- 1. Precisely define four of the following five terms:
 - (a) Riemann integrable / Riemann integral
 - (b) countable set
 - (c) uniformly continuous
 - (d) Cauchy sequence
 - (e) Taylor series
- 2. Precisely state any four of the following five theorems:
 - (a) Monotone Convergence Theorem
 - (b) Weierstrass Approximation Theorem
 - (c) Intermediate Value Theorem
 - (d) Mean Value Theorem
 - (e) Weierstrass M-Test
- 3. Classify any five of the following six statements as true or false:
 - (a) Every infinite set contains a countably infinite subset.
 - (b) If $f : X \to Y$ is uniformly continuous, then for any subset $Z \subseteq X$, f is uniformly continuous on Z.
 - (c) If $f: X \to Y$ is continuous, then for any Cauchy sequence $\{x_n\} \subseteq X, \{f(x_n)\}$ is a Cauchy sequence in Y.
 - (d) Let $f \in R([a, b])$. If \mathcal{P} is a partition of [a, b] such that $U(f; \mathcal{P}) \int_a^b f < \epsilon$, then for every partition \mathcal{Q} of [a, b] with $||\mathcal{Q}|| < ||\mathcal{P}||, U(f; \mathcal{Q}) \int_a^b f < \epsilon$.
 - (e) There is a differentiable function $f: [0,1] \to \mathbb{R}$ such that f' is equal to the Cantor function (a.k.a. devil's staircase) on (0,1).
 - (f) If $\{f_n\}$ is a sequence of continuous functions from \mathbb{R} to \mathbb{R} such that $\sum f_n$ converges to f, then f is continuous.
 - (g) If a power series $\sum a_n x^n$ diverges when x = 3, then that power series diverges for all x > 3.
- 4. Each of the following five statements is **false**. Your task is to provide, for any three of the five statements, a **specific** counterexample which demonstrates that statement to be false.
 - (a) Let (X, d) be a metric space. If B_1 and B_2 are open balls in this metric space with $B_1 \subseteq B_2$, then the radius of B_1 is less than or equal to the radius of B_2 .
 - (b) If $f : [a, b] \to R$ is such that $f^2 \in R([a, b])$, then $f \in R([a, b])$.
 - (c) If $\{f_n\}$ is a sequence of bounded functions $[0,1] \to \mathbb{R}$ with $f_n \to f$, then f is also bounded.
 - (d) If $f : \mathbb{R} \to \mathbb{R}$ is a function, then there exists an open interval $I \subseteq \mathbb{R}$ such that $f|_I$ is bounded.
 - (e) If $\{a_n\}$ is a sequence of real numbers such that $\lim_{n\to\infty}(a_{n+1}-a_n)=0$, then $\{a_n\}$ converges.
- 5. Prove any three of the following six statements:
 - (a) The **Preservation of Compactness**, which says that if X and Y are topological spaces and $f: X \to Y$ is continuous, then for every compact subset $K \subseteq X$, f(K) is compact in Y.

- (b) The **Product Rule**, which says that if $f, g : \mathbb{R} \to \mathbb{R}$ are two differentiable functions, then fg is differentiable and $(fg)' = f' \cdot g + g' \cdot f$.
- (c) If $U \subseteq \mathbb{R}$ is an open interval and $f: U \to \mathbb{R}$ is differentiable on U with f'(x) > 0 for all $x \in U$, then f is strictly increasing on U.
- (d) If $f \in R([a, b])$, then for any partition \mathcal{P} of [a, b], $L(f; \mathcal{P}) \leq \int_a^b f$.
- (e) Let a < b and suppose $f, g : [a, b] \to \mathbb{R}$ are continuous functions such that $\int_a^b f = \int_a^b g$. Prove that there exists $c \in (a, b)$ such that f(c) = g(c).
- (f) The **Comparison Test for Series**, which says that if $0 \le a_n \le b_n$ for all n, then if $\sum b_n$ converges, so does $\sum a_n$.
- 6. Prove any two of the following four statements:
 - (a) For all real numbers x and y, $|\cos x \cos y| \le |x y|$.
 - (b) If $f : \mathbb{R} \to \mathbb{R}$ is differentiable at x_0 , then for all nonzero $\alpha, \beta \in \mathbb{R}$,

$$\lim_{h \to 0} \frac{f(x_0 + \alpha h) - f(x_0 + \beta h)}{h}$$

exists.

- (c) Let $f, g: \mathbb{R} \to \mathbb{R}$; let a < b and let $z \in [a, b]$. Suppose $f \in R([a, b])$ and that g(x) = f(x) for all $x \in [a, b] \{z\}$. Prove $g \in R([a, b])$ and $\int_a^b g = \int_a^b f$.
- (d) If $f:[0,1] \to \mathbb{R}$ is continuous and $\int_0^x f(t) dt = \int_x^1 f(t) dt$ for all $x \in [0,1]$, then f(x) = 0 for all $x \in [0,1]$.
- 7. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x^2}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

- (a) Prove f is continuous.
- (b) Prove f is differentiable at 0, and calculate f'(0).
 Remark: By the Product Rule, for all x ≠ 0 the derivative of f exists and is

$$f'(x) = 2x \sin\left(\frac{1}{x^2}\right) - \frac{2}{x} \cos\left(\frac{1}{x^2}\right).$$

- (c) True or false (with proof): $\int_0^1 f'(x) dx = f(1) f(0).$
- 8. Solve any one of the following four problems (for bonus points, solve more than one):
 - (a) Prove that if $\{x_n\}, \{y_n\} \subseteq X$ are two Cauchy sequences in metric space (X, d), then $\{d(x_n, y_n)\}$ converges in \mathbb{R} .
 - (b) Prove that if $f : \mathbb{R} \to \mathbb{R}$ is a twice-differentiable function with f''(x) = f(x) and |f(0)| = |f'(0)|, then |f(x)| = |f'(x)| for all $x \in \mathbb{R}$.
 - (c) Let $\alpha > 0$ be a constant. Compute, with justification, the following limit:

$$\lim_{n \to \infty} \frac{1^{\alpha} + 2^{\alpha} + 3^{\alpha} + \dots + n^{\alpha}}{n^{\alpha+1}}.$$

(d) Prove that if $\sum_{n=1}^{\infty} a_n$ is an absolutely convergent series, then

$$\left|\sum_{n=1}^{\infty} a_n\right| \le \sum_{n=1}^{\infty} |a_n|.$$

- 1. (a) Let a < b and let $f : [a, b] \to \mathbb{R}$ be a function. We say f is Riemann integrable on [a, b] if there exists a number $\int_a^b f$, called the Riemann integral of f from a to b, such that for every $\epsilon > 0$, there is a $\delta > 0$ such that if \mathcal{P} is any tagged partition with $||\mathcal{P}|| < \delta$, then $|RS(f; \mathcal{P}) \int_a^b f| < \epsilon$.
 - (b) A set is *countable* if there exists a bijection between that set and some subset of \mathbb{N} .
 - (c) Let X and Y be metric spaces. A function $f: X \to Y$ is uniformly continuous if for every $\epsilon > 0$, there is $\delta > 0$ such that $d(x, y) < \delta \Rightarrow d(f(x), f(y)) < \epsilon$.
 - (d) Let X be a metric space. A sequence $\{x_n\} \subseteq X$ is called *Cauchy* if for every $\epsilon > 0$, there is $N \in \mathbb{N}$ such that $m, n \ge N \Rightarrow d(x_m, x_n) < \epsilon$.
 - (e) Let $U \subseteq \mathbb{R}$ be open and let $f: U \to \mathbb{R}$ be an infinitely differentiable at $a \in U$. The Taylor series of f centered at a is the power series

$$\sum_{j=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \dots$$

- 2. (a) If $\{a_n\}$ is a sequence of real numbers which is monotone and bounded, then $\{a_n\}$ converges.
 - (b) Given any continuous function $f : \mathbb{R} \to \mathbb{R}$ and any $\epsilon > 0$, there is a polynomial $p \in \mathbb{R}[x]$ such that $||f, p|| < \epsilon$.
 - (c) Let $f : [a, b] \to \mathbb{R}$ be continuous. Then for any γ between f(a) and f(b), there is a $c \in (a, b)$ such that $f(c) = \gamma$.
 - (d) Let $f : [a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Then there is $c \in (a,b)$ such that $f'(c) = \frac{f(b)-f(a)}{b-a}$.
 - (e) Let $\{f_n\} \subseteq \mathbb{R}^X$ be a sequence of real-valued functions and let $\{M_n\}$ be a sequence of positive numbers such that for all n, $|f_n(x)| \leq M_n$ for all $x \in X$ and $\sum M_n$ converges. Then $\sum f_n$ converges uniformly on X.
- 3. (a) TRUE; this was Problem 8 of Homework 1.
 - (b) TRUE; follows from definition of uniform continuity.
 - (c) FALSE; let $f: (0, \infty) \to (0, \infty)$ be the continuous function $f(x) = \frac{1}{x}$; let $x_n = \frac{1}{n}$. $\{x_n\}$ is Cauchy but $\{f(x_n)\}$ is not.
 - (d) FALSE; let $f : [0,1] \to \mathbb{R}$ be equal to 1 when $x \leq \frac{1}{2}$ and equal to 0 when $x > \frac{1}{2}$. Let $\mathcal{P} = \{0, \frac{1}{2}, 1\}$, then $||\mathcal{P}|| = \frac{1}{2}$ and $U(f; \mathcal{P}) = \frac{1}{2} = \int_0^1 f$. But for any partition of [0,1] not containing $\frac{1}{2}$, the upper sum relative to that partition is strictly greater than $\frac{1}{2}$, hence the difference between this upper sum and the value of the integral cannot be less than ϵ if ϵ is sufficiently small.
 - (e) TRUE; the Cantor function is continuous (Homework 14) and every continuous function has an antiderivative by the Fundamental Theorem of Calculus.
 - (f) FALSE; let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by setting $f_n(x) = \frac{x^2}{(1+x^2)^n}$. For each $x, \sum f_n(x)$ is a geometric series so by summing that series one can see $\sum f_n = f$ where f(x) = 0 if x = 0 and $f(x) = 1 + x^2$ if $x \neq 0$. f is not continuous at 0.
 - (g) TRUE; notice that this power series is centered at 0. Since it diverges at x = 3, its radius of convergence can be at most 3, so it must diverge whenever |x 0| > 3, including all x > 3.

- 4. (a) Let X = [0, 1] with the usual metric. Let $B_1 = B_{1/2}(1) = (\frac{1}{2}, 1]$ and let $B_2 = B_{3/8}(3/4) = (\frac{3}{8}, 1]$. Observe $B_1 \subseteq B_2$ despite having a larger radius.
 - (b) Let $f : [0,1] \to \mathbb{R}$ be defined by setting f(x) = 1 if $x \in \mathbb{Q}$ and f(x) = -1 if x is irrational. f is not Riemann integrable since it is nowhere continuous (Lebesgue criterion), but f^2 is the constant function 1 which is Riemann integrable.
 - (c) Define the sequence $\{f_n\}$ by

$$f_n(x) = \begin{cases} \frac{1}{x} & \text{if } x > \frac{1}{n} \\ n & \text{if } 0 < x \le \frac{1}{n} \\ 0 & \text{if } x = 0 \end{cases}$$

Each $\{f_n\}$ is bounded by n, but $f_n \to f$ where $f[0,1] \to \mathbb{R}$ is the unbounded function

$$f(x) = \begin{cases} \frac{1}{x} & \text{if } x > 0\\ 0 & \text{if } x = 0 \end{cases}$$

(d) Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} n & \text{if } x = \frac{m}{n} \in \mathbb{Q} \text{ where } \gcd(m, n) = 1 \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

Every open interval contains rational numbers of arbitrarily large denominator (reason is similar to the logic in Problem 7 of Homework 11), so f is not bounded on any open interval.

- (e) Let a_n be the n^{th} partial sum of the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$. $\{a_n\}$ diverges but $a_{n+1} a_n = \frac{1}{n}$ which converges to zero.
- 5. (a) Let $\{U_{\alpha}\}$ be an open cover of f(K). Then $\{f^{-1}(U_{\alpha})\}$ is an open cover of $f^{-1}(f(K)) \supseteq K$. By compactness of K, there is a finite subcover $\{f^{-1}(U_j)\}_{j=1}^n$ of $\{f^{-1}(U_{\alpha})\}$ which covers K, i.e. $K \subseteq \bigcup_{j=1}^n f^{-1}(U_j)$. Then $f(K) \subseteq f\left(\bigcup_{j=1}^n f^{-1}(U_j)\right) = \bigcup_{j=1}^n (f \circ f^{-1})(U_j) = \bigcup_{j=1}^n U_j$. Thus we have found a finite subcover of $\{U_{\alpha}\}$ which covers f(K), so f(K) is compact as desired.
 - (b) This follows from a direct calculation of the derivative by the definition. Let $x_0 \in \mathbb{R}$:

$$(fg)'(x_0) = \lim_{x \to x_0} \frac{(fg)(x) - (fg)(x_0)}{x - x_0}$$

= $\lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0}$
= $\lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x) + f(x_0)g(x) - f(x_0)g(x_0)}{x - x_0}$
= $\lim_{x \to x_0} g(x)\frac{f(x) - f(x_0)}{x - x_0} + \lim_{x \to x_0} f(x_0)\frac{g(x) - g(x_0)}{x - x_0}$
= $g(x_0)f'(x_0) + f(x_0)g'(x_0).$

The last line follows from the assumption that f and g are differentiable at x_0 .

(c) Suppose not, i.e. there is $a, b \in U$ with a < b where $f(a) \ge f(b)$. Then by the Mean Value Theorem, there exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a} \le 0$$

since the numerator is nonpositive and the denominator is negative. This contradicts the hypothesis.

(d) Suppose not, i.e. \exists partition \mathcal{P} of [a, b] with $L(f; \mathcal{P}) > \int_a^b f$. Let $\epsilon = \frac{1}{2} \left(L(f; \mathcal{P}) - \int_a^b f \right) > 0$ and choose δ such that if \mathcal{Q} is any tagged partition of [a, b] with $||\mathcal{Q}|| < \delta$, then $|RS(f; \mathcal{Q}) - \int_a^b f| < \epsilon$, i.e. $RS(f; \mathcal{Q}) < \int_a^b +\epsilon < L(f; \mathcal{P})$. Now let \mathcal{Q} be a common refinement of \mathcal{P} and any other partition of [a, b] with norm less than δ . We see $||\mathcal{Q}|| < \delta$ but since $\mathcal{Q} \ge \mathcal{P}$, we have

$$L(f; \mathcal{P}) \le L(f; \mathcal{Q}) \le RS(f; \mathcal{Q}) < \int_{a}^{b} f + \epsilon < L(f; \mathcal{P})$$

This a contradiction (nothing is less than itself).

- (e) Let $H(x) = \int_a^x (f-g)$. Since f and g are continuous, f-g is continuous and H is therefore differentiable by the Fundamental Theorem of Calculus. Observe H(a) = H(b) = 0 so by Rolle's Theorem, there is $c \in (a, b)$ with H'(c) = (f - g)(c) = 0. Thus f(c) = g(c).
- (f) For each n, let s_n be the n^{th} partial sum of $\sum a_n$ and let t_n be the n^{th} partial sum of b_n . We see (since $0 \le a_n$ and $0 \le b_n$ for all n) that $\{s_n\}$ and $\{t_n\}$ are increasing sequences of nonnegative real numbers, and from the hypothesis we have $s_n \le t_n$ for all n. We are given that $\sum b_n = \lim t_n$ exists; since $\{t_n\}$ is increasing we have $\lim t_n = \sup\{t_n\}$ so $s_n \le t_n \le \sum b_n$ for all n. Thus $\{s_n\}$ is an increasing sequence, bounded above, so this sequence converges by the Monotone Convergence Theorem. By definition, $\sum a_n$ converges.
- 6. (a) If x = y, both sides of the inequality are zero. Now assume $x \neq y$; WLOG y < x (otherwise reverse x and y). By the Mean Value Theorem we have $c \in (y, x)$ such that

$$\frac{\cos x - \cos y}{x - y} = -\sin c;$$

taking absolute values of both sides of this equality we have

$$\frac{|\cos x - \cos y|}{|x - y|} = |-\sin c| \le 1;$$

the result follows by multiplying through this inequality by |x - y|.

(b) Assume f is differentiable at x_0 . Then, from result proved in class,

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0).$$

Now

$$\lim_{h \to 0} \frac{f(x_0 + \alpha h) - f(x_0 + \beta h)}{h} = \lim_{h \to 0} \frac{f(x_0 + \alpha h) - f(x_0) + f(x_0) - f(x_0 + \beta h)}{h}$$
$$= \lim_{h \to 0} \frac{f(x_0 + \alpha h) - f(x_0)}{h} + \lim_{h \to 0} \frac{f(x_0) - f(x_0 + \beta h)}{h}$$
$$= \lim_{s \to 0} \frac{f(x_0 + s) - f(x_0)}{\frac{s}{\alpha}} + \lim_{t \to 0} \frac{f(x_0) - f(x_0 + t)}{\frac{t}{\beta}}$$
(by setting $s = \alpha h$ in the first limit and setting
 $t = \beta h$ in the second limit)
$$= \alpha f'(x_0) - \beta f'(x_0)$$
$$= (\alpha - \beta) f'(x_0).$$

(c) (Assume WLOG that $f(z) \neq g(z)$.) Let $\epsilon > 0$. Now choose (since f is Riemann integrable on [a, b]) $\eta > 0$ such that if \mathcal{P} is any partition of [a, b] with $||\mathcal{P}|| < \eta$, then $\left|RS(f; \mathcal{P}) - \int_a^b f\right| < \frac{\epsilon}{2}$. Let $\delta = \min(\eta, \frac{\epsilon}{4|g(z) - f(z)|})$ and let $\mathcal{P} = \{x_0, ..., x_n\}$ be any partition of [a, b] with $||\mathcal{P}|| < \delta$. We have

$$\begin{split} RS(g;P) &- \int_{a}^{b} f \middle| \leq |RS(g;P) - RS(f;P)| + \left| RS(f;P) - \int_{a}^{b} f \right| \\ &< \left| \sum_{j=1}^{n} \left[g(c_{j}) - f(c_{j}) \right] \Delta x_{j} \right| + \frac{\epsilon}{2} \\ &\leq \sum_{j=1}^{n} \left| g(c_{j}) - f(c_{j}) \right| \Delta x_{j} + \frac{\epsilon}{2} \\ &= \sum_{\{j:z \in [x_{j-1}, x_{j}]\}} |g(c_{j}) - f(c_{j})| \Delta x_{j} + \frac{\epsilon}{2} \\ &\quad (\text{since } f(x) = g(x) \text{ on all subintervals not containing } z) \\ &\leq 2\delta |g(z) - f(z)| + \frac{\epsilon}{2} \\ &\quad (\text{since there can be at most two subintervals containing } z) \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{split}$$

so $g \in R([a, b])$ and $\int_a^b g = \int_a^b f$ by definition.

(d) By additivity, we see that for all $x \in [0, 1]$,

$$\int_0^1 f(t) \, dt = \int_0^x f(t) \, dt + \int_x^1 f(t) \, dt = 2 \int_0^x f(t) \, dt.$$

Treating the far-left and far-right sides of this equation as functions of x and differentiating both sides, we obtain 0 = 2f(x), i.e. f(x) = 0 for all x.

7. (a) By direct calculation, we see that for $x \neq 0$,

$$\frac{f(x) - f(0)}{x - 0} = x \sin\left(\frac{1}{x^2}\right).$$

Now observe that $-|x| \le x \sin\left(\frac{1}{x^2}\right) \le |x|$ for all x, so by the Squeeze Theorem,

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} x \sin\left(\frac{1}{x^2}\right) = 0.$$

(b) Consider the sequence $\{x_n\} \subseteq [0,1]$ defined by $x_n = \frac{1}{(2n+1)\pi}$. We have, for each n,

$$f'(x_n) = \frac{2}{(2n+1)\pi} \sin[(2n+1)\pi)] - 2(2n+1)\pi \cos[(2n+1)\pi] = 0 + 2(2n+1) = 4n+2$$

so $\{f'(x_n)\}$ is an unbounded sequence since it properly diverges to ∞ . Thus f' is unbounded on [0, 1], hence not integrable on [0, 1], so $\int_0^1 f'(x) dx$ does not exist. Thus the statement is false.

8. (a) Let $\epsilon > 0$; choose $N_1 \in \mathbb{N}$ so that $n \ge N_2 \Rightarrow d(x_m, x_n) < \frac{\epsilon}{2}$ and choose $N_2 \in \mathbb{N}$ so that $n \ge N_2 \Rightarrow d(y_m, y_n) < \frac{\epsilon}{2}$. Set $N = \max(N_1, N_2)$ and suppose $m, n \ge N$. Then

$$d(x_n, y_n) \le d(x_n, x_m) + d(x_m, y_m) + d(y_m, y_n) < \frac{\epsilon}{2} + d(x_m, y_m) + \frac{\epsilon}{2}$$

and

$$d(x_m, y_m) \le d(x_m, x_n) + d(x_n, y_n) + d(y_n, y_m) < \frac{\epsilon}{2} + d(x_n, y_n) + \frac{\epsilon}{2};$$

the second inequality implies

$$d(x_n, y_n) \ge d(x_m, y_m) - \epsilon.$$

Putting the first and last inequalities together, we see $|d(x_m, y_m) - d(x_n, y_n)| < \epsilon$, so $\{d(x_n, y_n)\}$ is a Cauchy sequence in \mathbb{R} . Since \mathbb{R} is complete, $\{d(x_n, y_n)\}$ converges.

- (b) Let $h : \mathbb{R} \to \mathbb{R}$ be defined by $h(x) = [f(x)]^2 [f'(x)]^2$. Since f is twice-differentiable, h is differentiable with h'(x) = 2f(x)f'(x) 2f'(x)f''(x) = 2f(x)f'(x) 2f'(x)f(x) = 0 (applying the hypothesis) and therefore h is constant, in particular h(x) = h(0) for all x. This means $[f(x)]^2 [f'(x)]^2 = [f(0)]^2 [f'(0)]^2 = 0$ for all x (using the hypothesis |f(0)| = |f'(0)|. Thus $[f(x)]^2 = [f'(x)]^2$ for all x; taking square roots of both sides yields the result.
- (c) Let $f:[0,1] \to \mathbb{R}$ be defined by $f(x) = x^{\alpha}$; f is continuous on [0,1] (hence $f \in R([0,1])$) and has antiderivative $F(x) = \frac{x^{\alpha+1}}{\alpha+1}$ so by the Fundamental Theorem of Calculus,

$$\int_0^1 f = F(1) - F(0) = \frac{1}{\alpha + 1}.$$

Let $\mathcal{P}_n = \{0, \frac{1}{n}, \frac{2}{n}, ..., 1\}$ be the partition of [0, 1] into n equal length subintervals. We see that $||\mathcal{P}_n|| = \frac{1}{n} \to 0$ as $n \to \infty$, so by result from class $U(f; \mathcal{P}_n) \to \int_0^1 f = \frac{1}{\alpha+1}$. But since f is increasing, for each j we have

$$\sup\left\{f(x): x \in \left[\frac{j-1}{n}, \frac{j}{n}\right]\right\} = f\left(\frac{j}{n}\right) = \left(\frac{j}{n}\right)^{\alpha}$$

 \mathbf{SO}

$$U(f;\mathcal{P}_n) = \sum_{j=1}^n \left(\frac{j}{n}\right)^{\alpha} \frac{1}{n} = \sum_{j=1}^n \frac{j^n}{n^{\alpha+1}} = \frac{1^{\alpha} + 2^{\alpha} + 3^{\alpha} + \dots + n^{\alpha}}{n^{\alpha+1}}.$$

Therefore

$$\lim_{n \to \infty} \frac{1^{\alpha} + 2^{\alpha} + 3^{\alpha} + \ldots + n^{\alpha}}{n^{\alpha+1}} = \lim_{n \to \infty} U(f; \mathcal{P}_n) = \int_0^1 f = \frac{1}{\alpha+1}.$$

(d) Note that for each $n, -|a_n| \leq a_n \leq |a_n|$. Therefore if we set r_n to the the n^{th} partial sum of the series $\sum -|a_n|$, set s_n to be the n^{th} partial sum of the series $\sum a_n$, and set t_n to be the n^{th} partial sum of the series $\sum |a_n|$, we observe that $r_n \leq 0 \leq t_n$ for all n, $\{r_n\}$ is a decreasing sequence converging to $-\sum |a_n| = \inf\{r_n\}$ and $\{t_n\}$ is an increasing sequence converging to $\sum |a_n| = \sup\{t_n\}$.

As $-\sum |a_n| \le r_n \le s_n \le t_n \le \sum |a_n|$ for all n, we see (by taking limits on the first, third and fifth terms of this inequality as $n \to \infty$) that $-\sum |a_n| \le \lim s_n = \sum a_n \le \sum |a_n|$. The result follows by definition of absolute value.