
Math 63-1,2 Midterm Exam Spring 2012

1. Give precise definitions of three of the following four terms.

(a) Cauchy sequence (in a metric space)
(b) compact
(c) limit superior
(d) open set (in a metric space)

2. Precisely state three of the following four theorems.

(a) Supremum Property
(b) Bolzano-Weierstrass Theorem
(c) Lindelöf’s Theorem
(d) Heine-Borel Theorem

3. Classify any five of the following six statements as true or false:

(a) If f : X → Y is some function and A ⊆ X, then f(AC) = [f(A)]C .
(b) The set of real numbers in [0, 1] whose decimal expansions contain only the digits

3 and 6 is a countable set.
(c) If S ⊆ R is nonempty and bounded above and if s = supS, then for every ε > 0,

s− ε ∈ S.
(d) If {an} is a properly divergent sequence of real numbers, then every subsequence

of {an} diverges.
(e) The union of any finite number of bounded subsets in a metric space is bounded.
(f) A subset of a metric space is closed if and only if it contains all its cluster points.

4. Prove four of these six statements; you must prove at least one of (a) and (b), at least
one of (c) and (d), and at least one of (e) and (f).

(a) The Cantor set C is in 1− 1 correspondence with R.
(b) R is uncountable.
(c) If {an} is a bounded sequence of real numbers, with the property that every

convergent subsequence of {an} converges to L, then an → L.
(d) If {an} and {bn} are two convergent sequences of real numbers, then {an + bn}

converges.
(e) Every complete subset of a metric space is closed.
(f) Every compact metric space is complete.

5. Prove each of the following three statements.

(a) If A and B are nonempty subsets of R, each bounded above, then A ∪ B is
bounded above and sup(A ∪B) = sup{supA, supB}.

(b) If {xn} is the sequence of real numbers defined recursively by setting x1 = 1 and
xn =

√
2 + xn−1 for all n ≥ 2, then {xn} converges.

(c) A sequentially compact metric space must be totally bounded.

6. Prove any one of the following three statements:

(a) R is in 1− 1 correspondence with R2.
(b) If {xn} is a bounded sequence of real numbers, then the set S of subsequential

limits of {xn} is a closed subset of (R, | · |).
(c) There exists a metric space which is complete and bounded, but not compact.
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1. (a) Let (X, d) be a metric space. A sequence {xn} of points in X is called a Cauchy
sequence if for every ε > 0 there exists N ∈ N such that whenever m,n ≥ N ,
d(xm, xn) < ε.

(b) Let X be a topological space. A set A ⊆ X is called compact if given any
collection {Uα : α ∈ I} of open sets with A ⊆

⋃
α∈I Uα, then there exists a finite

set {α1, ..., αn} ⊆ I such that A ⊆
⋃n
j=1 Uαj .

(c) Let {an} be a bounded sequence of real numbers. Define the limit superior of
the sequence to be the real number

lim an = sup{y : y < an for infinitely many n}.

(d) Let d be a metric on X. We say a set U ⊂ X is open (with respect to d) if for
every x ∈ U , there exists ε > 0 such that Bε(x) ⊆ U .

2. (a) Supremum Property: Let S ⊆ R be nonempty and bounded above. Then
supS exists.

(b) Bolzano-Weierstrass Theorem: Every bounded sequence of real numbers has
a convergent subsequence.

(c) Lindelöf ’s Theorem: A set U ⊆ R is open (with respect to the usual metric)
if and only if it is a countable union of disjoint open intervals.

(d) Heine-Borel Theorem: A subset of Rn (with the Euclidean metric) is compact
if and only if it is closed and bounded.

3. (a) FALSE; suppose f is a constant function and A = X. Then f(AC) = f(∅) = ∅
but [f(A)]C 6= ∅ unless Y has only one element.

(b) FALSE; this set is in 1 − 1 correspondence with the Cantor set (send the num-
ber with decimal expansion .x1x2x3... to the number with ternary expansion
.y1y2y3.... where yj = 0 if xj = 3 and yj = 2 if xj = 6; this gives a bijection).

(c) FALSE; set S = {0}, then supS = 0, but for every ε > 0, (−ε, 0) ∩ S = ∅.
(d) TRUE; if a subsequence converges, then that subsequence is bounded, but by

defintion of “properly divergent sequence”, no subsequence of {an} can be bounded
(for every M , there exists N ∈ N such that |an| > M for all n ≥ N).

(e) TRUE; every bounded subset is contained in an open ball, and it was shown in
the homework that a finite union of open balls is bounded.

(f) TRUE; this was a homework problem.

4. (a) Let C denote the Cantor set. Since C ⊆ [0, 1], the identity map gives an injection
from C into [0, 1]. Let G be the set of real numbers in [0, 1] which have a unique
binary representation. This set is infinite as it contains all irrational numbers,
and since [0, 1]−G is countable (HW problem), we see [0, 1] ∼ G, i.e. there is a
bijection f : [0, 1]→ G. Now, define h : G→ [0, 1] by setting h(x) to be the real
number in [0, 1] with ternary representation .(2x1)(2x2)(2x3)..., where x has bi-
nary representationn .x1x2x3..... Since the digits in the ternary representation of
h(x) are all 0 or 2, we see h(G) ⊆ C. Furthermore, h is 1−1: if h(x) = h(y) where
x 6= y, then the ternary representations .(2x1)(2x2)(2x3)... and .(2y1)(2y2)(2y3)...
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must represent the same number. But two different ternary representations can
only represent the same number if one of them contains a 1.

At this point, we have 1 − 1 maps C → [0, 1] (the identity) and [0, 1] → C (the
function h ◦ f), so by the Cantor-Bernstein Theorem, C ∼ [0, 1]. By homework
problem, [0, 1] ∼ R so we are done.

(b) Since [0, 1] ∼ R, it is sufficient to show [0, 1] is uncountable. Suppose not,
then enumerate the elements of [0, 1] as {z1, z2, z3, ...} and take any decimal
representation of each of the zj ; we have zj = .zj1zj2zj3... for all j. Now define,
for each j,

yj =

{
2 if zjj ≥ 5
7 if zjj < 5

and let y ∈ [0, 1] be the real number with decimal representation .y1y2y3..... Since
this decimal representation does not end with an infinite string of 0s or 9s, it is
the only decimal representation of y.

Notice, however, that yj 6= zjj for all j, and therefore y 6= zj for all j. Therefore
we did not in fact enumerate all the elements of [0, 1], so [0, 1] (and also R) is
uncountable.

(c) Suppose not, i.e. {an} does not converge to L. Then by a result from class,
there exists ε0 > 0 and a subsequence {ank

} such that d(ank
, L) ≥ ε0 for all k.

This subsequence is bounded (since {an} was), so by the Bolzano-Weierstrass
Theorem, there exists a subsequence of {ank

} (call it {ankl
}) which converges to

some L′. Since d(ankl
, L) ≥ ε0 for all k, d(L′, L) ≥ ε0, i.e. L 6= L′, contradicting

the hypothesis.

(d) Let L = lim an and M = lim bn. We claim (an+bn)→ L+M . To show this, first
fix ε > 0. Choose Na ∈ N such that if n ≥ Na, then d(an, L) = |an − L| < ε/2.
Choose Nb ∈ N such that if n ≥ Nb, then d(bn,M) = |bn − M | < ε/2. Let
N = max(Na, Nb). For n ≥ N , we have

d(an + bn, L+M) = |an + bn − L−M | ≤ |an − L|+ |bn −M | <
ε

2
+
ε

2
= ε

so (an + bn)→ L+M by definition of convergence.

(e) Let (X, d) denote the metric space and let A ⊆ X be complete. Let {xn} be a
sequence of points in A which converges to x ∈ X. Since {xn} converges, it is
Cauchy and since A is complete, {xn} converges to a point in A. By uniqueness
of limits, this means x ∈ A. Thus A is “sequentially closed”, which is equivalent
to A being closed by a homework problem.

(f) Let (X, d) denote the compact metric space. Let {xn} be a Cauchy sequence of
points in X; since (X, d) is compact, it is sequentially compact so there exists
a convergent subsequence {xnk

}. But if a Cauchy sequence has a convergent
subsequence then it must converge itself, so {xn} converges. Therefore (X, d) is
complete by definition (every Cauchy sequence converges).

5. (a) Suppose A is bounded above by r and B is bounded above by s. Then A ∪B is
bounded above by sup(r, s), for if x ∈ A ∪ B, then either x ∈ A (in which case
x ≤ r ≤ sup(r, s)) or x ∈ B (in which case x ≤ s ≤ sup(r, s)).
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The preceding paragraph shows that q = sup{supA, supB} is an upper bound for
A∪B. Suppose p is any upper bound for A∪B. Then p is also an upper bound for
A, so p ≥ supA. Also, p must be an upper bound for B, so p ≥ supB. Therefore
p is an upper bound for {supA, supB} so p ≥ q. By definition, q = sup(A ∪B).

(b) We first claim that {xn} is bounded above by 2. The proof is by induction.
Clearly x1 = 1 ≤ 2; now suppose xk ≤ 2. Then xk+1 =

√
2 + xk ≤

√
2 + 2 = 2.

By induction, we conclude xn ≤ 2 for all n.

Next, we claim that xn > 0 for all n. This is clear, by induction (x1 = 1 > 0,
and so long as xk is positive, so is xk+1). Therefore we now know xn ∈ (0, 2] for
all n.

We next claim {xn} is increasing (there are many different ways to prove this).
First, since xn > 0, xn(xn − 1) has the same sign as xn − 1. If xn − 1 ≥ 0, then
xn(xn−1) ≤ 2 ·1 = 2, and if xn−1 < 0, then xn(xn−1) < 0 < 2. In either case,
we have shown that xn(xn − 1) ≤ 2. Multiply out the left-hand side to obtain
x2n−xn ≤ 2, i.e. x2n ≤ 2 +xn; take square roots to obtain xn ≤

√
2 + xn = xn+1.

Therefore {xn} is increasing.

Finally, since {xn} is increasing and bounded above, we see that {xn} converges
by the Monotone Convergence Theorem.

(c) Let X be a sequentially compact metric space. If X = ∅, then X is trivially
totally bounded (it is covered by zero balls of any fixed radius). So henceforth
we assume X is nonempty.

Suppose X is not totally bounded. Then there exists ε > 0 such that X cannot
be covered by a finite number of balls of radius ε. Let x1 ∈ X. Since Bε(x1) 6= X,
there exists x2 ∈ X − Bε(x1). Now for each n ≥ 3, we can choose xn ∈ X −⋃n−1
j=1 Bε(xj) (since

⋃n−1
j=1 Bε(xj) cannot be all of X). Thus we obtain a sequence

{xn} satisfying d(xk, xl) ≥ ε for all k, l. This sequence cannot have a convergent
subsequence because no subsequence can be Cauchy (there is no m,n ∈ N such
that d(xm, xn) < ε

2). This contradicts the hypothesis that X is sequentially
compact. Hence X must be totally bounded.

6. (a) We claim 2N ∼ (2N × 2N). To prove this claim, first establish some notation: for
a real number r and a set A ⊆ N, set rA = {ra ∈ N : a ∈ A}. For example, 2N
is the set of even natural numbers. Next, for an integer q and a set A ⊆ N, set
A + q = {a + q ∈ N : a ∈ A}. For example, 2N − 1 is the set of odd natural
numbers.

Now, define a function g : (2N × 2N) → 2N by setting g(A,B) = 2A ∪ (2B − 1).
Also define h : 2N → (2N × 2N) by

h(C) =

(
1

2
(C ∩ 2N),

1

2
[(C + 1) ∩ 2N]

)
.
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We claim g and h are inverses. First, let C ∈ 2N. Then

g(h(C)) = g

(
1

2
(C ∩ 2N),

1

2
[(C + 1) ∩ 2N]

)
= 2

[
1

2
(C ∩ 2N)

]⋃
2

[
1

2
[(C + 1) ∩ 2N]

]
= (C ∩ 2N) ∪ [(C + 1) ∩ 2N]

= (C ∩ 2N) ∪ (C ∩ (2N− 1))

= C ∩ (2N ∪ (2N− 1)) = C ∩ N = C.

Now let A,B ∈ 2N. Then

h(g(A,B)) = h(2A ∪ (2B − 1))

=

(
1

2
([2A ∪ (2B − 1)] ∩ 2N),

1

2
[([2A ∪ (2B − 1)] + 1) ∩ 2N]

)
=

(
1

2
(2A ∩ 2N),

1

2
[2B ∩ 2N]

)
= (A ∩ N, B ∩ N) = (A,B).

Therefore g and h are inverses of one another; hence g is a bijection so 2N ∼
(2N×2N). But we know from the homework that R ∼ 2N, so (R×R) ∼ (2N×2N)
by taking a bijection on each coordinate. Therefore we conclude

R ∼ 2N ∼ (2N × 2N) ∼ (R× R) = R2.

(b) We will prove S is closed by showing SC is open. Let y ∈ SC ; thus no subsequence
of {xn} converges to y by definition.

Lemma: y ∈ SC ⇒ there exists ε > 0 such that Bε(y) ∩ {xn} = ∅.
Proof of Lemma: Suppose not, i.e. Bε(y) ∩ {xn} 6= ∅ for every ε > 0.

We will first show that for every ε > 0, there are infinitely many n such that
xn ∈ Bε(y). For if there are only finitely many n, say n1, ..., nr, such that
xnk
∈ Bε(y), choose δ = 1

2 min{d(xnk
, y) : k ∈ {1, ..., r}}; then Bδ(y) ∩ {xn}

is empty, contradicting the hypothesis. Thus for every ε > 0, Bε(y) ∩ {xn} is
infinite.

Next, define a subsequence {xnk
} recursively as follows: first, there exists xn1 ∈

B1(y). Then, for each k ≥ 1, set δk = 1
2d(xnk

, y); by the previous paragraph
there exists nk+1 > nk such that xnk+1

∈ Bδk(y). For every k ≥ 1, we have

d(xnk
, y) < δk <

1

2
d(xnk−1

, y)

so by repeating this argument we see

d(xnk
, y) <

1

2
d(xnk−1

, y) <
1

4
d(xnk−2

, y) < · · · < 1

2k−1
d(xn1 , y) =

1

2k−1
.

Therefore by the Squeeze Theorem, d(xnk
, y)→ 0 as k →∞, hence xnk

→ y and
y ∈ S, contradicting the hypothesis of the lemma.
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Having proven the lemma, let ε > 0 be such that the open set U = Bε(y) contains
no points of {xn}. Thus the closed set UC contains all points in the sequence,
thus contains all subsequences of {xn}, and since UC is closed it contains all
limits of subsequences of {xn} (i.e. S ⊆ UC). Thus U = Bε(y) ⊆ SC so SC is
open so S is closed.

(c) First example: Let d be the discrete metric on any infinite set X, i.e. set
d(x, y) = 1 if x 6= y and d(x, y) = 0 if x = y. This is a metric, and X is
bounded (as X ⊆ B2(x) for any x ∈ X). Since X is infinite, (X, d) is not com-
pact by a homework problem. Last, we show (X, d) is complete by verifying
that every Cauchy sequence converges. Suppose {xn} ⊆ X is Cauchy. Then, for
ε = 1

2 , there exists N ∈ N such that for all m,n ≥ N , d(xm, xn) < 1
2 . But since d

is discrete, this means that for all n ≥ N , xn = xN , i.e. the sequence is constant
beyond the N th term. Therefore xn → xN .

Second example: First, let d denote the usual metric on R. Now, let d∗ be
the nearsighted metric d∗ defined by d∗(x, y) = min(1, d(x, y)) for x, y ∈ R).
Observe that d and d∗ are equivalent metrics, because any open d∗−ball of radius
r contains the open d−ball of radius r (centered at the same point), and any open
d−ball of radius r contains the open d∗−ball of radius min(r, 12) (centered at the
same point). That d∗ is a metric was prove in the homework; the metric space
(R, d∗) will be an example which proves the result.

First, we show (R, d∗) is not compact. We know (R, d) is not compact, hence
there exists an cover {Uα} of R by d−open sets which has no finite subcover. But
since d∗ and d are equivalent metrics, we know that d∗−open sets are exactly
the same as d−open sets, so {Uα} is also a cover of R by d∗−open sets lacking a
finite subcover.

Second, (R, d∗) is bounded: since d∗(x, y) ≤ 1 for all x, y ∈ R, we see R ⊆ B2(0),
the d∗−open ball of radius 2 centered at 0.

Last, we show (R, d∗) is complete. Suppose {xn} is a d∗−Cauchy sequence.
We claim {xn} is also d−Cauchy. For given ε > 0, choose N ∈ N such that
whenever m,n ≥ N , then d∗(xm, xn) < min(12 , ε). Then for m,n ≥ N , we have
d(xm, xn) = d∗(xm, xn) < ε as desired. Now since (R, d) is complete, there exists
x ∈ R such that xn → x with respect to d, i.e. for all ε > 0 there exists N ∈ N
such that n ≥ N ⇒ d(xn, x) < ε. But we see that for all n greater than or equal
to the same N , d∗(xn, x) ≤ d(xn, x) < ε, so xn → x with respect to d∗ as well.
Thus (R, d∗) is complete, as desired.


