a) Factor p(x) into irreducibles over \mathbb{C} .
 - (b) Factor p(x) into irreducibles over \mathbb{R} .
 - (c) Factor p(x) into irreducibles over \mathbb{Q} .
- 81. Prove that the polynomial $x^3 + x^2 2x 1$ (that we obtained at the end of Chapter 3 dealing with the regular 7–gon) is irreducible.

Hint: let y = x + 2 and use the substitution trick together with Eisenstein.

82. Find a monic, fourth-degree polynomial whose roots are $\pm \sqrt{2 \pm \sqrt{3}}$, and show this polynomial is irreducible over \mathbb{Q} .

5.1: Field extensions

- 83. Prove $\mathbb{Q}(1 + \sqrt{2}) = \mathbb{Q}(\sqrt{2})$.
- 84. Prove that $\sqrt{2}$ and $\sqrt{3}$ are each elements of $\mathbb{Q}(\sqrt{2} + \sqrt{3})$.
- 85. Prove that for any $k \in \mathbb{Z}$, $\cos \frac{2\pi k}{n} \in \mathbb{Q}(\cos \frac{2\pi}{n})$. *Hint:* A previous HW problem may be useful.

5.2: Algebraic extensions

- 86. Prove Lemma 5.7 from the notes, which says that for any number field F and any α which is algebraic over F,
 - (a) there is an irreducible polynomial $h \in F[x]$ such that $h(\alpha) = 0$; and
 - (b) any two irreducible polynomials in F[x] which have α as a root must have the same degree.
- 87. Let *f* be a minimal polynomial for α . Prove that for any polynomial $h \in \mathbb{Q}[x]$ with $h(\alpha) = 0, f \mid h$.
- 88. (a) Show that $1 + \sqrt{2} = \sqrt{3 + 2\sqrt{2}}$.

- (b) Find a minimal polynomial for α = 1 + √2 over Q. *Note:* When asked to find a minimal polynomial, you always have to justify that your answer is correct.
- 89. Find a minimal polyomial for $\sqrt{3} + \sqrt{5}$ over \mathbb{Q} .
- 90. Find a minimal polynomial for $\sqrt{3} + \sqrt{5}$ over $\mathbb{Q}(\sqrt{3})$.
- 91. Find a minimal polynomial for $\sqrt{3} + \sqrt{5}$ over $\mathbb{Q}(\sqrt{15})$.
- 92. (a) Write down the cyclotomic polynomial $\Phi_9(z)$.
 - (b) Show that $\Phi_9(z)$ is irreducible over \mathbb{Q} . *Hint:* Use the substitution y = z - 1 in your answer to part (a), together with Eisenstein.
 - (c) Determine, with proof, whether or not the regular 9-gon is constructible.

5.3: Linear algebra and field extensions

- 93. Prove Theorem 5.18 from the notes, which says that if *F* is a number field and $\alpha \in \mathbb{C}$ has degree *n* over *F*, then $\{1, \alpha, \alpha^2, ..., \alpha^{n-1}\}$ is a basis of $F(\alpha)$ over *F*.
- 94. Prove that 1 and $\sqrt{2}$ are linearly independent over \mathbb{Q} .
- 95. Prove that 1 and $\sqrt{3}$ are linearly independent over $\mathbb{Q}(\sqrt{2})$.
- 96. Use the Dedekind Product Theorem to find (with proof) the dimension of, and a basis for, $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} .
- 97. Prove $\mathbb{Q}(\sqrt{2}+\sqrt{3}) = \mathbb{Q}(\sqrt{2},\sqrt{3}).$
- 98. Find a minimal polynomial for $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} (prove that the polynomial is minimal), and explain how your answer to this question jives with your answer to Problem 96.
- 99. Let a > 0 be a rational number which is not a square (i.e. there is no $b \in \mathbb{Q}$ such that $b^2 = a$). Prove that $\sqrt[4]{a}$ has degree 4 over \mathbb{Q} .
- 100. Let $\alpha \in \mathbb{C}$ be a non-real root of the polynomial $x^3 3x + 4$. Find the inverse of $\alpha^2 + \alpha + 1 \in \mathbb{Q}(\alpha)$ explicitly, as a linear combination of the basis $\{1, \alpha, \alpha^2\}$ of $\mathbb{Q}(\alpha)$.

5.4: Classical construction problems, revisited

- 101. Let α be the real root of the polynomial x^3+3x+1 . Prove that α cannot be constructed with straightedge and compass.
- 102. (EC) Is it possible to construct a square whose area is equal to that of a given triangle (whose lengths are rational numbers)? Prove your assertion.
- 103. Prove that if gcd(p,q) = 1 and if the regular *p*-gon and regular *q*-gon are both constructible, then the regular *pq*-gon is constructible.

104. (EC) In the notes, we proved that $\deg(\zeta_n/\mathbb{Q}) = \phi(n)$. What is the degree of $\cos \frac{2\pi}{n}$ over \mathbb{Q} ? Prove your answer.

6.1: What is a homomorphism?

- 105. In each part of this question, you are given a function between algebraic structures. Determine, with proof, whether or not the given function is a homomorphism.
 - (a) $\sigma : (\mathbb{Z}[x], +) \to (\mathbb{R}, +)$ defined by $\sigma(f) = f(2)$
 - (b) $\sigma : (\mathbb{Q}[x], +) \to (\mathbb{Q}[x], +)$ defined by $\sigma(f)(x) = f(2x)$
 - (c) $\sigma : (\mathbb{Q}[x], \circ) \to (\mathbb{Q}[x], \circ)$ defined by $\sigma(f)(x) = f(2x)$

106. Same directions as the preceding question:

- (a) $\sigma : (\mathbb{Z}/3\mathbb{Z}, +) \to (\mathbb{Z}/12\mathbb{Z}, +)$ defined by $\sigma(x + 3\mathbb{Z}) = (x + 12\mathbb{Z})$
- (b) $\sigma : (\mathbb{Z}/3\mathbb{Z}, +) \to (\mathbb{Z}/12\mathbb{Z}, +)$ defined by $\sigma(x + 3\mathbb{Z}) = (4x + 12\mathbb{Z})$
- (c) $\sigma: (\mathbb{Z}/12\mathbb{Z}, +) \to (\mathbb{Z}/3\mathbb{Z}, +)$ defined by $\sigma(x + 12\mathbb{Z}) = (x + 3\mathbb{Z})$

6.2: Isomorphisms and invariants

- 107. Let *p* be an odd prime. Prove that the function $\sigma : \mathbb{F}_p \to \mathbb{F}_p$ defined by $\sigma(x) = x^2$ is a field isomorphism.
- 108. Prove that if rings R and R' are isomorphic, then R is an integral domain if and only if R' is an integral domain. (In other words, prove that being an integral domain is an invariant of ring isomorphism.)
- 109. Prove that if rings R and R' are isomorphic, then R is a field if and only if R' is a field.

Hint: Use part (4) of Lemma 6.8, which says that if $\sigma : R \to R'$ is a ring isomorphism, and $x \in R$ is a unit, then $\sigma(x)$ is a unit in R'.

110. Solve the system of congruences

$$\begin{cases} x \equiv 12 \mod 17 \\ x \equiv 11 \mod 19 \end{cases}$$

111. Consider the map $\phi : \mathbb{C} \to M_2(\mathbb{R})$ given by

$$\phi(x+iy) = \left(\begin{array}{cc} x & -y \\ y & x \end{array}\right).$$

Prove that ϕ is a ring isomorphism from $(\mathbb{C}, +, \cdot)$ to $(M_2(\mathbb{R}), +,$ matrix multiplication).

6.3: Ring homomorphisms

- 112. Let *R* be a ring. Determine, with proof, whether or not each given function is a ring homomorphism.
 - (a) $\sigma : R \to R \times R$ defined by $\sigma(x) = (x, 0)$
 - (b) $\sigma : R \to R \times R$ defined by $\sigma(x) = (x, x)$
 - (c) $\sigma : R \times R \to R$ defined by $\sigma(x, y) = x$
 - (d) $\sigma: R \times R \to R$ defined by $\sigma(x, y) = x + y$
 - (e) $\sigma : R \times R \to R$ defined by $\sigma(x, y) = xy$

Note: the product ring $R \times R$ has operations described in a previous HW problem.

- 113. Prove that if $\sigma : R \to R'$ is a ring homomorphism, then $\sigma(1) = 1$.
- 114. Let $\sigma : R \to R'$ be a ring homomorphism. Prove that if $x \in \ker(\sigma)$, then $xy \in \ker(\sigma)$ for any $y \in R$.
- 115. Let *R* be the set of continuous functions from [0, 1] to \mathbb{R} , with the addition and multiplication operations being the usual addition and multiplication of functions (this set forms a ring; you do not need to prove this). Let $S \subseteq R$ be the set consisting of all $f \in R$ such that $f(\frac{1}{2}) = 0$. Prove $R/S \cong (\mathbb{R}, +, \cdot)$.
- 116. (EC) Let *R* be a ring. An **ideal** is a nonempty subset *I* of *R* with the following two properties:

I is closed under addition: if $x, y \in I$, then $x + y \in I$;

I is closed under multiplication by any ring element: if $x \in I$ and $r \in R$, then $rx \in I$.

- (a) If $\sigma : R \to R'$ is any ring homomorphism, prove that ker(σ) is an ideal of *R*.
- (b) Describe all the ideals in \mathbb{Z} .
- (c) Describe all the ideals of \mathbb{R} .
- (d) Prove that any non-constant ring homomorphism σ whose domain is \mathbb{R} must be injective.

6.4: Automorphisms

117. (EC) Prove Theorem 6.19 from the lecture notes (the group properties of the set of automorphisms of a ring).

7.2: What is a group?

- 118. Are the following objects groups? If so, just write **Yes**. If not, write **No** and give a brief reason why (like "not associative" or "no identity", etc.).
 - (a) $(\mathbb{R}, *)$ where a * b = 2a + b

- (b) (X, +) where X is the set of rational numbers whose denominator in lowest terms is a nonnegative power of 5, and + is usual addition
- (c) (E, \star) where *E* is a set containing 0, and $a \star b = 0$ for any $a, b \in E$.
- (d) (G, +) where *G* is the set of continuous functions from [0, 1] to \mathbb{R} , and + is the usual addition on functions.
- (e) (\mathbb{Z}^3, \bullet) where $(a, b, c) \bullet (x, y, z) = (a + x, b + y, c + z + ay)$.
- 119. Let *T* be the collection of non-constant linear functions from \mathbb{R} to \mathbb{R} (examples of elements of *T* would be *f* and *g* where f(x) = 2x + 5 and g(x) = 7 x). Prove that *T* forms a group under composition.
- 120. Prove the uniqueness of inverses in a group (i.e. that if *h* and *k* are both inverses of *g*, then h = k).
- 121. (EC) Let *G* be an abelian group. Prove that $(ab)^n = a^n b^n$ for any $n \in \mathbb{Z}$.
- 122. Let *G* be a finite group where |G| is even. Prove that there is an element $g \in G$, other than the identity, such that $g = g^{-1}$.
- 123. In each part of this problem, you are given a group *G* and a subset $H \subseteq G$. Is *H* is a subgroup of *G*? If so, just write **Yes**. If not, write **No** and give a brief reason why (like "not closed under group operation " or "doesn't contain identity", etc.).
 - (a) $G = (\mathbb{R}, +); H = [0, \infty)$
 - (b) $G = (\mathbb{R}, +); H = \mathbb{Q}$
 - (c) $G = ((0, \infty), \cdot); H = \{1\}$
- 124. Same directions as the previous problem:
 - (a) $G = (\mathbb{Z}, +); H = 4\mathbb{Z}$
 - (b) G = GL(2, ℝ), the set of 2×2 matrices with real entries and nonzero determinant (the group operation is matrix multiplication); H is the set of diagonal matrices in GL(2, ℝ)
 - (c) $G = GL(2, \mathbb{R}); H = \{M \in G : M = M^T\}$
- 125. Let *G* be a group. Suppose $w, x, y, z \in G$ satisfy the equation $xyz^{-1}w = e$.
 - (a) Solve for *y* in terms of the other variables.
 - (b) Solve for *z* in terms of the other variables.
- 126. Let H and K be subgroups of group G.
 - (a) Is $H \cup K$ necessarily a subgroup of *G*? Prove your assertion.
 - (b) Is $H \cap K$ necessarily a subgroup of *G*? Prove your assertion.
- 127. Let *G* and *G'* be groups, and let $\sigma : G \to G'$ be a group homomorphism. Prove that if *H* is a subgroup of *G*, then $\sigma(H)$ is a subgroup of *G'*.

- 128. Let *G* and *G'* be groups, and let $\sigma : G \to G'$ be a group homomorphism. Prove that σ is injective if and only if ker(σ) = {*e*}.
- 129. (EC) Let *G* be a finite group, and let its elements be denoted $\{g_1, g_2, ..., g_n\}$. Let $x = g_1g_2 \cdots g_n$; prove $x^2 = e$.
- 130. (a) Let G be a group. Is the map $\sigma : G \to G$ defined by $\sigma(g) = g^{-1}$ a homomorphism? Prove your assertion.
 - (b) Let G be an abelian group. Is the map $\sigma : G \to G$ defined by $\sigma(g) = g^{-1}$ a homomorphism? Prove your assertion.
- 131. Suppose G is an abelian group and $\sigma : G \to G'$ is an isomorphism. Must G' be abelian? Prove your assertion.
- 132. Let *G* be a group, and let $g \in G$. The map $\varphi_g : G \to G$ defined by

$$\varphi_q(x) = gxg^{-1}$$

is called a **conjugacy** (or **conjugation** by g). Prove that conjugation by g is an automorphism of G.

7.3: Examples of groups

133. Let G_1 and G_2 be groups. Prove that $G_1 \times G_2$ is a group, where the group operation is defined coordinate-wise by

$$(g_1, g_2)(h_1, h_2) = (g_1h_1, g_2h_2).$$

- 134. Give an explicit isomorphism between $(\mathbb{Z}/12\mathbb{Z}, +)$ and $(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}, +)$ (and prove that your function is an isomorphism).
- 135. Prove that every group of order 2 is isomorphic to $(\mathbb{Z}/2\mathbb{Z}, +)$.

Hint: Let *G* be a group of order 2. One of its elements is the identity, and one isn't. Use this to explain what the composition table of *G* must look like, and then write down an isomorphism between *G* and $(\mathbb{Z}/2\mathbb{Z}, +)$.

- 136. Prove that every group of order 3 is isomorphic to $(\mathbb{Z}/3\mathbb{Z}, +)$.
- 137. Perform the following computations in the dihedral group D_6 , writing your final answer in the form fr^i for $i \in \{0, ..., 5\}$:
 - (a) f^7 (c) rf^2 (e) rfrf (g) $rfr^3(r^2f)^{-1}fr^2$ (b) r^{-8} (d) $(fr^4)^{-1}$ (f) frfr (h) $fr^3ffr^{-2}fr^4$
- 138. (EC) Let $\sigma : G \to G'$ be a group isomorphism. Prove that if G is cyclic, then G' is cyclic.
- 139. Write a list of elements in the group $(\mathbb{Z}/20\mathbb{Z})^{\times}$. Is this group cyclic? Explain.

140. Describe the group of symmetries of a cube.

Hint: To find the group of symmetries of a regular polygon and the group of symmetries of a regular tetrahedron, we looked at how the *vertices* of the object were permuted. For the cube, it may be easier to look at how the *faces* of the object are permuted, since there are less faces than vertices.

- 141. Let $F = \mathbb{Q}(\sqrt[4]{2}, i)$. Prove $Aut(F) \cong D_4$.
- 142. (EC) Describe the group of symmetries obtained by all the ways you can flip/rotate a twin mattress and put it back in a bed.
- 143. (EC) Let *G* be the additive group of the finite field \mathbb{F}_4 . Find, with proof, another group we have studied that is isomorphic to *G*.

7.4: Permutation groups

144. Perform the following computations in the symmetric group, writing your answer in cycle notation:

(a) $(1324)^{-1}$	(e) $(35)(432)(251)$
(b) $(542)^2$	(f) $(136)^{-1}(324)(25)$
(c) $(142)(13)(124)$	(g) $(17)(27)(32)(53)(15)(16)(67)$
(d) $(1524)(4135)e$	(h) $(12)(234)^2(14)$

145. Find the order of each permutation:

- (a) (162)
- (b) (137)(24, 68)
- (c) $(12)(34)^{-1}(79)$
- (d) (123, 4, 5)(678)
- 146. Determine all possible cycle structures for elements in S_5 . For each cycle structure, find the order of an element with that cycle structure, give the number of elements in S_5 with that cycle structure, and determine whether permutations with that cycle structure are even or odd.
- 147. Repeat the instructions of the previous problem for S_8 .
- 148. True or false: there exists a positive integer N such that $(1\,2)$ can be written as the product of some number of 3-cycles in S_N . Prove your answer.
- 149. True or false: there is a positive integer *N* such that in S_N , there are three transpositions τ_1 , τ_2 and τ_3 such that $\tau_1 \tau_2 \tau_3 = e$. Prove your answer.
- 150. (EC) What is the largest order of any element in S_{13} ? Explain.

7.5: Subgroups and cosets

- 151. Find all the left cosets, and all the right cosets of $H = \{e, (12)\}$ in the dihedral group \mathcal{A}_4 .
- 152. Let *G* be a group, and suppose $x \in G$ has order *rs*. What is the order of x^r ? Prove your assertion.
- 153. Let $G = S_5$ and let $H = \langle (123) \rangle$. Compute the left coset (12)(45)H and the right coset H(345).
- 154. Prove that the only groups of order 4 are (up to isomorphism) $(\mathbb{Z}/4\mathbb{Z}, +)$ and the Klein 4-group *V*.

Hint: Let *G* be a group of order 4. Analyze the possible orders of the elements of *G*.

- 155. Let *p* be a prime. Prove that every group of order *p* is isomorphic to $(\mathbb{Z}/p\mathbb{Z}, +)$.
- 156. (EC) Suppose abelian group *G* has an element *g* of order *m* and an element *h* of order *n*, where gcd(m, n) = 1. Prove *G* contains an element of order *mn*.
- 157. Classify all groups of order 6 up to isomorphism.
- 158. (EC) Classify all groups of order 8 up to isomorphism.
- (a) Find the remainder when 4¹⁴³³ is divided by 131.
 (b) Find the remainder when 3¹²⁰³ is divided by 42.
- 160. Prove that A_4 has no subgroup of order 6.
- 161. Let *G* be a group where every element other than *e* has order 2. Prove *G* is abelian.
- 162. (EC) Suppose *G* is a group with no subgroups other than {*e*} and *G* itself. Prove something about *G*.*Note:* I'm looking for something considerably stronger than "*G* is simple".
- 163. (EC) Prove that the only element in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ of order 2 is $(p-1) + p\mathbb{Z}$. Use this fact to prove **Wilson's Theorem**, which says that for any prime p, $(p-1)! \equiv (-1) \mod p$.
- 164. Suppose that group *G* contains elements of every order from 1 to 10. What is the smallest possible order of *G*?
- 165. List all the subgroups of the Klein 4-group *V*.
- 166. (EC) List all the subgroups of D_6 . Which of them are normal?
- 167. Let $G = GL(2, \mathbb{R})$, the set of invertible 2×2 matrices with real entries (this forms a group under matrix multiplication). Let $H \leq G$ be the subgroup $< \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} >$. Find another group we have studied which is isomorphic to H.

7.6: Normal subgroups and quotient groups

- 168. Verify that $A_3 \triangleleft S_3$ by checking that all products of the form ghg^{-1} (where $g \in S_3$ and $h \in A_3$) lie in A_3 .
- 169. Let $H \leq S_4$ be the set of permutations σ such that $\sigma(1) = 1$. Is H a normal subgroup of S_4 ?
- 170. Find, with proof, a normal subgroup of A_4 that has order 4.
- 171. Let *G* be a group. Define the **center** of *G*, denoted Z(G), to be the set of elements of *G* that commute with every element of *G*. In other words,

$$Z(G) = \{h \in G : gh = hg \text{ for every } g \in G\}.$$

Prove that $Z(G) \triangleleft G$.

- 172. Let *G* be a group and let $A = G \times G$. Let $H \leq A$ be the subgroup $\{(g, g) : g \in G\}$.
 - (a) Prove $G \cong H$.
 - (b) Prove $H \triangleleft G$ if and only if G is abelian.
- 173. Prove that any subgroup *H* of *G* with [G : H] = 2 must be normal.
- 174. Prove that $\langle r \rangle$ is a normal subgroup of D_n (here, r represents the smallest counterclockwise rotation in D_n).

8.2: Galois groups

- 175. Compute the following Galois groups (i.e. find a common group to which these are isomorphic, with justification):
 - (a) $Gal(\mathbb{Q}(\sqrt[4]{2},i)/\mathbb{Q}))$
 - (b) $Gal(\mathbb{Q}(\sqrt[4]{2},i)/\mathbb{Q}(\sqrt{2}))$
 - (c) $Gal(\mathbb{Q}(\sqrt[4]{2},i)/\mathbb{Q}(i))$
- 176. Compute $Gal(\mathbb{Q}(\zeta_3, \sqrt[3]{2})/\mathbb{Q}(\sqrt[3]{2}))$.
- 177. Compute the Galois group of the root field of $p(x) = x^4 16x^2 + 4$ over \mathbb{Q} (this example was studied near the end of Section 8.1 in the notes).
- 178. Let $p \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 5. Let $z \in \mathbb{C}$ be a root of p, and let $E = \mathbb{Q}(z)$.
 - (a) Prove that any $\sigma \in Gal(E/\mathbb{Q})$ is determined completely by the value of $\sigma(z)$.
 - (b) Prove that for any $\sigma \in Gal(E/\mathbb{Q})$, $\sigma(z)$ is a root of p.
 - (c) Based on your answers to (a) and (b), what is the maximum possible order of $Gal(E/\mathbb{Q})$?
- 179. Prove or disprove: for any n, the dihedral group D_n is solvable.

8.3: Quintic equations, revisited

180. Prove that the Galois group of any irreducible quadratic polynomial in $\mathbb{Q}[x]$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z}, +)$.

Remark: The "Galois group of a polynomial" in $\mathbb{Q}[x]$ is $Gal(E/\mathbb{Q})$, where *E* is the root field of the polynomial.

- 181. Let $x^3 + px + q$ be an irreducible cubic polynomial, where $p, q \in \mathbb{Q}$, which has three distinct roots $x_1, x_2, x_3 \in \mathbb{C}$. Let *E* be the root field of this polynomial.
 - (a) Show $\Delta = (x_1 x_2)^2 (x_1 x_3)^2 (x_2 x_3)^2$, where Δ is the discriminant defined in Chapter 1.
 - (b) Prove that if Δ is a perfect square in \mathbb{Q} (i.e. $\delta = \sqrt{\Delta} \in \mathbb{Q}$), then $Gal(E/\mathbb{Q}) \cong \mathcal{A}_3$.
 - (c) Prove that if Δ is not a perfect square in \mathbb{Q} , then $Gal(E/\mathbb{Q}) \cong S_3$.
- 182. (a) Find a irreducible cubic polynomial in $\mathbb{Q}[x]$ whose Galois group is isomorphic to \mathcal{A}_3 .
 - (b) Find a irreducible cubic polynomial in $\mathbb{Q}[x]$ whose Galois group is isomorphic to S_3 .