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Abstract. We show that any family of four essentially distinct integer poly-

nomials has Weyl complexity no greater than 4.

A generalization of Szemerédi’s [11] theorem on arithmetic progressions of Bergel-
son and Leibman [1] states that given any family P = {p1, ..., pk} of polynomials
with integer coefficients satisfying pj(0) = 0 for all j, and given any subset A of Z
of positive upper Banach density1, A must contain infinitely many sets of the form

{x, x + p1(n), ..., x + pk(n)}.
This result is closely associated with the behavior of multiple ergodic averages of
the form

(0.1)
1

N −M

N−1∑
n=M

T p1(n)f1 · ... · T pk(n)fk.

Bergelson and Leibman studied these averages in enough detail to establish their
result on polynomial progressions, but their work left some interesting unanswered
questions (notably, whether or not the limit of (0.1) exists as N − M → ∞, and
what the limit is if it exists).

An important idea in the study of multiple ergodic averages such as (0.1), dating
to Furstenberg’s proof [4] of Szemerédi’s [11] theorem, is that of a characteristic
factor:

Definition. Let (X,X , µ, T ) be a dynamical system2. A characteristic factor for
the averages (0.1) is a T−invariant sub σ−algebra Y of X such that the the averages
(0.1) converge to 0 in L2(µ) as N −M →∞ whenever E(fj |Y) = 0 for some j.

Roughly speaking, this means the L2−limit of (0.1) is the same when the func-
tions fj are replaced by their conditional expectation on the factor Y. Ideally then,
by explicitly describing some class of systems which serve as characteristic factors
for the averages under consideration, and by examining the averages for those sys-
tems, one could obtain results about the averages for general systems. In fact, this
has been done in [6] (for weak convergence) and [9] (for L2−convergence):
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1The upper Banach density of a set A ⊂ Z is d∗(A) = limN→∞ supM∈Z

1
N
|A ∩ [M, M + N)|.

2A dynamical system is for us a Lebesgue probability space (X,X , µ) with an invertible trans-

formation T : X → X which is measurable (A ∈ X ⇒ T−1A ∈ X ) and measure-preserving
(A ∈ X ⇒ µ(A) = µ(T−1A)). Systems may be denoted simply (X, T ) or even just X or T when
the other elements of the system are clear.
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Theorem (Host-Kra [6], Leibman [9]). Let P = {p1, ..., pk} be a family of essen-
tially distinct polynomials. Then there is a d = d(P) such that for every ergodic
system (X,X , µ, T ), there is a characteristic factor for the averages (0.1) which is
an inverse limit of d−step nilsystems.

These results are motivated by work in [5] which describes characteristic factors
in the case where P = {n, 2n, ..., kn}, and are useful because combined with another
result of Leibman [8] one obtains the convergence of the averages (0.1) in L2(µ).
However, an actual computation of the limit of these averages is difficult because
the evaluation of this limit in an arbitrary nilsystem is nontrivial. One problem
related to this issue is that the work in [6] and [9] does not provide useful upper
bounds on the minimum value of d which works in the above theorem for any large
class of polynomial families, i.e. does not characterize the “smallest” characteristic
factor which works for the averages.

A useful notion to attack this question is the Weyl complexity of a family of
polynomials, introduced in [2]. Roughly speaking, the Weyl complexity of a family
of polynomials codes the smallest m for which the “(m−1)th Host-Kra factor” Zm−1

(see [5] or [7]) is characteristic for the polynomial ergodic averages in the situation
where the dynamical system under consideration is a Weyl system. Exactly how the
Host-Kra factors are constructed is not central to our discussion; what is important
is that Zm−1 is the inverse limit of (m − 1)−step nilsystems. It is conjectured,
but not known, that the Weyl complexity also determines the smallest m for which
Zm−1 is characteristic for arbitrary systems; the best result known in this vein is a
result of Leibman ([10], section 13) which guarantees that if the Weyl complexity
of a family of polynomials is m, then an l−step nilsystem is characteristic for the
averages where l ≤ ((m− 1)3 + (m− 1)2)/2.

In [2] Bergelson, Leibman and Lesigne conjectured that the Weyl complexity of
a family of k essentially distinct polynomials (“essential distinctness” means that
each pj is nonconstant and that no two pj differ by a constant) must be at most k.
This is clear for k = 2; in [3] Frantzikinakis showed that families of three essentially
distinct polynomials have Weyl complexity at most three; in this paper we show:

Theorem 1. Let P be any family of four essentially distinct polynomials. Then P
has Weyl complexity at most 4.

As a corollary, using the result of Leibman [10] described above, we obtain the
fact that there is a characteristic factor for the averages (0.1) which is an inverse
limit of 18-step nilsystems.

1. Weyl complexity

In this section we define the Weyl complexity of a family of essentially distinct
polynomials, and state some results demonstrating how this notion connects the
machinery of characteristic factors to the structure of certain orbits in Weyl dy-
namical systems.

A connected Weyl system is the action of an ergodic, nilpotent, affine transforma-
tion on a finite-dimensional torus (preserving Lebesgue measure). A standard Weyl
system of level d is an transformation T : Td → Td defined by T (x1, ..., xd) =
(x1 + α, x2 + x1, x3 + x2, ..., xd + xd−1) where α ∈ T is irrational. A quasi-
standard Weyl system of level d is a transformation T : Td → Td defined by
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T (x1, ..., xd) = (x1 +α1, x2 +m2,1x1 +α2, ..., xd +
∑d−1

j=1 md,jxj +αd) where αj ∈ T,
α1 /∈ Q, and mj,j−1 6= 0 for all j > 1.

Given a family P of m polynomials (henceforth, a polynomial means any poly-
nomial with integer coefficients) and a system (X, T ), we define the orbit of a
polynomial family with respect to T as the subset of Xm+1 defined by

O(P, T ) = {(x, T p1(n)x, ..., T pm(n)x) : x ∈ X, n ∈ N}.

Definition. Let P = {p1, ..., pm} be a family of essentially distinct polynomials.
The Weyl complexity of this family is the number W (P ) ∈ N with the following
properties:

(1) W (P ) is the minimal r ∈ N such that for every d ≥ r, there is a quasi-
standard Weyl system (X, T ) of level d such that

{(0, ..., 0, xr, ..., xd)}k+1 ⊆ O(P 0, T )

where P 0 = {p1 − p1(0), ..., pm − pm(0)}.
(2) W (P ) is the minimal r ∈ N such that for every quasi-standard Weyl system

(X, T ) of any level d ≥ r we have

{(0, ..., 0, xr, ..., xd)}k+1 ⊆ O(P 0, T )

where P 0 = {p1 − p1(0), ..., pm − pm(0)}.
(3) W (P ) is the maximal s ∈ N (or 1 if there is no s) such that for some quasi-

standard Weyl system of level s − 1, there exist characters χi of X = Td,
at least one of which depends nontrivially on the coordinate xs−1, such that

χ0(x)χ1(T p1(n)x) · ... · χm(T p1(n)x) = 1

for all x ∈ Ts−1.
(4) W (P ) is the minimal m ∈ N such that for every connected Weyl system

(X, T ), the factor Zm−1 is characteristic for L2−convergence or weak con-
vergence of the corresponding polynomial ergodic averages.

The coincidence of the first two definitions is shown in [2]; that the third is
equivalent to the first two is straightforward (in particular, the word “some” in
definition (3) could be replaced with the word “every”); the equivalence of the
fourth definition with the first two is also in [2].

The following lemma is an easy consequence of the fourth description of Weyl
complexity and is proven in [3]:

Lemma 1.1. If P = {p1, ..., pm} is a family of essentially distinct polynomials,
then W (P ) = W (p1 − pm, p2 − pm, ..., pm−1 − pm,−pm).

The fourth description of Weyl complexity also makes it apparent that the Weyl
complexity of a polynomial family does not depend on the order in which the
polynomials are written.

2. Notation and general setup

Let P be a family of k essentially distinct polynomials. Let dj be the degree of pj

for j = 1, ..., k; we assume the polynomials are ordered so that d1 ≥ d2 ≥ ... ≥ dm.
For each j, write pj(x) = aj,0x

dj + aj,1x
dj−1 + ... + aj,dj−1x + aj,dj

. In particular,
aj,0 represents the leading coefficient of pj .
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Let α ∈ [0, 1) be irrational and let T : Tk → Tk be the quasi-standard Weyl
system defined by

[T (x1, ..., xk)]j = xj +
j−1∑
i=1

(
j
i

)
xi + α.

We see that

(2.1) [T r(x1, ..., xk)]j = xj +
j−1∑
i=1

(
j
i

)
rj−ixi + rjα.

For z ∈ Tk let e(z) = e2πiz and define characters χj of Tm by

χj(x1, ..., xk) = e(ci1x1 + ... + cikxk);

suppose further that

(2.2) χ0(x)
k∏

j=1

χj(T pj(n)x) = 1.

Substituting (2.1) into (2.2) and collecting like terms we obtain the following system
of k equations:

k∑
j=1

kcjkpj = 0

k∑
j=1

(
k − 1
k − 2

)
cj,k−1pj +

k∑
j=1

(
k

k − 2

)
cjkp2

j = 0

...
...

k∑
j=1

(
k − l + 1

k − l

)
cj,k−lpj + ... +

k∑
j=1

(
k

k − l

)
cjkpl

j = 0

...
...

k∑
j=1

(
3
2

)
cj3pj +

k∑
j=1

(
4
2

)
cj4p

2
j + ... +

k∑
j=1

(
k
2

)
cjkpk−2

j = 0

k∑
j=1

2cj2pj +
k∑

j=1

3cj3p
2
j + ... +

k∑
j=1

kcjkpk−1
j = 0

k∑
j=1

cj1pj +
k∑

j=1

cj2p
2
j + ... +

k∑
j=1

cjkpk
j = 0

We will refer to these equations respectively as the l = 1 equation, l = 2 equation,
etc. (so that the last equation is the l = k equation). Collectively we call this
system the fundamental system. To show that the Weyl complexity of P is at most
k, we need only show that the fundamental system has no solution (for the cij)
over the integers for which at least one cik 6= 0. This we do in the next section, for
the case k = 4.
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3. Proof for four polynomials

The fundamental system when k = 4 is:

(3.1) 0 = c14p1 + c24p2 + c34p3 + c44p4

(3.2) 0 =
4∑

j=1

cj3pj + 2
4∑

j=1

cj4p
2
j

(3.3) 0 = 2
4∑

j=1

cj2pj + 3
4∑

j=1

cj3p
2
j + 4

4∑
j=1

cj4p
3
j

(3.4) 0 =
4∑

j=1

cj1pj +
4∑

j=1

cj2p
2
j +

4∑
j=1

cj3p
3
j +

4∑
j=1

cj4p
4
j

We divide the result into cases depending on the degrees of the polynomials in
the family, tackling each case separately.

Case 1: d1 > d2 > d3 ≥ d4. From equation (3.1) we see that c14 = c24 = 0 and
therefore that d3 = d4. Plugging this information into equation (3.2) we obtain

0 =
4∑

j=1

cj3pj + 2(c34p
2
3 + c44p

2
4).

If c13 6= 0, then we see that d1 = 2d3. But then the right hand side of equation (3.3)
has degree 4d3 which is impossible. Therefore c13 = 0. If c23 6= 0, we see similarly
that d2 = 2d3. From looking at equation (3.3) we see that d1 = 2d2 = 4d3 and
therefore equation (3.4) has degree 8d3 which is impossible. So c13 = c23 = 0. Then
by considering the role of the leading coefficients of the polynomials p3 and p4 in
equations (3.1) and (3.2), we obtain c34 = −c44 and therefore p3 = p4, contradicting
the essential distinctness of the polynomials.

Case 2: d1 > d2 = d3 > d4. Again, we have c14 = 0. Suppose c13 6= 0. Then
from equation (3.3) we have 3d2 = 2d1 but from equation (3.4) we have 4d2 = 3d1;
these statements contradict one another so in fact c13 = 0.

Equations (3.1) and (3.2) then imply{
c24a2,0 + c34a3,0 = 0
c24a

2
2,0 + c34a

2
3,0 = 0 ;

therefore a2,0 = a3,0 and c24 = −c34. Let d0 = max{r : aj = bj ∀j ≤ r}; the
preceding argument ensures d0 ≥ 1. Suppose d0 < d, then we can write p2 = q + p′2
and p3 = q+p′3 where q(x) = a2,0x

d+ ...+ad0x
d−d0+1. Let d′2 and d′3 be the degrees

of p′2 and p′3, respectively. Assume d′2 ≥ d′3 (otherwise reorder the polynomials) so
that we have d′2 > 0. Substitute all this into equation (3.1) to obtain c24(p′2−p′3) =
0. This is impossible since p′2 and p′3 are either of different degrees or have different
leading coefficients. Therefore d0 = d and p2 = p3, a contradiction.

Case 3: d1 > d2 = d3 = d4. Again, c14 = 0. By the same argument as in the
first paragraph of Case 2, c13 = 0.

Suppose that d1 ≥ 3d2. Then there is a term in equation (3.4) with coefficient
c12 of degree at least 6d2 which cannot be cancelled with any other term; in this
case we have c12 = 0. Therefore, either d1 < 3d2 or c12 = 0. Let aj be the leading
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coefficient of pj for j = 2, 3, 4. The first three equations of the fundamental system
lead to

c24a
i
2 + c34a

i
3 + c44a

i
4 = 0

for i = 1, 2, 3 (the case where i = 3 is a consequence of the fact that either d1 < 3d2

or c12 = 0). There must therefore be two numbers from a2, a3 and a4 which coincide;
by reordering the polynomials if necessary we have a2 = a3. Now by Proposition
1.1 we see that

W (P ) = W (p1 − p2,−p2, p3 − p2, p4 − p2).
This new collection of polynomials must satisfy the conditions of either Case 1 or
Case 2.

Case 4: d1 = d2 > d3 ≥ d4. By looking at the leading coefficients of equations
(3.1) and (3.2), we see that c14a1,0 + c24a2,0 = 0 and c14a

2
1,0 + c24a

2
2,0 = 0. This

implies that c14 = −c24 and that a1,0 = a2,0. Write p1 = q + p′1 and p2 = q + q′2 as
was done in Case 2. Making these substitutions in equation (3.2), we see that the
left hand side of (3.2) has a single 4c14q(p′1 − p′2) which is of degree d1 + d′1.

If c14 6= 0, the this term must be cancelled with another term of the same degree
which must be coming from some p2

t for t = 3 or 4 (in particular t is the smallest
number > 2 for which ct4 6= 0). Hence

2dt = d1 + d′1.

However, in equation (3.3), the highest power coming from p3
1 and p3

2 has degree
2d1 + d′1 and the highest power term coming from the other terms is 3dt. So we
have also

3dt = 2d1 + d′1;
this equation together with 2dt = d1 + d′1 implies d1 = dt which is impossible.
Consequently c14 = 0 and also c24 = 0. Knowing this, equation (3.1) ensures that
d3 = d4 (otherwise c34 = c44 = 0).

Suppose that d1 < 2d3. Then by considering the role of leading coefficients in
equations (3.1) and (3.2) we see that a3,0c

i
34 + a4,0c

i
44 = 0 for i = 1, 2. This implies

that c34 = −c44 and then equation (3.1) gives p3 = p4, contradicting the essential
distinctness of the polynomials. Therefore d1 ≥ 2d3.

Consequently the highest degree term in (3.4) must come from c13p
3
1 and c23p

3
2;

we expand the sum of these two terms to obtain

c13p
3
1 + c23p

3
2 = c13(q + p′1)

3 + c23(q + p′2)
3

= (c13 + c23)q3 + terms of degree < 3d1.

From this we can conclude that c13 = −c23 and that the highest degree of the
preceding expression is 2d1 + d′1 (coming from the term 3c13q

2(p′1− p′2)). Equation
(3.1) then reduces to

c13(p′1 − p′2) + 2c34p
2
3 + 2c44p

2
4 = 0.

We next show d′1 = 2d3.
Suppose d′1 > 2d3. Then from the reduced version of (3.1) we have c13 = 0 and

then by looking at the leading coefficients of equations (3.1) and (3.2) we again
have c34 = −c44 and p3 = p4, a contradiction.

Suppose d′1 < 2d3. Then by looking at the leading coefficients of equations (3.1)
and (3.2) we again have c34 = −c44 and p3 = p4, the same contradiction. Hence
d′1 = 2d3.
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Knowing this, we see the highest power term of (3.4) (coming from c13p
3
1+c23p

3
2)

has degree 2d1 + d′1 > 4d3. The coefficient of this term is a multiple of c13, so
c13 = 0. But again, by looking at the leading coefficients of equations (3.1) and
(3.2) we again have c34 = −c44 and p3 = p4, a contradiction.

Case 5: d1 = d2 = d3 > d4. From analyzing the leading coefficients of equations
(3.1), (3.2) and (3.3) we see

c14a
i
1,0 + c24a

i
2,0 + c34a

i
3,0 = 0

for i = 1, 2, 3. This can only occur if at least two of the numbers a1,0, a2,0 and a3,0

are equal; without loss of generality we can assume a1,0 = a2,0. Now looking at the
leading coefficients of equations (3.1) and (3.2) we have{

(c14 + c24)a1,0 + c34a3,0 = 0
(c14 + c24)a2

1,0 + c34a
2
3,0 = 0

This leads to one of two possible situations:
Case 5 (a): a1,0 = a3,0. In this case, we apply Proposition 1.1 to get

W (P) = W (−p1, p2 − p1, p3 − p1, p4 − p1).

The first and last polynomials of this new family have degree d1, but the middle
two polynomials have degree less than d1, so Case 4 applies to this new family.

Case 5 (b): a1,0 6= a3,0. This implies c14 = −c24 and c34 = 0. Write p1 = q + p′1
and p2 = q + p′2 as has been done in previous cases. Now consider equation (3.2)
which reduces to

4∑
j=1

cj3pj + 2[c14q(p′1 − p′2) + c14(p′21 − p′22 ) + c44p
2
4] = 0.

This means either c14 = 0 (impossible since this would imply cj4 = 0 for all j) or
d1 + d′1 = 2d4.

Consider also the fourth sum in equation (3.4) which becomes

c14[(p′1 + q)4 − (p′2 + q)4] + c44p
4
4;

after expanding and combining terms we obtain

4c14q
3(p′1 − p′2) + terms of degree < 3d1 + d′1 + c44p

4
4

and can conclude that 3d1 + d′1 = 4d4.
But the two equations d1 + d′1 = 2d4 and 3d1 + d′1 = 4d4 taken together imply

that d1 = d′1, a contradiction.
Case 6: d1 = d2 = d3 = d4. From analyzing the leading coefficients of all four

equations (3.1)-(3.4) we see

c14a
i
1,0 + c24a

i
2,0 + c34a

i
3,0 + c44a

i
4,0 = 0

for i = 1, 2, 3, 4. This can only occur if at least two of the polynomials pj share the
same leading coefficient. After reordering the polynomials we can assume a1,0 =
a2,0. Now by Proposition 1.1 we have

W (P) = W (−p1, p2 − p1, p3 − p1, p4 − p1).

The second polynomial in this new family has smaller degree than the first poly-
nomial so one of the previous cases applies. This exhausts all possible cases so the
result is proved.



8 D. MCCLENDON

References

[1] V. Bergelson and A. Leibman. Polynomial extensions of van der Waerden’s and Szemerédi’s
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