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Abstract. Let X be a Polish space and Tt a jointly Borel measurable action
of R+ = [0,∞) on X by surjective maps preserving some Borel probability

measure µ on X. We show that if each Tt is countable-to-1 and if Tt has

the “discrete orbit branching property” (described in the introduction), then
(X, Tt) is isomorphic to a “semiflow under a function”.

1. Introduction.

1.1. Background. In the 1940s Ambrose and Kakutani ([2], [3]) showed that any
aperiodic, jointly measurable, measure-preserving flow on a standard probability
space is measurably conjugate to a suspension flow (see section 1.2 for the definitions
of “suspension flow” and other terms used here). Their result reveals connections
between the dynamics of flows and the dynamics of induced maps and also serves as
an jumping-off point for the theory of Kakutani equivalence [8] (two transformations
are (measurably) Kakutani equivalent if there is a measure-preserving flow for which
both transformations arise as return-time maps to measurable cross-sections of the
flow). The Kakutani equivalence theory is quite rich and has led to greater under-
standing of more general notions of “equivalence” of measure-preserving systems
(see [7], [16], [9]); further, it is intimately associated with the problem of classifying
measure-preserving flows up to time-changes [7].

A purely descriptive set-theoretic notion of Kakutani equivalence was introduced
by Nadkarni [15]; in a recent paper [14], Miller and Rosendal completely characterize
this descriptive Kakutani equivalence for Borel automorphisms. In particular, they
showed that in contrast to the rich theory of measurable Kakutani equivalence, all
aperiodic, non-smooth Borel automorphisms are descriptive Kakutani equivalent
(and consequently that all non-smooth free Borel flows are isomorphic up to a time-
change).

In this paper we describe a class of semiflows which can be represented as sus-
pension semiflows. Krengel [11] showed that any measure-preserving semiflow is a
factor of a suspension semiflow. In the same paper he characterized in the suspen-
sion space the σ−algebra of sets which are lifts of measurable subsets of the original
phase space under the factor map, thus obtaining a purely measurable representa-
tion of general semiflows. However, Krengel’s measurable sets do not arise as (the
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completion of) the Borel sets with respect to any Polish topology on the suspen-
sion space (they do not separate points). For our class of semiflows, we obtain a
topological as well as measure-theoretic picture.

It is hoped that this result will have many applications. First, in this paper we
apply our result to show that semiflows of the class studied here have continuous
versions, extending a theorem of Becker and Kechris about Polish group actions
[4]. Second, it is hoped that the results here can be applied to give non-invertible
versions of the Miller-Rosendal results; in particular we wish to obtain results clas-
sifying non-smooth free Borel semiflows up to a time-change.

Looking further, in [13], Lin and Rudolph described the notion of “Kakutani shift
equivalence” for measure-preserving endomorphisms (this seems to be the natural
generalization of measurable Kakutani equivalence for invertible transformations);
it would be interesting to study the descriptive analogue of this notion.

1.2. Definitions and main results. Let X̂ be a Polish space (all Polish spaces in
this paper are assumed to be uncountable) and let T̂ : X̂ → X̂ be a Borel measurable
map which preserves some Borel measure µ̂ on X̂. Let f be a Borel measurable
function from X̂ into R+ = [0,∞) with

∫
bX fdµ̂ = 1 and

∑∞
i=1 f(T̂ ix̂) = ∞∀x̂. Let

X be the set {(x, t) ∈ X̂ × R+ : 0 ≤ t < f(x)} and define a measure µ on X by
µ = µ̂×λ where λ is Lebesgue measure on R+. We define an action of R+ on X by

Ts(x̂, t) =

T̂ i(x̂), (s+ t)−
i−1∑
j=0

f(T̂ j(x̂))


where i is the largest integer such that s + t ≥

∑i−1
j=0 f(T̂ j(x̂)). The maps {Ts :

s ∈ R+} give a one-parameter family of Borel µ-preserving maps on X which we
call a suspension semiflow or semiflow under a function. Under this action, a point
(x̂, t) flows vertically upward at unit speed until it hits the graph of f ; the point
then returns back to X̂ at the point (T̂ (x̂), 0) and continues upward. We call the
function f the return-time function and call T̂ the return-time map or induced map
for the suspension semiflow. X̂ is called the base of the semiflow.

If the map T̂ is invertible, then so is each Ts and we call the system a suspension
flow or flow under a function. As mentioned earlier, Ambrose and Kakutani ([2],
[3]) showed that any aperiodic jointly measurable flow by measure-preserving maps
on a standard probability space (X,F , µ) is measurably conjugate to a flow under a
function where the base measure is finite. Wagh [18] carried out an analogue of the
Ambrose-Kakutani result for measurable flows on standard Borel spaces, showing
that any Borel flow is isomorphic to a suspension flow where the base is a Polish
space and the return-time function is Borel. In the 1970s Rudolph [17] and Krengel
[12] strengthened the Ambrose-Kakutani results; they showed that for any irrational
α > 0 and any c ∈ (0, 1), any measure-preserving flow on a standard Lebesgue space
is measurably conjugate to a flow under a function where the return-time function
takes the value α on a set of measure c in the base and takes the value 1 on the
rest of the base. In Section 2 we show that the Rudolph and Krengel results do not
hold in general for suspension semiflows.

Definition 1.1. A Borel semiflow of R+ is a Polish space X with a probability
measure µ defined on the σ−algebra B(X) of Borel subsets of X together with a
collection of surjective maps Tt : X → X defined for each t ∈ R+ which satisfy
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T0 = idX , Ts+t = Ts ◦ Tt for all s, t and for which the action is jointly Borel
measurable, i.e. for every Borel B ⊆ X, the set {(x, t) ∈ X × R+ : Tt(x) ∈ B} is
Borel, has no periodic points, and is measure-preserving, i.e. µ(T−t(B)) = µ(B) for
every B ∈ B(X) and t ≥ 0.

Remark 1. Any finite measure preserved by an aperiodic semiflow (or flow, for
that matter) must be non-atomic, for if µ({x}) > 0, then µ(T−t(x)) > 0 for all t > 0
and hence µ(

⋃
t>0 T−t(x)) = ∞.

Definition 1.2. Two Borel semiflows (X,B(X), µ, Tt) and (Y,B(Y ), ν, St) are iso-
morphic if there exists a Borel measurable bijection φ between (forward) invariant
Borel subsets X0 ⊆ X and Y0 ⊆ Y of full measure (µ(X0) = ν(Y0) = 1) such that
φ∗(µ) = ν and φ ◦ Tt = St ◦ φ for all x ∈ X0.

It is natural to ask which Borel semiflows are isomorphic to semiflows under a
function. One easily sees that not every Borel semiflow on a Polish space can be
conjugated to a suspension semiflow; given any suspension semiflow and any point
not lying in the base X̂, there exists t > 0 such that #(T−t(x)) = 1, i.e. the semiflow
is “invertible over a small period of time” for points not in the base. In particular
this means that the set of points x such that ∀ t > 0, #(T−t(x)) > 1 must occur
only countably often along forward orbits, and the set of times at which any point
enters this set must be discrete. We generalize this observation in the following
definition:

Definition 1.3. Let (X,Tt) be a Borel semiflow. We say a point x ∈ X has an
orbit branching at time t0 if⋃

t<t0

T−tTt(x) 6=
⋂

t>t0

T−tTt(x).

Given a point x, let B(x) = {t ≥ 0 : x has an orbit branching at time t}. A Borel
semiflow is said to have the discrete orbit branching property if B(x) is discrete for
every point x.

Any suspension semiflow has the discrete orbit branching property, since for
any point in such a system B(x) is contained in the set of times t ≥ 0 for which
Tt(x) lies in the base. The discrete orbit branching property, being preserved under
isomorphism, is therefore a necessary condition for isomorphism with a suspension
semiflow.

Example. Let X be the set of continuous, piecewise linear functions f from R+

to R+ which pass through the origin and for which there exists a tf ∈ (0, 1] such
that on any interval taken from the collection [0, tf ), (tf , tf + 1), (tf + 1, tf + 2), ...,
f has constant slope on that interval equal to either 0 or 1. Loosely speaking, we
think of f as a solution to a “multi-valued differential equation” f ′ ∈ {0, 1} with
initial condition f(0) = 0. Define a semiflow Tt on X by Tt(f)(s) = f(s+ t)− f(t).
This semiflow has discrete orbit branchings; B(f) = tf + Z+ for any f ∈ X. (In
fact, Theorem 1 of this paper guarantees this example is isomorphic to a suspension
semiflow.)

Some models arising in economics [6] are similar to this example; they arise
from “multi-valued differential equations” f ′ ∈ {f1, ..., fk} where the fj are smooth
functions and some initial condition is specified. So long as the times where f ′

“changes” from fi to fj are suitably spread out, such a model will yield a semiflow
like the one described above with discrete orbit branchings.
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There is a second necessary condition as well: suppose for a given semiflow that
there are two points x 6= y ∈ X with Tt(x) = Tt(y) for all t > 0. We say that
x and y are instantaneously and discontinuously identified (IDI) by the semiflow.
Suspension semiflows (as defined above) cannot have IDIs but they may occur in
general Borel semiflows:

Example. Let σ2 : S1 → S1 defined by σ2 : x 7→ 2x(mod 1). Let Y = S1 × (0, 1]
and consider a semiflow on Y which is like a suspension semiflow in that points flow
upward at unit speed and return to the base via the return-time map σ2. This is a
Borel semiflow and can be thought of as a “closed on the top suspension” instead
of the “closed on the bottom” suspension previously described. Points of the form
(a, 1) and (a + 1/2, 1) are IDI by this semiflow. In particular, no invariant set for
the semiflow can contain no points which are IDI.

We make the following definitions to describe this phenomenon: first the sets

IDI(Tt) = {x ∈ X : ∃y 6= x such that Tt(x) = Tt(y)∀ t > 0}

I(x) = {y ∈ X : Tt(x) = Tt(y)∀ t > 0}
and also the equivalence relation

IDI = {(x, y) ∈ X ×X : Tt(x) = Tt(y)∀ t > 0}.

Lemma 1.4. IDI is a Borel subset of X ×X.

Proof. Consider the Borel action (X×X, (T×T )t) of R+ defined by (T×T )t(x, y) =
(Tt(x), Tt(y)). Denote the diagonal of X ×X by ∆. Now

(x, y) ∈ IDI ⇔ (T × T )t(x, y) ∈ ∆ ∀ t > 0

⇔ (x, y) ∈
⋂

q∈Q
T

(0,∞)

(T × T )−q(∆)

so IDI is a Borel relation as desired.

To account for the possibility of IDIs, we introduce the notion of “suspension
semiflow with IDIs”. To describe this setup, start with an “ordinary” suspension
semiflow with base G1 and return-time function g. Add another space G2 and
replace the return-time map from G1 to itself with a map taking G1 to G1

⋃
G2

and take a “projection” σ which maps G2 into G1 and is the identity on G1. Under
this construction, points in G1 flow upward until they hit the graph of g, then return
to G1 or G2. If they return to G1, they again flow upward as usual. If they return
to some x ∈ G2, they flow upward through points sitting above some point σ(x) in
G1 (in particular, for x ∈ G2, x and σ(x) are IDI by this semiflow). More precisely:

Definition 1.5. Consider two Polish spacesG1 andG2 and a Borel measurable map
Ŝ : G1 → G1

⋃
G2 which preserves some σ−finite Borel measure µ̂ on G1

⋃
G2

for which µ̂(G2) = 0. Let σ : G1

⋃
G2 → G1 be a Borel map which is the identity

when restricted to G1. Let g : G1 → R+ be Borel measurable with
∫

G1
g dµ̂ = 1.

A suspension semiflow with IDI consists of the space

G =
{
(x, t) ∈ G1 × R+ : 0 ≤ t < g(x)

} ⋃
(G2 × {0}) ,

endowed with the Borel structure inherited from the product topology on (G1

⋃
G2)×

R+ and the measure µ̂ × λ, and the Borel semiflow Ss on G defined as follows:
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Figure 1. A suspension semiflow with IDI. Points flow upward
through G1 × R+ until they hit the graph of f , then return to
either G1 or G2 via Ŝ. Every point z in G2 is IDI with some σ(z)
in G1.

first let i be the largest integer such that (s + t) ≥
∑i−1

j=0 g(σ(Ŝj(x̂)); if (s + t) >∑i−1
j=0 g(σ(Ŝj(x̂)) we let

Ss(x, t) =

σ(Ŝi(x)), (s+ t)−
i−1∑
j=0

g(σ(Ŝj(x̂))


and if (s+ t) =

∑i−1
j=0 g(σ(Ŝj(x̂)) then

Ss(x, t) =
(
Ŝ ◦ (σ ◦ Ŝ)i−1(x), 0

)
.

Remark 2. It is sufficient in the above definition that G1 and G2 be Borel subsets
of a standard Polish space X and Ŝ : G1 → G1

⋃
G2 and σ : G1

⋃
G2 → G1 be

Borel measurable with respect to the Borel structure of X. Let T be the given
topology on X; one can choose a Polish topology T ′ ⊇ T on X for which G1 and
G2 are clopen but T and T ′ have the same Borel sets. G1 and G2 are Polish under
the relative T ′−topology.

A Borel semiflow is called countable-to-1 if there is a forward-invariant Borel
subset X0 of the phase space with µ(X0) = 1 such that for all x ∈ X0 and all t ≥ 0,
T−t(x) is countable. Since our notion of isomorphism only requires that a conjugacy
between systems is defined on invariant sets of full measure, we can choose a Polish
topology T ′ on X giving rise to the same Borel sets as the original topology such
that X0 is a Gδ with respect to T ′. Then the restriction of Tt to X0 is a Borel
semiflow such that for every point x and every time t ≥ 0, T−t(x) is countable. In
what follows, we are thinking of this X0 as X and assuming that every point has a
countable number of preimages under each Tt.

Theorem 1.6. Any countable-to-1 Borel semiflow (X,B(X), µ) is isomorphic to
a suspension semiflow with IDIs if and only if it has the discrete orbit branching
property.

Furthermore we have the following special case: when the the semiflow has no
IDIs, we can choose G2 = ∅ and obtain:
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Theorem 1.7. Suppose Tt is a countable-to-1 Borel semiflow with the discrete orbit
branching property that has no IDIs (i.e. Tt(x) = Tt(y)∀ t > 0 implies x = y), then
Tt is isomorphic to a suspension semiflow.

Notice that in our definition of suspension semiflow we do not necessarily have a
finite measure on the base G1

⋃
G2. In Section 2 we give an explicit example of a

Borel semiflow satisfying the hypotheses of Theorem 1.7 which cannot be isomor-
phic to a suspension semiflow whose base is endowed with a finite Borel measure.
However, under an additional assumption we can conjugate a Borel semiflow to a
suspension semiflow whose base measure µ̂ is finite:

Theorem 1.8. Given a countable-to-1 Borel semiflow Tt defined on a standard
Polish space (X,B(X), µ), if there exists a constant c0 > 0 such that for every point
x ∈ X, and every t1 and t2 in B(x), we have |t1− t2| ≥ c0, then (X,B(X), µ, Tt) is
isomorphic to a suspension semiflow with IDIs where the base measure µ̂ is finite.

We prove Theorems 1.6 and 1.8 in the next section. We first describe how to
locate the orbit branchings of the semiflow via a countable list of Borel functions
whose domains are Borel subsets of X. Then we take an appropriate cross-section
for the semiflow (called “horizontally identifying”) and construct the sets G1 and
G2, the map Ŝ and the function g needed to define a suspension semiflow with IDIs
isomorphic to the original action.

We also show in the next section that given any countable-to-1 Borel semiflow
satisfying the hypotheses of Theorem 1.7, one can choose a Polish topology on the
phase space so that the action is jointly continuous, providing an extension of a
theorem of Becker and Kechris [4] about Polish group actions to a class of actions
of R+.

The following notation is used: Suppose (X,Tt) is a semiflow; for a point x we
let T−t(x) = {y : Tt(y) = x}; given a set A ⊆ R+, let TA(x) =

⋃
t∈A Tt(x) and

T−A(x) = {y : ∃ t ∈ A such that Tt(y) = x}. Given a set F ⊆ X, T−t(F ) = {y :
Tt(y) ∈ F} and for A ⊆ R+, let TA(F ) =

⋃
t∈A,x∈F Tt(x) and T−A(F ) = {y : ∃ t ∈

A such that Tt(y) ∈ F}.
Throughout the sequel, X is assumed to be an uncountable Polish space with

given topology T and Tt is assumed to be a countable-to-1 Borel semiflow satisfying
the hypotheses of Theorem 1.

Remark 3. Countable-to-1 Borel semiflows have two key properties which are used
in the proof of Theorem 1.6. First, since each Tt is countable-to-1, each Tt must
send Borel sets to Borel sets (i.e. Tt(A) is Borel for any Borel A and any t ≥ 0). We
will use this fact to show that the orbit branchings form a Borel set. Second, each
I(x) is at most countable. This ensures that the Borel equivalence relation IDI has
a Borel transversal U (i.e. U intersects each IDI-equivalence class in exactly one
point) and that there is a countable-to-1 Borel map σ mapping each x ∈ X to its
IDI-equivalent point in U . This σ is precisely the map σ described in the definition
of a suspension semiflow with IDIs.

2. The proofs of Theorems 1.6 and 1.8.

2.1. Capturing the orbit branchings with Borel graphs. We begin the proof
of the theorem by describing how the orbit branchings can be covered by a countable
list of Borel graphs. First, since each Tt is a Borel map from X to itself, for each
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q ∈ Q+ = Q
⋂

[0,∞) there is a Polish topology Tq ⊇ T on X such that Tq is
Tq−continuous but T and Tq have the same Borel sets (see Theorem 13.11 of [10]).

Let {Un} be a countable basis for the topology Tq. Now a point x ∈ X has an
orbit branching at time t if and only if for some n, we have

1. for all q ∈ Q
⋂

[0, t), Tq(x) /∈ Tq(Un) and
2. for all q ∈ Q

⋂
(t,∞), Tq(x) ∈ Tq(Un).

Since the semiflow is countable-to-1, all the Tq(Un) are Borel, so the set of pairs
(x, t) such that x has an orbit branching at time t is a Borel subset of X × [0,∞).
Therefore by the Lusin-Novikov theorem, we can find a countable list of Borel
functions ji : X → [0,∞) whose domains Ji are Borel subsets of X such that given
any point x ∈ X, the orbit branchings of x occur at the times {ji(x) : 1 ≤ i <∞}.

The functions thus constructed also satisfy the following key property:

Lemma 2.1. Suppose x and y are two points in X with Tt(x) = Tt(y). Then if
we define M(x) = max{s ≤ t : s = ji(x) for some i} (set M(x) = ∞ if no such s
exists), then either x = y or M(x) = M(y).

Proof. Suppose x 6= y. Then let q = sup{s : Ts(x) 6= Ts(y)}; we have 0 ≤ q ≤ t.
Then B(x)

⋂
[q,∞) = B(y)

⋂
[q,∞) so if M(x) ≥ q, we are done. But certainly x

has an orbit branching at time q so q = ji(x) for some i and hence M(x) ≥ q.

Remark 4. If we did not assume the semiflow was countable-to-1, we could still
show using the above argument that the orbit branchings were an analytic subset
of X ×R+ with discrete sections. Using a result of Lusin, one could then cover the
orbit branchings with a countable list of Borel functions. However, those functions
might not satisfy the preceding lemma, which is of importance with regard to what
follows.

2.2. Horizontally-identifying cross sections. The existence of cross-sections
for semiflows was first established by Krengel ([11] , [13]); we repeat some definitions
here for convenience. Given a Borel semiflow (X,F , µ, Tt), a set F ′

0 ∈ F is called a
thick section for the semiflow if there exist parameters 0 < α < β and a measurable
function γ : X → [0,∞) such that for every x ∈ X,

1. γ(Tγ(x)x) ≥ β,
2. {Tt(x)}γ(x)≤t<γ(x)+α ⊆ F ′

0, and
3. {Tt(x)}γ(x)+α≤t<γ(x)+γ(Tγ(x)(x))

⋂
F ′

0 = ∅.
Then a set F0 is called a section or cross-section for the semiflow if F0 consists of
the left-endpoints of intervals of occurrence of some thick section F ′

0 on Tt−orbits.
F0 is endowed with a σ−algebra G0 of measurable sets as follows: a set A ⊆ F0

belongs to G0 if A = {Tt(x) : x ∈ A, 0 ≤ t < α} is Borel. These are in our case
precisely the Borel subsets of F0. Given any section F0, there is a return-time
function f(x) = inf{t ∈ R+ : Tt(x) ∈ F0}; Lin and Rudolph [13] show that this
map is G0−measurable and that one can choose a section so that the return-time
function f is bounded above by some constant and below by some other positive
constant. If this is the case we say that the section is bounded.

Call a section F0 horizontally identifying if it is bounded and has the following
two properties:

1. Whenever Tf(x)(x) = Tf(y)(y) for some pair x, y ∈ F0, then f(x) = f(y).
2. Given any x ∈ F0 and t < f(x), the set T−tTt(x) is contained in F0.
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Proposition 2.2. Let F be a horizontally identifying section. For each pair of
points x, y ∈ F , define

Ay(x) = {t ∈ [0, f(x)) : Tt(x) = Ts(y) for some s ∈ [0, f(y))}.
Then for all x, y ∈ F,Ay(x) = Ax(y).

Proof. If Ay(x) is empty, then the forward orbits of x and y are disjoint at least
until they return to the section so Ax(y) is also empty. Now if t ∈ Ay(x), then
there exists s < f(y) so that Ts(y) = Tt(x). By applying T to both sides, we get
Tf(x)+s−t(y) = Tf(x)(x) and Tf(y)(y) = Tf(y)+t−s(x). But if the forward orbits of
x and y meet before they return to the section, then they must coincide when they
return to the section, i.e. Tf(x)(x) = Tf(y)(y). Since F is horizontally identifying,
f(x) = f(y) so we have Tf(y)+s−t(y) = Tf(y)(y) and Tf(x)+t−s(x) = Tf(x)(x). If
s 6= t, one of x or y must hit the section before its return time. This is impossible so
s = t and t ∈ Ax(y). Thus Ay(x) ⊆ Ax(y); by symmetry these sets must therefore
coincide.

This proposition ensures that for a horizontally identifying section F0, any points
which get identified before they return to the base must be identified at the same
height, i.e. we cannot see points x, y in the base with Ts(x) = Tt(y) (for 0 ≤ s <
f(x), 0 ≤ t < f(y)) but s 6= t. Also, if F0 is a good section then for any point x in X
there is a nonnegative number f(x) such that T−f(x)(x) ⊆ F0 but T−α(x)

⋂
F0 = ∅

for all α ∈ (0, f(x)) (recall that Tt is assumed to be surjective). So if one writes
x ∈ X as Tt(y) where y ∈ F0 and 0 ≤ t < f(y), there is only one possible choice for
t (of course there may be lots of choices for y).

Proposition 2.3. Every Borel semiflow has a horizontally identifying cross-section
F0.

Proof. From Lin and Rudolph [13], we can choose a Borel section F with return
time bounded by some constant less than B. Then let F0 = T−B(F ). That F0 is
a section is obvious from the definition. Let f be the return time function for F0;
clearly f < B so F0 is a bounded section. Now suppose x, y ∈ F0 are such that
Tf(x)(x) = Tf(y)(y). Assume f(x) ≥ f(y), and let δ = f(x)− f(y). Now TB(x) and
TB(y) = TB+δ(x) are both in F . So Tδ(x) ∈ F0 and as 0 ≤ δ < f(x), δ = 0.

Finally, to verify the second condition in the definition of horizontally identifying
section, take x ∈ F0 and t < f(x) and consider some y ∈ T−tTt(x). Then z =
Tt(x) = Tt(y) satisfies TB−t(x) ∈ F so y ∈ F0 as desired. Thus F0 is horizontally
identifying.

2.3. Constructing the suspension. Let F0 be a horizontally identifying section
for (X,F , µ, Tt) with return-time function f : F0 → [b, B] (b > 0). Denote the
Poincaré return map from F0 to itself by T̂ ; remembering that F0 is a subset of X
we have T̂ (y) = Tf(y)(y) for any y ∈ F0. Finally define

F = {(x, t) ∈ F0 × R+ : 0 ≤ t < f(x)}
and notice that the map Υ : F → X defined by Υ(x, t) = Tt(x) is measurable.

Lemma 2.4. Suppose (x1, t1) and (x2, t2) are two points in F with Tt1(x1) =
Tt2(x2) (this implies that t := t1 = t2 since F0 is horizontally identifying). Then:

1. B(x1)
⋂

[0, t] and B(x2)
⋂

[0, t] are nonempty,
2. B(x1)

⋂
[t,∞) = B(x2)

⋂
[t,∞), and
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3. max{s ≤ t : s ∈ B(x1)} = max{s ≤ t : s ∈ B(x2)}

Proof. Statements (1) and (2) follow directly from the definition of orbit branch-
ing. For the third statement, first observe that if t ∈ B(x1) we are done. Oth-
erwise, by the discrete orbit branching property there is some s ∈ (0, t) such that
B(x1)

⋂
(s, t] = ∅. Then for every r in [0, t − s), we have #(T−rTt(x)) = 1. But

Tt−r(x1) and Tt−r(x2) both belong to T−rTt(x) so they are therefore equal. Then
by applying statement (2) of this Lemma, we have

B(x1)
⋂

[t− r,∞) = B(x2)
⋂

[t− r,∞)

whence B(x1)
⋂

(s,∞) = B(x2)
⋂

(s,∞). This implies B(x2)
⋂

(s, t] = ∅ and we
have max{s ≤ t : s ∈ B(x1)} ≥ max{s ≤ t : s ∈ B(x2)}. By symmetry these
quantities must be equal.

Define the function k : F → R+ by

k(x, t) =
{
t−max{s : s ≤ t and s ∈ B(x)} if B(x)

⋂
[0, t] 6= ∅

t if B(x)
⋂

[0, t] = ∅

Lemma 2.5. k : F → R+ is Borel measurable.

Proof. Observe that ((x, t), y) ∈ F × R+ lies on the graph of k if and only if either
(1) y = t and ji(x) > t for all i such that x lies in the domain of ji or (2) there is
some positive integer N such that

jN (x) = t− y and jn(x) > t∀n ≥ N.

Therefore the graph of k is Borel and consequently k is itself Borel.

In particular, Lemma 2.4 tells us k(x1, t1) = k(x2, t2) whenever Υ(x1, t1) =
Υ(x2, t2). Therefore k passes to a well-defined Borel measurable function on X as
well.

Recall that since Tt is countable-to-1, there is a Borel transversal U for IDI and
a Borel function σ defined on X by setting σ(x) ∈ U

⋂
IDI.

Lemma 2.6. Suppose x1 and x2 satisfy Tk(x)(x1) = Tk(x)(x2) = x. Then σ(x1) =
σ(x2).

Proof. Again write x = Tt(y) with y ∈ F0 and 0 ≤ t < f(y). Assume x1 6= x2;
otherwise we are done. Let A be the set of times t ≥ 0 for which Tt(x1) 6= Tt(x2);
0 ∈ A so A is nonempty. Let s = sup{t : t ∈ A}; x1 has an orbit branching at time
s so y has orbit branching at time t − k(x) + s. This is only possible if s = 0; i.e.
A = {0}. Thus (x1, x2) ∈ IDI so σ(x1) = σ(x2).

For x ∈ X, let r1(x) = inf{t > 0 : Tt(x) ∈ F0}. Now let

g(x) = min{r1(x), j1(x), j2(x), j3(x), ...}.
g : X → R+ is Borel. Next let G0 = {T−k(x)x : x ∈ X}; this is a Borel subset of X.

Lemma 2.7. x ∈ G0 if and only if k(x) = 0 if and only if x = Tg(y)(y) for some
y ∈ X.

Proof. Suppose x ∈ G0; write x = Tt(z) where z ∈ F0 and 0 ≤ t < f(z). Then
since x ∈ G0, t ∈ B(z) so k(z, t) = k(x) = 0. Also, since B(z) is discrete one
can choose s < t such that B(z)

⋂
[s, t) = ∅. Let y = Ts(z); by Lemma 2.4 we

conclude g(y) = t − s so x = Tg(y)(y). The other implications are immediate from
the definitions.



10 DAVID M. MCCLENDON

Let St be the suspension semiflow with IDI defined as in the introduction with
G1 := G0

⋂
U and G2 := G0 − U where σ is as described in Section 1 and Ŝ(x) =

Tg(x)(x). In particular the phase space G for this suspension semiflow is the subset
of X × R+ defined by{

(x, t) ∈ (G0

⋂
U)× R+ : 0 ≤ t < g(x)

} ⋃
((G0 − U)× {0}) .

Lemma 2.6 assures us that the expression σ(T−k(x))(x) is a well-defined expression
depending only on x. Let Σ(x) = σ(T−k(x)(x)).

Lemma 2.8. Let Σ : X → T ⊂ X be defined as above. Σ is Borel measurable and
Σ(X) ⊆ G0.

Proof. The first statement is obvious because Σ is the composition of Borel maps.
To prove the second statement, it suffices to verify Σ(G0) ⊆ G0. First observe
Σ|G0 = σ|G0 and since σ is the identity on T it is enough to show σ(x) ∈ G0 for
x ∈ G0 − T . If x /∈ T then (x, y) ∈ IDI for some y = σ(x) ∈ T . As y has orbit
branching at time zero, k(y) = 0 so y ∈ G0 as well.

Now we define φ : X → G by

φ(x) =
{

(x, 0) if x ∈ G0

(Σ(x), k(x)) if x /∈ G0
.

Observe that φ is Borel since Σ and k are Borel functions; we will see that φ is
an isomorphism between (X,Tt) and (G,St). One can check that φ is bijective with
inverse given by (x, t) 7→ Tt(x).

Lemma 2.9. Given any x ∈ X and any t ≥ 0, we have φ ◦ Tt(x) = St ◦ φ(x).

Proof. We consider four cases:
Case 1: Suppose first that x ∈ G0 and t ∈ [0, g(σ(x))). In this case we have

k(Tt(x)) = t and Σ(Tt(x)) = σ(x) by definition and therefore φ(Tt(x)) = (σ(x), t) =
St(φ(x)).

Case 2: If x ∈ G0 and t = g(σ(x)) (this means t > 0 and Tt(σ(x)) = Tt(x)) then

St(φ(x)) = (Ŝ(σ(x)), 0) = (Tg(σ(x))(σ(x)), 0) = (Tt(x), 0) = φ(Tt(x)).

Case 3: If x /∈ G0, then φ(x) = (Σ(x), k(x)) where k(x) > 0. Suppose that 0 ≤
t < g(Σ(x))−k(x). In this case, φ(Tt(x)) = (Σ(Tt(x)), k(Tt(x))) = (Σ(x), k(x)+t) =
St(φ(x)).

Case 4: If x /∈ G0, again write φ(x) = (Σ(x), k(x)) where k(x) > 0; we suppose
now that t = g(Σ(x))− k(x). Here we see

St(φ(x)) = (Ŝ(σ(T−k(x)(x))), 0)
= (Tg(Σ(x))(σ(T−k(x)(x))), 0)
= (Tg(Σ(x))−k(x)(x), 0)
= (Tt(x), 0)
= φ(Tt(x)).

The preceding four cases are sufficient because for every x, the set of times t where
Tt(x) ∈ G0 tends to ∞; therefore one can write t = t1 + t2 + ...+ tn appropriately
so that the cases above can be applied for each ti.
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At this point we have constructed an isomorphism φ between (X,B(X), µ, Tt)
and (G,B(G), φ∗(µ), St). It remains to show that φ∗(µ) is the product of a σ−finite
measure ν̂ on G0 (assigning mass 1 to G0

⋂
U) with Lebesgue measure in the

vertical direction.
We begin by recalling from Krengel and Lin/Rudolph that we can place a Borel

probability measure µ on F0 as follows: pick c such that f(y) > c for all y ∈ F0;
then given a Borel A ⊆ F0, define

µ(A) =
µ(T[0,c)(A))
µ(T[0,c)(F0)

.

In particular, we know that for any Borel B in F satisfying the following property:

(y, t) ∈ B and Tt(y) = Tt(z) ⇒ (z, t) ∈ B (1)

we have (µ× λ)(B) = µ(Υ(B)).
For each i > 0, place a finite Borel measure νi on the set G(i) = {(y, t) ∈ F :

ji(y) = t and t > 0} by setting

νi(A) = µ(π0(A))

where π0 is the projection of F onto its base F0: π0(x, t) = x. Recalling that x ∈ G0

if and only if x ∈ F0 or x = Tt(y) with (y, t) ∈ G(i) for some i, we define a σ−finite
Borel measure ν̃ on G0 by taking the sum of µ and the νi:

ν̃(A) = µ(A
⋂

F0) +
∞∑

i=1

νi(A
⋂

G(i)).

Finally we let ν̂ = σ∗(ν̃); this is a σ−finite Borel measure on G0

⋂
U . Extend ν̂ to

a measure on G0 by setting ν̂(A) = 0 for any Borel A ⊆ G0 − U .
Choose a Borel A ⊆ G0

⋂
U and let R = {(y, t) ∈ G : y ∈ A and t ∈ [α, β)} be

a rectangle in G. The set R? of points (y, t) in F such that φ(Tt(y)) ∈ R is a union
of disjoint sets of the form

{(y, t) ∈ F : ∃i > 0 such that y ∈ J(i) and t ∈ [ji(y) + α, ji(y) + β)}

and in particular R? satisfies property (1.1) above; therefore

(µ× λ)(R?) = µ(Υ(R?)) = µ(φ−1(R)).

But we also have

(µ× λ)(R?) = (β − α)µ(π0(σ−1(A)))
= (β − α)σ∗(ν̃)(A)
= (β − α)ν̂(A)
= (ν̂ × λ)(R);

therefore φ∗(µ) and ν̂ × λ agree on rectangles. As rectangles generate the Borel
subsets of G, we have φ∗(µ) = ν̂ × λ and so Theorem 1.6 is established. This
argument also proves Theorem 1.7; we have in this case U = X, G2 = ∅, and
σ = idX .
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2.4. Continuous representations of Borel semiflows with no IDIs. Under
the hypotheses of Theorem 1.7 we can also give a result modeled after a result
of Becker and Kechris [4]. They showed that any Borel action of a Polish group
on a standard Polish space has a continuous version, that is, that there exists a
Polish topology on the phase space with the same Borel structure as the original
topology under which the action is jointly continuous. Here, for countable-to-1 Borel
semiflows with no IDIs and discrete orbit branchings, we have the same conclusion.

By Theorem 1.7, (X,Tt) is isomorphic to a suspension semiflow (G,St) with base
G0 ⊆ X, return-time function g(x) and return-time transformation Ŝ. First, choose
a topology R1 on X which is Polish, stronger than the original topology T , has the
same Borel sets as T , and for which G0 is open. Hence G0 is a standard Polish
space under the relative topology.

Next, place a topology R2 on G0 which is Polish, stronger than the relative R1-
topology, has the same Borel sets as the relative R1-topology, and for which the
map Ŝ is continuous. Place an even stronger topology R3 on G0 which is Polish,
stronger than R2, has the same Borel structure as R2, and for which g is continuous
(see Theorem 13.11 of [10]).

Let G = {(x, t) ∈ G0 × R+ : t ≤ g(x)} (endowed with the product of the R3-
topology on G0 and the usual topology on R+) and define θ : G→ G by

θ(x, t) =
{

(x, t) if t < g(x)
(Ŝ(x), 0) if t = g(x)

and let R be the largest topology on G which makes θ continuous. Under the R
topology, it is clear that St : G× R+ → G is a jointly continuous semiflow. In fact
R is Polish (in [18], Wagh shows that this topology is Polish when Tt (respectively
St) is a flow; his proof that the topology so defined is Polish carries through for
semiflows).

We have shown the following:

Theorem 2.10. Let (X,B(X), µ, Tt) be a countable-to-1 Borel semiflow with no
IDIs that has the discrete orbit branching property. Then there is a Polish topology
R′ on X such that the Borel sets of R′ are precisely B(X) and the semiflow Tt is
jointly continuous with respect to R′.

Proof. We have a Borel isomorphism π : (G,St) → (X,Tt) from Theorem 1.7;
choose R′ to be the topology which makes π a homeomorphism between (G,R) and
(X,R′).

2.5. The proof of Theorem 1.8. In this subsection we now make the additional
assumption of Theorem 1.8, namely that there exists a constant c0 > 0 such that
orbit branchings along the orbit of a point are always at least time c0 apart.

Lemma 2.11. If Tt is a Borel semiflow satisfying the hypotheses of Theorem 1.8,
then there exists a section F ]

0 for Tt and a number δ > 0 with the following proper-
ties:

1. The return-time function r](x) : X → R+ defined by r](x) = inf{t > 0 :
Tt(x) ∈ F ]

0} satisfies r](x) ≥ δ for all x ∈ F ]
0 ,

2. for any x ∈ F ]
0 , B(x)

⋂
[0, r](x)) ⊆ (δ, r](x)− δ), and

3. given any x ∈ F ]
0 , and t1 6= t2 in B(x)

⋂
[0, r](x)), we have |t1 − t2| > δ.
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Proof. Start with any horizontally identifying section F0 for the semiflow; we denote
the return-time function for this section by rF and the return-time map from F0

to itself by T̂ . Let b and B be such that rF (x) ∈ (b, B) for every x ∈ F0. Now let
δ = min(b/10, c0/10).

Now let

G′
1 = {x ∈ F0 : ∃i > 0 such that ji(x) ∈ (rF (x)− δ, rF (x))}.

This is a Borel subset of F0 since all the ji are Borel and rF is Borel. Now let
G′ = TrF (x)(x) : x ∈ G′

1. Next define G′′ to be the set of all x ∈ F0 such that
ji(x) < δ for some i > 0. The section is defined as follows:

F ]
0 = (F0 −G′ −G′′)

⋃
Tδ(G′)

⋃
T−δ(G′′)

Proof of (1): Suppose x ∈ F ]
0 is such that r](x) = ε < δ. Write x = Tt(y) where

y ∈ F0 and 0 ≤ t < rF (y). We have one of the following:

• Case 1: x ∈ F0 − G′ − G′′. In this case, x = y and we have z = Tε(x) =
Tε(y) ∈ F ]

0 .
– Case 1 (a): z ∈ F0. This cannot happen as ε ≤ δ < b < rF (y).
– Case 1 (b): z ∈ Tδ(G′) ⊆ Tδ(F0). This implies z = Tδ(w) where
w ∈ F0; as δ < b < rF (w) and since F0 is horizontally identifying we
have T−δTδ(w) ⊆ F0; there must then be a point w′ ∈ T−δTδ(w) with
Tδ−ε(w′) = x ∈ F0. This is impossible as δ − ε < b < rF (w′).

– Case 1 (c): z ∈ T−δ(G′′). In this case Tδ(z) = Tδ+ε(x) ∈ G′′ ⊆ F0. But
rF (x) > b > 2δ ≥ δ + ε so this too is impossible.

• Case 2: x ∈ Tδ(G′). Here, we see that t = δ; we can assume further that
y ∈ G′. Let z = Tε(x) = Tδ+ε(y); z ∈ F ]

0 .
– Case 2 (a): z ∈ F0. This cannot happen as ε+ δ ≤ 2δ < b < rF (y).
– Case 2 (b): z ∈ Tδ(G′). Here z = Tδ(y′) for some y ∈ G′ ⊆ F0 with

0 ≤ δ < rF (y′). But we have z = Tδ+ε(y). Since F0 is horizontally
identifying, this implies ε = 0 which is impossible (if occurrences of F ]

0

accumulated along an orbit, then so would occurrences of F0).
– Case 2 (c): If z ∈ T−δ(G′′), then Tδ(z) ∈ F0 and therefore T2δ+ε(y) ∈ F0.

This is impossible since rF (y) > b > 3δ ≥ 2δ + ε.
• Case 3: x ∈ T−δ(G′′). Write x′ = Tδ(x) ∈ F0. Let z = Tε(x) ∈ F ]

0 .
– Case 3 (a): z ∈ F0 − G′ − G′′. This is impossible, for we would have
Tδ−ε(z) ∈ F0 but also the contradictory fact that rF (z) > b > δ − ε.

– Case 3 (b): z ∈ Tδ(G′). Here, we write z = Tδ(y) for y ∈ F0; since
F0 is horizontally identifying we see that T−δTδ(y) ⊆ F0; in particular
Tδ−ε(x) ⊆ F0. But then for any x′′ ∈ Tδ−ε(x) we have x′ = T2δ−ε(x′′);
this is not possible as rF (x′′) > b > 2δ − ε.

– Case 3 (c): z ∈ T−δ(G′′). Here we have Tδ(z) = Tδ−ε(x′) ∈ G′′ ⊆ F0

which is impossible since rF (x′) > b > δ − ε.

Proof of (2): Let x ∈ F ]
0 and first suppose that t ∈ B(x)

⋂
[0, δ).

• Case 1: x ∈ F0 −G′ −G′′. This is impossible by definition of G′′.
• Case 2: x ∈ Tδ(G′). In this case, take y ∈ T−2δ(x) and observe that y has

an orbit branching at some time ε less than δ (this follows from definition of
G′). Since t ∈ B(x), we have also that t+2δ ∈ B(y). By hypothesis the orbit
branchings of y must be separated by c0, but t+ 2δ − ε < 3δ < c0.
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• Case 3: x ∈ T−δ(G′′). Here there is some ε < δ such that ε ∈ B(Tδ(x)). So
ε+ δ ∈ B(x) so we have a contradiction as t ∈ B(x) but ε+ δ − t < c0.

Statement (3) of the Lemma follows immediately from the hypotheses of Theorem
3 since for any x, elements of B(x) are at least c0 apart, hence at least δ apart.

Now let g](x) = min{r](x), j1(x), j2(x), j3(x), ...}. g] : X → R+ is Borel. Next
let G] = {Tg](x)x : x ∈ X}; lemma 2.11 ensures that for any x ∈ G], we have
g](x) ≥ δ.

Now construct the suspension semiflow with IDI where G1 := G]

⋂
J and G2 :=

G] − J , g]|G1 is the return-time function, σ is as in Section 1 and Ŝ(x) = Tg](x)(x).
In particular for any x ∈ G1 we have

B(x) ⊆ {0}
⋃ {

n−1∑
i=0

g](σ(Ŝ ◦ σ)i(x)) : n = 1, 2, 3, ...

}
.

Let π : G → X be the map defined by π(x, t) = Tt(x). As G], g], σ and J are
Borel, π is also seen to be a Borel mapping.

Lemma 2.12. π is a bijection.

Proof. First we show that π is surjective. Let x ∈ X; write x = Tt(y) where y ∈ F0

and 0 ≤ t < f(y) (again, the y is not unique but the t is).
Now for each choice of such a y the set B(y)

⋂
[0, t] is finite. Suppose this set is

empty. There are two cases here:
• Case 1: Ŝ(y) ∈ G′′ and t ≥ rF (y)− δ. Here we see that g](y) = rF (y)− δ. If
g](y) = t, then x ∈ G], and therefore (x, 0) ∈ G and π(x, 0) = x. If g](y) < t,
then (σ(Ŝ(y)), t−g](y)) ∈ G and π(σ(Ŝ(y)), t−g](y)) = Tt−g](y)(σ(Tg]

(y))) =
Tt(y) = x.

• Case 2: Ŝ(y) /∈ G′′ or t < rF (y) − δ. In this case t < g](y) so (y, t) ∈ G and
π(y, t) = x.

If B(y)
⋂

[0, t] is nonempty, list the elements of this discrete set in increasing order
as by,1, by,2, ..., by,κ(y). Notice that by,κ(y) is always the same no matter the choice
of y. (If κ(y) = 1, let by,0 = 0.)

• Case 1: by,κ(y) = t. In this case, choose a particular y ∈ T−t(x)
⋂
F0; for

τ > by,κ(y)−1 we see

min{ji(Tτ (y)) : i > 0} = t− τ.

So x ∈ G] unless A = T[0,t−τ)(Tτ (y)) intersects F ]
0 in at least one point.

But A cannot meet F0 since rF (y) > t and cannot meet Tδ(G′) or T−δ(G′′)
because then y would have orbit branchings too close together, contradicting
the hypothesis of this section. So x ∈ G]; thus (x, 0) ∈ G and π(x, 0) = x as
desired.

• Case 2: by,κ(y) < t. Here we consider the set

I∗ = {z = Tby,κ(y)(y) : y ∈ F0, Tt(y) = x};
for any z1, z2 ∈ I∗ we have (z1, z2) ∈ IDI. So exactly one point in I∗ is in J ;
call it zJ . We know

B(zJ)
⋂

(0, t− by,κ(y)) = ∅

so (zJ , t− by,κ(y)) ∈ G (and π(zJ , t− by,κ(y)) = x) unless A = T(0,t−by,κ(y))(zJ)
meets F ]

0 in at least one point. But A cannot intersect F0 nontrivially since
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rF (y) > t. If A meets Tδ(G′), then either t > δ (in which case we have
Tt−δ(y) ∈ F0, a contradiction) or t ≤ δ (in which case by,κ(y) < δ, contradicting
Lemma 2.11 part (2). If A meets T−δ(G′′) in a point w = Tγ(zJ), then as
Tγ+δ+by,κ(y)(y) ∈ F0 we have t−γ−by,κ(y) ∈ [0, δ) whence (w, t−γ−by,κ(y)) ∈
G and π(w, t− γ − by,κ(y)) = x so in any event π is surjective as desired.

Now we show π is injective. Suppose (x1, t1) and (x2, t2) are two elements of G with
π(x1, t1) = π(x2, t2) = x. If t1 = 0, then x ∈ G] so Tt2(x2) ∈ G]. This of course
means that x2 ∈ G] and t2 = 0. Since π|G]

is the identity, we have x1 = x2.
On the other hand, if t1 and t2 are positive then we suppose without loss of

generality that 0 < t1 ≤ t2. Let s = sup{t ∈ [0, t1) : Tt1−t(z1) = Tt2−t(z2)}; if
s < t1 then z1 has an orbit branching at time t1 − s which is impossible since
B(z1)

⋂
(0, g](z1)) = ∅. So s = t1.

Claim: s = t2. If not, consider the point Tt2−s(z2) which cannot be in G] since
g](z2) > t2. In particular Tt2−s(z2) 6= z1. But by definition of s, we see that
(Tt2−s(z2), z1) ∈ IDI so they both have an orbit branching at time 0, hence they
are both in G]. This contradicts the above and proves the claim.

Now s = t1 = t2; if z1 6= z2 we see that z1 has an orbit branching at some
time in the interval [0, t1] which is impossible as B(z1)

⋂
(0, g](z1)) = ∅. Thus

(z1, t1) = (z2, t2) and π is injective, hence a bijection as desired.

To complete the proof of Theorem 1.8 we follow the work of Ambrose [2]. We now
have an isomorphism φ = π−1 between (X,B(X), µ, Tt) and (G,B(G), φ∗(µ), St).
It remains to show that φ∗(µ) is the product of a finite measure on the base with
Lebesgue measure in the vertical direction. To accomplish this, we begin with some
definitions:

Definition 2.13. Given a set A ⊆ G0

⋂
J , define A∗ to be the set of all (x, t) in

G such that x ∈ A. We call A∗ the tube over A.

Observe that A is a Borel subset of X if and only if A∗ is a Borel subset of G.

Definition 2.14. Given two real numbers α and β with 0 < α < β, define R(α, β)
to be the set of all (x, t) in G with t ∈ [α, β). We call the Borel set R(α, β) the
α, β−strip.

Choose c < δ/2 and define a measure ν̂ on the Borel subsets of G0 by first setting

ν̂(A) =
1
c
(φ∗(µ))

(
A∗

⋂
R(0, c)

)
for any A ⊆ G0

⋂
J (so long as c is small enough, the measure thus defined does

not depend on c) and then extending ν̂ to a measure on G0 by setting ν̂(A) = 0 for
any Borel A ⊆ G0 − J . This is of course a finite measure.

Proposition 2.15. φ∗(µ) = ν̂×λ where λ is Lebesgue measure on the Borel subsets
of R+.

Proof. Let A ⊂ G0

⋂
J be a Borel set and consider a rectangle R = A∗ ⋂

R(a, b).
Take a positive integer n; we have

R =
n−1⋃
i=0

A∗
⋂

R(a+
b− a

n
, a+ 2

b− a

n
).

The sets in this union are disjoint and mapped to one another by the semiflow in a
1 − 1 fashion so each has φ∗(µ)−measure (1/n)(φ∗(µ))(R). It follows that for any
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real number y ∈ (a, b) we have

φ∗(µ)(A∗
⋂

S(a, y)) =
y − a

b− a
φ∗(µ)(R). (2)

But also for the fixed c we chose above,

(ν̂ × λ)(A∗
⋂

R(0, c)) = ν̂(A)λ([0, c)) (3)

= (φ∗(µ))(A∗
⋂

R(0, c)). (4)

Together (2.2)−(2.4) imply that ν̂ × λ and φ∗(µ) agree on any rectangle. Also for
any Borel subset of (G0 − J) × {0} we have ν̂ × λ and φ∗(µ) both equal to zero.
Since rectangles and Borel subsets of (G0 − J) × {0} generate the Borel structure
on G, the proposition holds (and the proof of Theorem 1.8 is complete).

3. Two counterexamples.

3.1. Infinite measures on the base. We show in this subsection that the measure
on the section cannot in general be taken to be finite for an arbitrary Borel semiflow.
In particular we examine a specific Borel semiflow based on a transformation ϕ
studied by Boole [5]. Let ϕ(x) : R − {0} → R defined by ϕ(x) = x − 1

x . This
transformation preserves Lebesgue measure and is ergodic with respect to Lebesgue
measure [1]. Let

G1 = R−
∞⋃

i=0

ϕ−i(0);

G1 is a Gδ subset of R hence is Polish under the relative topology. Notice that when-
ever x ∈ G1, x has precisely two preimages under ϕ. For x ∈ G1 let f(x) = 2−b|x|c−2

(here bzc means the greatest integer less than or equal to z); f is measurable and
satisfies ∫

G1

f(x) dx = 1.

Now let St be the suspension semiflow (without IDIs) with base G1, return-time
function f , and return-time map ϕ. This is a Borel semiflow which preserves the
product of Lebesgue measures in the base and the vertical direction (in fact it is
ergodic with respect to this measure).

Proposition 3.1. St has the discrete orbit branching property.

Proof. Suppose not; then there exists a point x ∈ G such that B(x, 0), the set of
St−orbit branchings of (x, 0), has an accumulation point. But

B(x) =

{
n−1∑
i=0

f(ϕi(x)) : n ∈ N

}
.

As f is uniformly bounded away from zero on any bounded subset of G1, the
existence of an accumulation point in B(x) implies ϕi(x) → ±∞ as i → ∞. But
this is impossible, because whenever |x| > 1 we have |ϕ(x)| < |x|.

Notice also that the inverse image of any point under any St is countable, hence
σ−compact, so St satisfies the hypotheses of Theorem 1.7.

Theorem 3.2. St is not isomorphic to a suspension semiflow where the base is
endowed with a finite Borel measure.
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Proof. Suppose S∗t is a suspension semiflow with phase space G∗ (endowed with a
finite Borel measure µ̂∗), base G∗

1, return-time function f∗, and return-time map
Ŝ∗, isomorphic to St. Let ψ : G→ G∗ be the desired Borel conjugacy.

It must be the case that ψ(G1) ⊆ G∗
1: if x ∈ G1, then S−t(x) contains at least

two points for all t > 0. Therefore S∗−tψ(x) must contain at least two points for all
t > 0. But the only such points in G∗ are those in G∗

1.
Every x∗ ∈ ψ(G1) has its first return to ψ(G1) at some time 2−n for some integer

n ≥ 2 (since the same holds for every x ∈ G1). Now consider the measurable
partition of ψ(G1) into the sets

Pn = {x ∈ ψ(G1) : T2−n−1(x) ∈ ψ(G1) and T(0,2−n−1)(x)
⋂

ψ(G1) = ∅}

for n = 1, 2, 3, .... For any n, choose α ∈ (0, 2−n−1). We have

2α = µ
(
S[0,α)

(
G1

⋂ (
(−n− 1,−n]

⋃
[n, n+ 1)

)))
= (ψ∗µ)

(
ψ

(
S[0,α)

(
G1

⋂ (
(−n− 1,−n]

⋃
[n, n+ 1)

))))
= µ∗(S∗[0,α)(Pn))

= αµ̂∗(Pn);

whence µ̂∗(Pn) = 2 for all n. But there are infinitely many disjoint Pn all contained
in G∗

1, so µ̂∗ cannot be a finite measure.

3.2. Non-existence of finite-valued step codings. We end the paper by show-
ing that the independent results of Rudolph [17] and Krengel [12] guaranteeing
the existence of a two-valued step coding for measure-preserving flows do not hold
for Borel semiflows even if the semiflows under consideration are assumed to be
suspension semiflows. In fact, there is no finite-valued step coding in general.

Let G1 = [0, 1), let µ̂ be Lebesgue measure on G1 and let g : G1 → R+ be defined
by g(x) = x+ 1

2 . Let (G,St) be the suspension semiflow (with no IDIs) defined over
the base G1 with return-time function g and return-time transformation Ŝ(x) = 2x
mod 1. Notice that every x ∈ G1 has two preimages under Ŝ so the orbit branchings
of any point z with respect to St are the positive times t where St(z) ∈ G1.

Proposition 3.3. The semiflow St defined above does not have a finite-valued step
coding; that is, there does not exist a section F for the action for which

1. a suspension semiflow with base F is isomorphic to (G,St), and
2. given any point z ∈ F , the function rF (z) = inf{t > 0 : St(z) ∈ F} takes on

only a finite number of values.

Proof. Suppose not, and let a1, a2, ..., an be the list of positive real numbers which
are the values of rF (z) for z ∈ F . Let φ be the isomorphism from (G,St) to the
suspension semiflow over F . Observe that F must contain the image under φ of all
the orbit branchings of St. Hence F ⊇ φ(G1); since φ(G1) is also a section for St,
for any point z ∈ φ(G1) we therefore have nonnegative integers m1, ...,mn so that

rφ(G1)(z) =
n∑

i=1

miai



18 DAVID M. MCCLENDON

where rφ(G1)(z) = inf{t > 0 : St(z) ∈ φ(G1)}. This means that for every α ∈ [ 12 ,
3
2 ),

there are nonnegative integers m1(α), ...,mn(α) so that
n∑

i=1

mi(α)ai = α.

This is of course impossible as the set of possible
∑n

i=1miai is countable.
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