
Math 063-1,2 Final Exam Spring 2012

1. Precisely define four of the following five terms:

(a) Riemann integrable / Riemann integral

(b) countable set

(c) uniformly continuous

(d) Cauchy sequence

(e) Taylor series

2. Precisely state any four of the following five theorems:

(a) Monotone Convergence Theorem

(b) Weierstrass Approximation Theorem

(c) Intermediate Value Theorem

(d) Mean Value Theorem

(e) Weierstrass M−Test

3. Classify any five of the following six statements as true or false:

(a) Every infinite set contains a countably infinite subset.

(b) If f : X → Y is uniformly continuous, then for any subset Z ⊆ X, f is uniformly
continuous on Z.

(c) If f : X → Y is continuous, then for any Cauchy sequence {xn} ⊆ X, {f(xn)} is a Cauchy
sequence in Y .

(d) Let f ∈ R([a, b]). If P is a partition of [a, b] such that U(f ;P)−
∫ b
a
f < ε, then for every

partition Q of [a, b] with ||Q|| < ||P||, U(f ;Q)−
∫ b
a
f < ε.

(e) There is a differentiable function f : [0, 1]→ R such that f ′ is equal to the Cantor function
(a.k.a. devil’s staircase) on (0, 1).

(f) If {fn} is a sequence of continuous functions from R to R such that
∑
fn converges to f ,

then f is continuous.

(g) If a power series
∑
anx

n diverges when x = 3, then that power series diverges for all
x > 3.

4. Each of the following five statements is false. Your task is to provide, for any three of the five
statements, a specific counterexample which demonstrates that statement to be false.

(a) Let (X, d) be a metric space. If B1 and B2 are open balls in this metric space with
B1 ⊆ B2, then the radius of B1 is less than or equal to the radius of B2.

(b) If f : [a, b]→ R is such that f2 ∈ R([a, b]), then f ∈ R([a, b]).

(c) If {fn} is a sequence of bounded functions [0, 1]→ R with fn → f , then f is also bounded.

(d) If f : R → R is a function, then there exists an open interval I ⊆ R such that f |I is
bounded.

(e) If {an} is a sequence of real numbers such that limn→∞(an+1 − an) = 0, then {an}
converges.

5. Prove any three of the following six statements:

(a) The Preservation of Compactness, which says that if X and Y are topological spaces
and f : X → Y is continuous, then for every compact subset K ⊆ X, f(K) is compact
in Y .
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(b) The Product Rule, which says that if f, g : R→ R are two differentiable functions, then
fg is differentiable and (fg)′ = f ′ · g + g′ · f .

(c) If U ⊆ R is an open interval and f : U → R is differentiable on U with f ′(x) > 0 for all
x ∈ U , then f is strictly increasing on U .

(d) If f ∈ R([a, b]), then for any partition P of [a, b], L(f ;P) ≤
∫ b
a
f .

(e) Let a < b and suppose f, g : [a, b] → R are continuous functions such that
∫ b
a
f =

∫ b
a
g.

Prove that there exists c ∈ (a, b) such that f(c) = g(c).

(f) The Comparison Test for Series, which says that if 0 ≤ an ≤ bn for all n, then if
∑
bn

converges, so does
∑
an.

6. Prove any two of the following four statements:

(a) For all real numbers x and y, | cosx− cos y| ≤ |x− y|.
(b) If f : R→ R is differentiable at x0, then for all nonzero α, β ∈ R,

lim
h→0

f(x0 + αh)− f(x0 + βh)

h

exists.

(c) Let f, g : R→ R; let a < b and let z ∈ [a, b]. Suppose f ∈ R([a, b]) and that g(x) = f(x)

for all x ∈ [a, b]− {z}. Prove g ∈ R([a, b]) and
∫ b
a
g =

∫ b
a
f .

(d) If f : [0, 1] → R is continuous and
∫ x
0
f(t) dt =

∫ 1

x
f(t) dt for all x ∈ [0, 1], then f(x) = 0

for all x ∈ [0, 1].

7. Let f : R→ R be defined by

f(x) =

{
x2 sin

(
1
x2

)
if x 6= 0

0 if x = 0

(a) Prove f is continuous.

(b) Prove f is differentiable at 0, and calculate f ′(0).

Remark: By the Product Rule, for all x 6= 0 the derivative of f exists and is

f ′(x) = 2x sin

(
1

x2

)
− 2

x
cos

(
1

x2

)
.

(c) True or false (with proof):
∫ 1

0
f ′(x) dx = f(1)− f(0).

8. Solve any one of the following four problems (for bonus points, solve more than one):

(a) Prove that if {xn}, {yn} ⊆ X are two Cauchy sequences in metric space (X, d), then
{d(xn, yn)} converges in R.

(b) Prove that if f : R→ R is a twice-differentiable function with f ′′(x) = f(x) and |f(0)| =
|f ′(0)|, then |f(x)| = |f ′(x)| for all x ∈ R.

(c) Let α > 0 be a constant. Compute, with justification, the following limit:

lim
n→∞

1α + 2α + 3α + ...+ nα

nα+1
.

(d) Prove that if
∑∞
n=1 an is an absolutely convergent series, then∣∣∣∣∣

∞∑
n=1

an

∣∣∣∣∣ ≤
∞∑
n=1

|an|.
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1. (a) Let a < b and let f : [a, b] → R be a function. We say f is Riemann integrable on [a, b]

if there exists a number
∫ b
a
f , called the Riemann integral of f from a to b, such that for

every ε > 0, there is a δ > 0 such that if P is any tagged partition with ||P|| < δ, then∣∣∣RS(f ;P)−
∫ b
a
f
∣∣∣ < ε.

(b) A set is countable if there exists a bijection between that set and some subset of N.

(c) Let X and Y be metric spaces. A function f : X → Y is uniformly continuous if for
every ε > 0, there is δ > 0 such that d(x, y) < δ ⇒ d(f(x), f(y)) < ε.

(d) Let X be a metric space. A sequence {xn} ⊆ X is called Cauchy if for every ε > 0, there
is N ∈ N such that m,n ≥ N ⇒ d(xm, xn) < ε.

(e) Let U ⊆ R be open and let f : U → R be an infinitely differentiable at a ∈ U . The Taylor
series of f centered at a is the power series

∞∑
j=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + ...

2. (a) If {an} is a sequence of real numbers which is monotone and bounded, then {an} con-
verges.

(b) Given any continuous function f : R → R and any ε > 0, there is a polynomial p ∈ R[x]
such that ||f, p|| < ε.

(c) Let f : [a, b] → R be continuous. Then for any γ between f(a) and f(b), there is a
c ∈ (a, b) such that f(c) = γ.

(d) Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). Then there is

c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

(e) Let {fn} ⊆ RX be a sequence of real-valued functions and let {Mn} be a sequence of
positive numbers such that for all n, |fn(x)| ≤ Mn for all x ∈ X and

∑
Mn converges.

Then
∑
fn converges uniformly on X.

3. (a) TRUE; this was Problem 8 of Homework 1.

(b) TRUE; follows from definition of uniform continuity.

(c) FALSE; let f : (0,∞) → (0,∞) be the continuous function f(x) = 1
x ; let xn = 1

n . {xn}
is Cauchy but {f(xn)} is not.

(d) FALSE; let f : [0, 1] → R be equal to 1 when x ≤ 1
2 and equal to 0 when x > 1

2 . Let

P = {0, 12 , 1}, then ||P|| = 1
2 and U(f ;P) = 1

2 =
∫ 1

0
f . But for any partition of [0, 1] not

containing 1
2 , the upper sum relative to that partition is strictly greater than 1

2 , hence
the difference between this upper sum and the value of the integral cannot be less than ε
if ε is sufficiently small.

(e) TRUE; the Cantor function is continuous (Homework 14) and every continuous function
has an antiderivative by the Fundamental Theorem of Calculus.

(f) FALSE; let fn : R → R be defined by setting fn(x) = x2

(1+x2)n . For each x,
∑
fn(x) is a

geometric series so by summing that series one can see
∑
fn = f where f(x) = 0 if x = 0

and f(x) = 1 + x2 if x 6= 0. f is not continuous at 0.

(g) TRUE; notice that this power series is centered at 0. Since it diverges at x = 3, its radius
of convergence can be at most 3, so it must diverge whenever |x − 0| > 3, including all
x > 3.
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4. (a) Let X = [0, 1] with the usual metric. Let B1 = B1/2(1) = (1
2 , 1] and let B2 = B3/8(3/4) =

( 3
8 , 1]. Observe B1 ⊆ B2 despite having a larger radius.

(b) Let f : [0, 1]→ R be defined by setting f(x) = 1 if x ∈ Q and f(x) = −1 if x is irrational.
f is not Riemann integrable since it is nowhere continuous (Lebesgue criterion), but f2

is the constant function 1 which is Riemann integrable.

(c) Define the sequence {fn} by

fn(x) =


1
x if x > 1

n
n if 0 < x ≤ 1

n
0 if x = 0

Each {fn} is bounded by n, but fn → f where f [0, 1]→ R is the unbounded function

f(x) =

{
1
x if x > 0
0 if x = 0

.

(d) Define f : R→ R by

f(x) =

{
n if x = m

n ∈ Q where gcd(m,n) = 1
0 if x /∈ Q .

Every open interval contains rational numbers of arbitrarily large denominator (reason
is similar to the logic in Problem 7 of Homework 11), so f is not bounded on any open
interval.

(e) Let an be the nth partial sum of the harmonic series
∑∞
n=1

1
n . {an} diverges but an+1 −

an = 1
n which converges to zero.

5. (a) Let {Uα} be an open cover of f(K). Then {f−1(Uα)} is an open cover of f−1(f(K)) ⊇ K.
By compactness of K, there is a finite subcover {f−1(Uj)}nj=1 of {f−1(Uα)} which covers

K, i.e. K ⊆
⋃n
j=1 f

−1(Uj). Then f(K) ⊆ f
(⋃n

j=1 f
−1(Uj)

)
=
⋃n
j=1(f ◦ f−1)(Uj) =⋃n

j=1 Uj . Thus we have found a finite subcover of {Uα} which covers f(K), so f(K) is
compact as desired.

(b) This follows from a direct calculation of the derivative by the definition. Let x0 ∈ R:

(fg)′(x0) = lim
x→x0

(fg)(x)− (fg)(x0)

x− x0

= lim
x→x0

f(x)g(x)− f(x0)g(x0)

x− x0

= lim
x→x0

f(x)g(x)− f(x0)g(x) + f(x0)g(x)− f(x0)g(x0)

x− x0

= lim
x→x0

g(x)
f(x)− f(x0)

x− x0
+ lim
x→x0

f(x0)
g(x)− g(x0)

x− x0
= g(x0)f ′(x0) + f(x0)g′(x0).

The last line follows from the assumption that f and g are differentiable at x0.

(c) Suppose not, i.e. there is a, b ∈ U with a < b where f(a) ≥ f(b). Then by the Mean
Value Theorem, there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
≤ 0

since the numerator is nonpositive and the denominator is negative. This contradicts the
hypothesis.
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(d) Suppose not, i.e. ∃ partition P of [a, b] with L(f ;P) >
∫ b
a
f . Let ε = 1

2

(
L(f ;P)−

∫ b
a
f
)
>

0 and choose δ such that if Q is any tagged partition of [a, b] with ||Q|| < δ, then

|RS(f ;Q) −
∫ b
a
f | < ε, i.e. RS(f ;Q) <

∫ b
a

+ε < L(f ;P). Now let Q be a common
refinement of P and any other partition of [a, b] with norm less than δ. We see ||Q|| < δ
but since Q ≥ P, we have

L(f ;P) ≤ L(f ;Q) ≤ RS(f ;Q) <

∫ b

a

f + ε < L(f ;P).

This a contradiction (nothing is less than itself).

(e) Let H(x) =
∫ x
a

(f−g). Since f and g are continuous, f−g is continuous and H is therefore
differentiable by the Fundamental Theorem of Calculus. Observe H(a) = H(b) = 0 so by
Rolle’s Theorem, there is c ∈ (a, b) with H ′(c) = (f − g)(c) = 0. Thus f(c) = g(c).

(f) For each n, let sn be the nth partial sum of
∑
an and let tn be the nth partial sum of bn.

We see (since 0 ≤ an and 0 ≤ bn for all n) that {sn} and {tn} are increasing sequences
of nonnegative real numbers, and from the hypothesis we have sn ≤ tn for all n. We
are given that

∑
bn = lim tn exists; since {tn} is increasing we have lim tn = sup{tn}

so sn ≤ tn ≤
∑
bn for all n. Thus {sn} is an increasing sequence, bounded above, so

this sequence converges by the Monotone Convergence Theorem. By definition,
∑
an

converges.

6. (a) If x = y, both sides of the inequality are zero. Now assume x 6= y; WLOG y < x
(otherwise reverse x and y). By the Mean Value Theorem we have c ∈ (y, x) such that

cosx− cos y

x− y
= − sin c;

taking absolute values of both sides of this equality we have

| cosx− cos y|
|x− y|

= | − sin c| ≤ 1;

the result follows by multiplying through this inequality by |x− y|.
(b) Assume f is differentiable at x0. Then, from result proved in class,

lim
h→0

f(x0 + h)− f(x0)

h
= f ′(x0).

Now

lim
h→0

f(x0 + αh)− f(x0 + βh)

h
= lim
h→0

f(x0 + αh)− f(x0) + f(x0)− f(x0 + βh)

h

= lim
h→0

f(x0 + αh)− f(x0)

h
+ lim
h→0

f(x0)− f(x0 + βh)

h

= lim
s→0

f(x0 + s)− f(x0)
s
α

+ lim
t→0

f(x0)− f(x0 + t)
t
β

(by setting s = αh in the first limit and setting

t = βh in the second limit)

= αf ′(x0)− βf ′(x0)

= (α− β)f ′(x0).
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(c) (Assume WLOG that f(z) 6= g(z).) Let ε > 0. Now choose (since f is Riemann in-
tegrable on [a, b]) η > 0 such that if P is any partition of [a, b] with ||P|| < η, then∣∣∣RS(f ;P)−

∫ b
a
f
∣∣∣ < ε

2 . Let δ = min(η, ε
4|g(z)−f(z)| ) and let P = {x0, ..., xn} be any

partition of [a, b] with ||P|| < δ. We have∣∣∣∣∣RS(g;P )−
∫ b

a

f

∣∣∣∣∣ ≤ |RS(g;P )−RS(f ;P )|+

∣∣∣∣∣RS(f ;P )−
∫ b

a

f

∣∣∣∣∣
<

∣∣∣∣∣∣
n∑
j=1

[g(cj)− f(cj)] ∆xj

∣∣∣∣∣∣+
ε

2

≤
n∑
j=1

|g(cj)− f(cj)|∆xj +
ε

2

=
∑

{j:z∈[xj−1,xj ]}

|g(cj)− f(cj)|∆xj +
ε

2

(since f(x) = g(x) on all subintervals not containing z)

≤ 2δ |g(z)− f(z)|+ ε

2
(since there can be at most two subintervals containing z)

<
ε

2
+
ε

2
= ε

so g ∈ R([a, b]) and
∫ b
a
g =

∫ b
a
f by definition.

(d) By additivity, we see that for all x ∈ [0, 1],∫ 1

0

f(t) dt =

∫ x

0

f(t) dt+

∫ 1

x

f(t) dt = 2

∫ x

0

f(t) dt.

Treating the far-left and far-right sides of this equation as functions of x and differentiating
both sides, we obtain 0 = 2f(x), i.e. f(x) = 0 for all x.

7. (a) By direct calculation, we see that for x 6= 0,

f(x)− f(0)

x− 0
= x sin

(
1

x2

)
.

Now observe that −|x| ≤ x sin
(

1
x2

)
≤ |x| for all x, so by the Squeeze Theorem,

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim
x→0

x sin

(
1

x2

)
= 0.

(b) Consider the sequence {xn} ⊆ [0, 1] defined by xn = 1
(2n+1)π . We have, for each n,

f ′(xn) =
2

(2n+ 1)π
sin[(2n+ 1)π)]− 2(2n+ 1)π cos[(2n+ 1)π] = 0 + 2(2n+ 1) = 4n+ 2

so {f ′(xn)} is an unbounded sequence since it properly diverges to ∞. Thus f ′ is un-

bounded on [0, 1], hence not integrable on [0, 1], so
∫ 1

0
f ′(x) dx does not exist. Thus the

statement is false.
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8. (a) Let ε > 0; choose N1 ∈ N so that n ≥ N2 ⇒ d(xm, xn) < ε
2 and choose N2 ∈ N so that

n ≥ N2 ⇒ d(ym, yn) < ε
2 . Set N = max(N1, N2) and suppose m,n ≥ N . Then

d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn) <
ε

2
+ d(xm, ym) +

ε

2

and
d(xm, ym) ≤ d(xm, xn) + d(xn, yn) + d(yn, ym) <

ε

2
+ d(xn, yn) +

ε

2
;

the second inequality implies

d(xn, yn) ≥ d(xm, ym)− ε.

Putting the first and last inequalities together, we see |d(xm, ym) − d(xn, yn)| < ε, so
{d(xn, yn)} is a Cauchy sequence in R. Since R is complete, {d(xn, yn)} converges.

(b) Let h : R → R be defined by h(x) = [f(x)]2 − [f ′(x)]2. Since f is twice-differentiable, h
is differentiable with h′(x) = 2f(x)f ′(x) − 2f ′(x)f ′′(x) = 2f(x)f ′(x) − 2f ′(x)f(x) = 0
(applying the hypothesis) and therefore h is constant, in particular h(x) = h(0) for all
x. This means [f(x)]2 − [f ′(x)]2 = [f(0)]2 − [f ′(0)]2 = 0 for all x (using the hypothesis
|f(0)| = |f ′(0)|. Thus [f(x)]2 = [f ′(x)]2 for all x; taking square roots of both sides yields
the result.

(c) Let f : [0, 1]→ R be defined by f(x) = xα; f is continuous on [0, 1] (hence f ∈ R([0, 1]))

and has antiderivative F (x) = xα+1

α+1 so by the Fundamental Theorem of Calculus,∫ 1

0

f = F (1)− F (0) =
1

α+ 1
.

Let Pn = {0, 1
n ,

2
n , ..., 1} be the partition of [0, 1] into n equal length subintervals. We

see that ||Pn|| = 1
n → 0 as n→∞, so by result from class U(f ;Pn)→

∫ 1

0
f = 1

α+1 . But
since f is increasing, for each j we have

sup

{
f(x) : x ∈

[
j − 1

n
,
j

n

]}
= f

(
j

n

)
=

(
j

n

)α
so

U(f ;Pn) =

n∑
j=1

(
j

n

)α
1

n
=

n∑
j=1

jn

nα+1
=

1α + 2α + 3α + ...+ nα

nα+1
.

Therefore

lim
n→∞

1α + 2α + 3α + ...+ nα

nα+1
= lim
n→∞

U(f ;Pn) =

∫ 1

0

f =
1

α+ 1
.

(d) Note that for each n, −|an| ≤ an ≤ |an|. Therefore if we set rn to the the nth partial
sum of the series

∑
−|an|, set sn to be the nth partial sum of the series

∑
an, and set

tn to be the nth partial sum of the series
∑
|an|, we observe that rn ≤ 0 ≤ tn for all n,

{rn} is a decreasing sequence converging to −
∑
|an| = inf{rn} and {tn} is an increasing

sequence converging to
∑
|an| = sup{tn}.

As −
∑
|an| ≤ rn ≤ sn ≤ tn ≤

∑
|an| for all n, we see (by taking limits on the first, third

and fifth terms of this inequality as n → ∞) that −
∑
|an| ≤ lim sn =

∑
an ≤

∑
|an|.

The result follows by definition of absolute value.


