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Abstract. We study the growth rate of the function TJ (n) which counts

the number of contiguous buildings that can be made from n LEGO “jumper
plates” of the same color. We give upper and lower bounds on the exponential

growth rate of TJ (n): the lower bound comes from techniques introduced by

Durhuus and Eilers in [DE2] and the upper bound is derived by associating
to each building a “labelled binary tree” and counting the number of such

objects.

1. Introduction

1.1. Background. In 2016, revenue of the LEGO Company was more than $6.3
billion [Le]. One reason LEGO products are so popular might be the seemingly
endless number of ways to connect together the small plastic building toys. This
leads to an interesting combinatorial question: exactly how many different ways can
n LEGO bricks of the same size, color and shape be interlocked? If n is small, then
this number can be counted exactly, if one has enough computing power. Begfinnur
Durhuus and Søren Eilers studied this question for 2× 4 rectangular LEGO bricks
and were able to determine that there are

8, 274, 075, 616, 387

different ways to connect eight 2 × 4 LEGO bricks [DE2]. To put this number
into perspective, suppose that you could build one of these constructions every five
seconds. It would take you 1.31 million years to run through all these constructions!

Unfortunately, once n becomes large (for 2× 4 bricks, “large” means 10 [DE2]),
the exact number of different configurations is still not known - no closed mathe-
matical formula exists, and the run time for any known computer algorithm is too
large. The good news, however, is that if one defines TB(n) to be the number of
different configurations that can be built from n LEGO bricks from some particular
class B of brick, then in many cases one can show that TB(n) grows exponentially
in n, and upper and lower bounds on the exponential growth rate of this function
can be obtained. Indeed, in [DE2], Durhuus and Eilers compute upper and lower
bounds on this growth rate for standard rectangular LEGO bricks.

In this paper, we study a different type of LEGO brick, called a jumper plate.
A jumper plate is a 1 × 2 LEGO element which has only one stud on its top, and
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Figure 1. The bottom and top of a LEGO jumper plate. To
attach two jumper plates, the stud on the top of the child can be
inserted into any of the three “slots” on the bottom of the parent.

Figure 2. Top and bottom view of a LEGO double jumper plate.

three locations on its bottom into which studs can be inserted (see Figure 1). When
two jumper plates are attached in this way, we can arrange them so that their studs
point upward, and refer to the plate on the top of the connection as the parent
and the plate underneath as a child (we use the term grandchild in the obvious
way).

In this paper, we study the function TJ (n) which counts the number of contigu-
ous LEGO buildings that can be made from n jumper plates. We are especially
interested in determining how fast this function grows: is it exponential? super-
exponential? etc. We will prove that TJ grows at an exponential rate, and give
bounds on the rate of its exponential growth.

1.2. Why jumper plates? For some classes B of LEGO bricks, TB(n) is very easy
to figure. For example, for a standard 1×1 LEGO brick, the only way to connect n
such bricks together is to make a 1×1 tower of height n, so T1×1(n) is the constant
function T1×1(n) = 1.

LEGO also produces a “double jumper” plate (denote this class of plate by D)
which is a 2 × 2 plate with a single stud in the center of the top (see Figure 2).
There are 5 ways to attach one double jumper plate to another (by placing the stud
of the child in either the center or one of the four corners of the parent). Since a
double jumper plate can have at most one child, saying which of the 5 connections
is used to attach each child to its parent completely describes a building made from
n double jumper plates. Since there are n − 1 plates in such a building which are
children, TD(n) = 5n−1.

One reason why these two classes of bricks have easy to describe functions T
is that the buildings one can make from them lack three “dimensions” of free-
dom, in that the number of pieces being used completely determines the building’s
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Figure 3. The six different ways to attach two jumper plates.
In each building, the light gray plate is the parent and the dark
gray plate is the child. In the top three connections pictured, we
say the child is perpendicular to the parent; in the bottom three
connections, we say the child is parallel to the parent.
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height. Jumper plates are the simplest LEGO elements that allow for bonafide
three-dimensional constructions, in which one can build outwards in non-trivial
ways as well as directly up and down, and that is why we choose to study them.

Jumper plates are popular with LEGO aficionados because unlike standard rect-
angular LEGO bricks, jumper plates allow for creations that have a “half-stud”
offset; this “jumping” of a half-stud gives the piece its name.

1.3. What makes two buildings “different”? We said earlier that TJ (n) is
the number of contiguous LEGO buildings that can be made from n jumper plates.
To clarify this definition, we need to describe exactly what makes one building
“different” from another. First, since each jumper plate has only one stud on its
top, the building has to have a unique jumper plate on its top-most level; call this
jumper plate the root of the building. To account for translational symmetry, we
specify that TJ (n) is the number of buildings that can be made from n jumper
plates, where the root occupies a fixed position.

If one thinks of buildings as being identified up to rotational symmetry, then
each building is counted twice in our computation of TJ (n) (because when the
root is rotated by 180◦ about its center, it occupies the same position). However,
the exponential growth rate of TJ (n) would be the same whether such buildings
are identified or not, so we will not bother with identifying buildings which are
rotationally symmetric. As an example, in Figure 3 we treat buildings 1 and 3 as
two separate buildings (each made from 2 jumper plates), even though by rotating
building 1 by 180◦ produces building 3. In particular, this means TJ (2) = 6. Notice
that the “half-stud” offset permitted in some of the attachments shown in Figure 3
means that jumper plates will not form the same kinds of buildings as the standard
rectangular LEGO bricks studied in [DE2].

1.4. Configurations made from a small number of jumper plates. To get
an idea of how the function TJ behaves, let’s actually compute some values of
TJ (n). When n = 3, we can just build each of the constructions and count them
(see Figure 4), and if n is small enough, we can count TJ (n) by hand (see Figure 5
for the values when n ≤ 8). To get an idea of how these values are obtained, we’ll
go through the case n = 5. Buildings made from 5 jumper plates must have height
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Figure 4. The 37 buildings that can be made from 3 jumper
plates. Notice that the top-most plate in each construction (the
root) occupies a fixed position. The bottom-most building in this
picture is the only building of height 2 that can be made from 3
jumper plates; the other buildings all have height 3. These build-
ings of height 3 can be catalogued by first choosing one of the 6
connections described in Figure 3 to specify how to attach the mid-
dle plate to the root, and then choosing one of the 6 connections
of Figure 3 for how the bottom plate attaches to the middle plate.
This gives 6(6) = 36 buildings of height 3 made from 3 jumper
plates (in general, there are 6n−1 buildings of height n made from
n jumper plates).

Figure 5. Values of TJ (n) for n ≤ 8, computed by hand.
n TJ (n)
1 1
2 6
3 37
4 234
5 1489
6 9534
7 61169
8 393314

3, 4 or 5, so we can count the number of buildings of each height separately and
add:
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Figure 6. Values of TJ (n) for 9 ≤ n ≤ 14, computed via com-
puter calculations by S. Eilers [E]:

n TJ (n)
9 2531777
10 16316262
11 105237737
12 679336650
13 4388301841
14 28366361206

If the building is five plates high: here, every plate (other than the bot-
tom one) has exactly one child; since there are 6 ways to attach each non-
root plate to its parent, we obtain a total of 64 = 1296 such buildings.

If the building has four plates high: exactly one of the five plates must
have two children.
• If the root has two children, then the grandchild of the root must be

attached to one of the 2 children in one of 6 ways (so there are 2·6 = 12
ways to attach the grandchild to the bottom of the building); then
there are 6 ways to attach the last plate underneath the grandchild.
So there are 12 ·6 = 72 buildings where only the root has two children.

• If the child of the root is the only plate with two children, then a
similar argument yields 72 buildings in this case as well.

• If the grandchild of the root is the plate with two children, then there
are 36 buildings (6 ways to attach the child to the root, 6 ways to
attach the grandchild of the root underneath the child, and 1 way to
attach the last two plates under the grandchild of the root).

If the building is three plates high: the building consists of the root, the
two children of the root, and two plates attached under the children of the
root. The only freedom in such a building is in attaching the bottom-most
plates; there are 13 ways to do this (9 ways in which the plates in the bottom
level are parallel to the plates in the second level, and 4 ways in which the
plates in the bottom level are perpendicular to those in the middle level).

Combining these cases, we obtain TJ (5) = 1296 + 72 + 72 + 36 + 13 = 1489.
Sadly, once n ≥ 9, this method begins to break down because there are too many

cases to efficiently count. However, S. Eilers [E] recently communicated to us the
values of TJ (n) for 9 ≤ n ≤ 14, obtained by computer computations (see Figure
6); unfortunately, even computer computations do not help in computing TJ (n) for
larger n–the run time for known algorithms becomes prohibitively large.

Plotting the values of log TJ (n) against n for n ≤ 14 (Figure 7), we see that TJ
appears to have exponential growth (in fact, in Section 2 we will prove that TJ (n)
does in fact grow exponentially). Furthermore, the least-squares linear equation
for log TJ (n) against n, derived from the values of TJ (n) for n ≤ 14, suggests that
TJ (n) ≈ e1.85531n−1.93902, i.e. that TJ (n) has exponential growth rate 1.85531 ≈
log 6.39368. (We will show rigorously in Section 3 that this numerical approximation
underestimates, at least slightly, the actual exponential growth rate of TJ .)
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Figure 7. The graph of log TJ (n) versus n for n ∈ {1, ..., 14}.
The least-squares line derived from these points (shown by the
dashed line) has equation y ≈ 1.85531x− 1.93902, suggesting that
TJ (n) ≈ e1.85531n−1.93902.
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1.5. Entropy. We saw from the numerics in the previous section that there is good
reason to believe TJ (n) grows exponentially, i.e. that TJ (n) grows like C exp (hJ n)
for suitable constants C and hJ . We are interested in studying the value of hJ ;
assuming TJ (n) ≈ C exp (hJ n), we can “solve” for hJ to obtain

hJ ≈
1

n
(log TJ (n)− logC) .

As n → ∞, the 1
n logC term goes to zero, leaving hJ ≈ 1

n log TJ (n). With this
idea in mind, we define the entropy of a jumper plate to be

hJ := lim
n→∞

1

n
log TJ (n),

provided this limit exists (we will show that it does in Section 2).
We use the word “entropy” because the formula used to define hJ resembles a

formula used in information science to compute a quantity called entropy: consider
a stationary, ergodic process (as an example of such an object, think of a ticker-
tape printing out 0s and 1s randomly according to some probability law). Order
the words1 of length n coming from this process in decreasing order (in terms of
their probabilities). After fixing λ ∈ (0, 1), select words of length n in the above
order, one at a time starting with the most likely word, until the probabilities of
the selected words sum to at least λ. Defining Nn(λ) to be the number of words it
takes to do this, it turns out that

(1.1) lim
n→∞

1

n
logNn(λ) = h

where h is a number, independent of λ, called the entropy of the stochastic process.
The quantity h measures the amount of “randomness” or “chaos” in the process,
and is an important invariant of stationary processes which has applications in
data compression and ergodic theory. Essentially, the fact in Equation (1.1) is a
corollary of what is known in information theory as the Shannon-McMillan-Breiman

1In the ticker-tape example, a “word” of length 6 would be something like 001011 or 110111.
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Theorem, or the “asymptotic equipartition property” (see [Sh, M, B, AC] for more
on this).

Remark: The base of the logarithm is irrelevant in the definition of entropy, as
choosing two different bases yields the same answer up to a constant multiple. We
choose base e, but the only time in our paper that this matters is during the proof
of Theorem 3.1.

1.6. History and summary of our main results. Several mathematicians and
computer scientists have done work on counting numbers of various LEGO con-
figurations made from rectangular bricks [AE, DE1, DE2, JKC, KKC, Li]. As
mentioned earlier, Durhuus and Eilers showed in [DE2] that the number Tb×w(n)
of buildings that can be made from n standard rectangular b × w LEGO bricks
grows exponentially in n, and described upper and lower bounds on the entropy of
2× 4 bricks.

In this paper, we investigate the entropy of LEGO jumper plates, using some
methods borrowed from [DE2] and other methods involving the combinatorics of
objects we call “labelled binary graphs”. In the next two sections, we show that the
limit defining the entropy exists and is at least log 6.44947. The techniques in these
sections are borrowed heavily from Durhuus and Eilers, who studied the entropy of
(non-jumper) rectangular LEGO bricks in [DE2]. In Section 4 we prove that the

entropy is at most log(6+
√

2), using a new method of associating a “labelled binary
tree” to each building and counting the number of such labelled trees. The method
of associating a graph to a LEGO construction was used in [DE1], but the idea of
labelling the graphs (and the associated combinatorics) is, as far as we know, new.

Section 5 contains an outline of how our methods might be further improved,
and the last section outlines how our methods can be applied to a different type of
LEGO element called a “roof tile”.

2. Existence of entropy

Durhuus and Eilers established the existence of the entropy for configurations
of rectangular b× w bricks in [DE2]; we mimic their argument to explain why hJ
exists.

Theorem 2.1. Let TJ (n) be the number of buildings made from n 1 × 2 jumper
plates. Then

hJ = lim
n→∞

1

n
log TJ (n)

exists in [0,∞].

Proof. Denote by BJ (n) the set of buildings which can be made from n jumper
plates. Then, let AJ be the subset of BJ consisting of buildings whose bottom-most
layer contains exactly one jumper plate; let an = #(AJ (n)). Observe that

(2.1) TJ (n− 1) ≤ an ≤ TJ (n).

To see the left-hand inequality, notice that by removing the bottom plate from
each member of AJ (n), we obtain a member of BJ (n − 1), and every member of
BJ (n− 1) can be obtained in this fashion. The right-hand inequality follows from
the fact that AJ (n) ⊆ BJ (n).
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Figure 8. A LEGO building with two bottlenecks, located at the
black jumper plates indicated by the arrows. Each of the black
jumper plates is the only plate in its level of the building.

From (2.1), we see that

hJ = lim
n→∞

1

n
log TJ (n) = lim

n→∞

1

n
log an.

Next, notice that an+m ≥ anam. To see why, observe that by attaching the root
of any element of AJ (n) to the underside of the plate on the bottom level of any
building in AJ (m) produces a building in AJ (m + n). This procedure yields an
injection AJ (n)×AJ (m) ↪→ AJ (m+ n), giving the desired inequality. Therefore,
for all m and n, log am+n ≥ log am + log an, so by Fekete’s lemma

{
1
n log an

}
converges as n→∞ to sup

{
1
n log an

}
∈ [0,∞]. �

3. A lower bound on the entropy

First, as there are 6 choices for how an only child can be attached to its parent,
the number of buildings of height n that can be made from n jumper plates is 6n−1,
thus producing the trivial lower bound

hJ ≥ lim
n→∞

1

n
log 6n−1 = log 6.

We tighten this bound by applying a technique developed in [DE2] which counts
the number of buildings with a fixed number of “bottlenecks”.

Theorem 3.1. Let hJ be the entropy of a 1× 2 LEGO jumper plate. Then

hJ ≥ log 6.44947.

Proof. Recall AJ (n + 1) is the set of LEGO buildings made from n + 1 jumper
plates such that the top and bottom layer of the building each consist of a single
plate. We say that a building in AJ (n+ 1) has a bottleneck if the building has a
layer, other than the top and/or bottom layer, which has only a single brick in it
(see Figure 8).

For n ≥ 0, let cn denote the number of buildings in AJ (n + 1) that have no
bottlenecks. In [DE2], the authors show using generating functions that for any n,

(3.1)

n∑
j=1

cj
(
ehJ

)−j ≤ 1,

and their argument carries over into our context. By explicitly computing values of
cj for some j, we obtain a lower bound for hJ . First, it is clear that c1 = 6, since any
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building made from two plates has no bottleneck. Note also that c2 = 0, because
any building with three plates arranged in three layers must have a bottleneck in
the middle layer.

To determine c3, note that any building in AJ (4) without bottlenecks must have
one plate in its bottom layer, and two in the middle layer which are both children
of the root. There is therefore only one way to hook the top three plates together,
so c3 is equal to the number of ways to attach a single jumper plate to the bottom
of one of two parallel jumper plates. There are six ways to attach this last plate to
its parent, and two choices of parent, so c4 = 6(2) = 12.

Next, c4 = 0, because any building made from five jumper plates where the top
and bottom layers consist of a single plate must have a bottleneck in it.

For c5, observe that any building in AJ (6) with no bottlenecks must have one
plate in the top layer (call this layer 0), one plate in the bottom layer (layer 3),
and two plates in each of the two intermediate layers (layers 1 and 2). Therefore
there is one way to configure the three jumper plates in layers 0 and 1. Once those
three are attached, two more jumper plates need to be attached underneath layer
1 to form layer 2. There are 9 ways to do this so that the plates in layer 2 are
parallel to the plates in layer 1, and 4 ways to do this so that the plates in layer
2 are perpendicular to the plates in layer 1. Once layer 2 is made, the last plate
(which comprises layer 3) needs to be attached to the bottom of one of the two
plates in layer 2 to finish the building; there are 12 ways to do this. Altogether,
c5 = (4 + 9)12 = 156.

At this point we know from (3.1) that

6
(
ehJ

)−1
+ 12

(
ehJ

)−3
+ 156

(
ehJ

)−5 ≤ 1,

from which it follows that hJ ≥ log 6.3877.
S. Eilers [E] relayed to us computer-generated computations of c7 = 2652, c8 =

144, c9 = 59100, c10 = 18192 and c11 = 1615740; applying these values, the lower
bound improves to hJ ≥ log 6.44947. �

Notice that this lower bound is greater than the value of hJ suggested by the
least-squares computation in Section 1 (which was log 6.39368).

4. An upper bound on the entropy

In this section we look for an upper bound on hJ . Remember from the proof of
Theorem 2.1 that BJ (n) denotes the set of LEGO buildings made from n jumper
plates.

4.1. A crude upper bound. We obtain hJ ≤ log 8 by applying a method de-
scribed in [DE2] which associates to each LEGO building a string of characters
taken from a finite alphabet. More specifically, let b ∈ BJ (n) be a building. Num-
ber the plates in b from 1 to n−1 as follows: call the root of the building “plate 1”,
then number the child(ren) of the root “plate 2” (and “plate 3”, if the root has two
children), then continue inductively, numbering the children of plate 2, then any
children of plate 3, etc. Any time that a plate has two children, choose a standard
way to order the children (for example, choose a compass direction to represent
north, and whenever a plate has two children, give the smaller number to the plate
that is either further south or further west, depending on its orientation).
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Next, number the different ways to connect two jumper plates 1 to 6 as shown
in Figure 3, and define A = {0, ./, 1, 2, 3, 4, 5, 6}.

Then define f : BJ (n) ↪→ An−1 as follows: f(b) = (x1, ..., xn−1) if, for every
j ∈ {1, ..., n− 1},

xj =


0 if plate j of the building has no children
./ if plate j of the building has two children

z ∈ {1, ..., 6} if plate j of the building has exactly one child, which is
attached to its parent via connection z as shown in
Figure 3.

In the last case above, to distinguish between connections like those numbered 1
and 3 in Figure 3, one can decree that if the child is attached to the southernmost
or westernmost slot of the parent, then the connection is type 1; otherwise it is
type 3.

Essentially, the symbol in the jth position of f(b) tells you how to attach children
to the jth plate in the building b. As such, a string of n − 1 symbols provides
directions to construct at most one building, so f is 1− 1. Thus

TJ (n) = #(BJ (n)) ≤ #(An−1) = 8n−1

and it follows that

hJ ≤ lim
n→∞

1

n
log 8n−1 = log 8.

4.2. Bounding the entropy by counting labelled binary trees. In this sec-
tion, we improve the upper bound to hJ ≤ log

(
6 +
√

2
)

by a new method which
associates, to each LEGO building, a “labelled binary tree”, counting the number
of such labelled trees with specific properties, and counting the maximum number
of buildings that can be associated to each such labelled tree.

First, by a binary tree T , we mean a full binary tree where the left and right
children at each node are distinguished. More formally, we decree a binary tree to
be a rooted tree which is also an ordered tree, where every node has either 0 or 2
children. Given such a binary tree, a branching of the tree is a node which has 2
children. We denote the set of nodes of binary tree T by V (T ).

Next, a labelled binary tree is a pair (T , f) where T is a binary tree and f is a
function which assigns to each node in T a positive integer. For each n ∈ {1, 2, 3, ...},
let Ln be the set of labelled binary trees (T , f) such that∑

v∈V (T )

f(v) = n;

denote the cardinality of Ln by Q(n). For each n ∈ {1, 2, 3, ...} and k ∈ {0, 1, 2, ...},
define Ln,k to be the set of labelled binary trees in Ln which have exactly k branch-
ings. See Figure 9 for an example.

The first key observation related to our counting of LEGO structures is this:

Theorem 4.1. Let TJ (n) be the number of LEGO buildings that can be made from
n 1× 2 jumper plates. Then

TJ (n) ≤
bn−1

2 c∑
k=0

6n−1−2k#(Ln,k).
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Figure 9. A labelled binary tree belonging to the set L26,3. (The
values of the labelling function f are written inside each circle. 26 is
the sum of the labels on the nodes; 3 is the number of branchings.)
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Proof. We begin by associating to each building b ∈ BJ (n) a labelled binary graph
Θ(b) ∈ Ln,k. The idea of how this association works is shown in Figure 10; the
concept is that the nodes of tree Θ(b) indicate the parents in the original building
which have 2 children, and the labels on the nodes (i.e. the values of f) indicate
how many generations one needs to pass through before seeing the next plate with
two children. Now for the details:

First, given b ∈ BJ (n), associate a graph to b by thinking of the individual
jumper plates comprising b as nodes and saying that the nodes are related if the
corresponding plates are attached, similar to what was done in [DE1]. This produces
a tree θ(b) whose root corresponds to the root of the building, where each node in
θ(b) has at most 2 children.

To order the tree θ(b), we need to consider the situation where a plate in the
building has two children. To do this, choose a compass direction to represent north.
If a plate has two children, either one child is south of the other, or one child is
west of the other. In the first case, decree the left branch in θ(b) to correspond to
the southernmost child, and in the second case, decree the left branch in θ(b) to
correspond to the westernmost child.

To obtain the labelled binary tree Θ(b), we next define an equivalence relation
on the nodes of θ(b). Given nodes v and w in θ(b), say v � w if there is a chain of
nodes v = v0, v1, v2, ..., vn = w such that for each j ∈ {1, 2, 3, ..., n}, vj is the only
child of vj−1. (Notice that for all nodes v, v � v by setting n = 0.) Then declare
nodes v and w to be equivalent if v � w or w � v.

Denoting the equivalence class of a node v under this relation by [v], we obtain a
labelled binary tree Θ(b) whose vertices are the equivalence classes [v], whose edge
relations are defined by saying [w] is the child of [v] if and only if some member of
[w] is the child of some member of [v] in tree θ(b), and whose labelling function f
is defined by f([a]) = #([a]). This completes the formal definition of Θ.

For the second part of the proof, we count the maximum number of preimages a
labelled binary tree has under Θ. If Θ(b) ∈ Ln,k, then b must be a building made of
n jumper plates, of which k have exactly two children; these plates are at locations
specified by the labels of Θ(b). To describe such a building, one therefore needs
only to specify how to attach the jumper plates which are only children. There
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Figure 10. This figure shows an example of how we associate a
labelled binary tree to a LEGO building made from jumper plates.
On the left, we have a LEGO building b made from 16 jumper
plates. In the center, its binary tree θ(b) is shown. This binary
tree essentially “forgets” the orientation of the plates and simply
records how the individual pieces are attached. In particular, the
nodes colored black in this tree come from the plates colored black
in the building. On the right, the labelled binary tree Θ(b) ∈ L16,2

is pictured; note that the six individual black nodes in θ(b) have
been collapsed to a single node labelled “6” in Θ(b).

1

1

6

3 5

b ∈ BJ (16) θ(b) Θ(b) ∈ L16,2

are n − 1 − 2k such plates which need to be attached to make such a building,
and for each such plate there are ≤ 6 ways to attach the plate to its parent. Thus
there are at most 6n−1−2k buildings b for which Θ(b) is a fixed labelled tree in
Ln,k. Summing this count from the minimum number of branchings (zero) to the
maximum number of branchings in a building made from n jumper plates (

⌊
n−1
2

⌋
)

gives the inequality of the theorem. �

In light of Theorem 4.1, one way we could find an upper bound on TJ (n) would be
to study the growth rate of the sequence #(Ln,k). But in fact, we can do better by
observing that the function Θ defined in Theorem 4.1 is very far from surjective. As
an example, suppose that some jumper plate in a building has 2 children. Because
these two children must be parallel and share a common boundary of length 2, it is
impossible for either of those two children to themselves have two children unless
their sibling is childless. So in a building made from jumper plates, no plate can
have more than 2 grandchildren, meaning, for example, that a labelled graph such
as the one shown in Figure 11 cannot be Θ(b) for any b ∈ BJ (n).

Defining L∗n,k to be the set of labelled binary graphs in Ln,k which are actually

obtained as Θ(b) for at least one building b ∈ BJ (n), and denoting the cardinality
of the set L∗n,k as Q(n, k), it follows from the reasoning in the last paragraph of the
proof of Theorem 4.1 that

(4.1) TJ (n) ≤
bn−1

2 c∑
k=0

6n−1−2kQ(n, k).
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Figure 11. No labelled graph of this type (where a, b1, b2, c1 and
c2 are positive integers) can be obtained as Θ(b) for any building
b ∈ BJ (n), because the plate at the top-most branching would
have 4 grandchildren.

a

1

b1

b2

1

c1

c2

Instead of studying the growth rate of #(Ln,k), we instead will find an effective
upper bound on the size of Q(n, k). The next three lemmas work toward this
goal. In Lemma 4.2, we lay out some preliminary properties of Q(n, k). Lemma
4.3 establishes a recursively defined upper bound for Q(n, k), and Lemma 4.4 uses
the preceding two lemmas to establish a closed formula for a nice upper bound on
Q(n, k).

Lemma 4.2 (Properties of Q(n, k)). Let Q(n, k) be defined as above. Then:

(1) If n < 2k + 1, then Q(n, k) = 0.
(2) For any n ∈ {1, 2, 3, ...}, Q(n, 0) = 1.
(3) For any k ∈ {1, 2, ...}, Q(2k + 1, k) = 2k−1.

Proof. For (1), observe that a (full) binary tree T with k branchings must have ex-
actly 2k+1 nodes. Thus, for any function f : V (T )→ {1, 2, 3, ...},

∑
v∈V (T ) f(v) ≥

2k + 1, so no pair (T , f) can exist in Ln,k if n < 2k + 1.
For (2), we note that a tree with zero branchings consists of a single node.

The only element of Ln,0 is therefore this single node, together with the function
assigning n to that node.

Last, to show (3), notice that a labelled binary tree belongs to L2k+1,k if and
only if the tree has k branchings and f(v) = 1 for every node in V (T ). In order for
such a tree to come from a building made from jumper plates, there must be only
one branching at each level of the tree (otherwise, there would be a plate in the
building with four grandchildren, which is impossible). This means that at each
level other than the root, there are two choices for which child in the tree has a
branching (the left or the right). Since there are k − 1 branchings other than the
one at the root, we obtain Q(2k + 1, k) = 2k−1 as wanted. �

Lemma 4.3 (Recursive upper bound for Q(n, k)). For any n ∈ {1, 2, 3, ...} and
any k ∈ {0, 1, 2, ...},

Q(n, k) ≤ Q(n− 1, k) +

n−1∑
j=0

k−1∑
s=0

Q(j, s)Q(n− j − 1, k − s− 1).

Proof. Let L
(1)
n,k be the set of labelled binary trees in L∗n,k such that f assigns 1 to

the root vertex.
First, we count the complement of L

(1)
n,k. To do this, observe that any such tree

can be associated to a tree in L∗n−1,k by subtracting 1 from the label on the root.
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Figure 12. An example of how we join labelled trees. We count

the number of labelled trees in L
(1)
n,k by observing that every la-

belled tree in that set comes from joining a “left subtree” (Tl, fl)
to a “right subtree” (Tr, fr) as shown below.

3

5 7

8

2 6

1

3

5 7

8

2 6

(Tl, fl) (Tr, fr) J = J((Tl, fl), (Tr, fr))

(element of L∗15,1) (element of L∗16,1) (element of L
(1)
15+16,1+1+1 = L

(1)
31,3)

More precisely, for any (T , f) ∈ L∗n,k − L
(1)
n,k, define g : V (T )→ {1, 2, 3, ...} by

g(v) =

{
f(v) if v is not the root of T

f(v)− 1 if v is the root of T

The mapping (T , f) 7→ (T , g) therefore gives a bijection between L∗n,k − L
(1)
n,k and

L∗n−1,k, so #
(
L∗n,k − L

(1)
n,k

)
= Q(n− 1, k).

Next, we count L
(1)
n,k. Let j ∈ {0, 1, ..., n− 1} and let s ∈ {0, 1, ..., k − 1}. Given

any two labelled trees (Tl, fl) ∈ L∗j,s and (Tr, fr) ∈ L∗n−j−1,k−s−1, we can “join”

those trees together to create a tree in L
(1)
n,k as shown in Figure 12. More precisely,

we build a labelled tree J = J ((Tl, fl), (Tr, fr)) as follows: the tree T of J is formed
by taking trees Tl and Tr, adding one more node to serve as the root of the new
tree, and decreeing the roots of Tl and Tr to be, respectively, the left and right
children of the new root. The function f : V (T )→ {1, 2, 3, ...} assigns 1 to the root
of T , and agrees with fl and fr on Tl and Tr. Notice that∑

v∈V (T )

f(v) = f(root(T )) +
∑

v∈V (Tl)

fl(v) +
∑

v∈V (Tr)

fr(v)

= 1 + j + (n− j − 1)

= n

and the number of branchings in J is 1 (from the new root) plus s (the number
of branchings in Tl) plus k − s − 1 (the number of branchings in Tr). Therefore

J ∈ Ln,k; of course, J might not be in the image of Θ, but every building in L
(1)
n,k

can be obtained in this way, so we know

#
(
L
(1)
n,k

)
≤

n−1∑
j=0

k−1∑
s=0

Q(j, s)Q(n− j − 1, k − s− 1).

Adding together the counts of L
(1)
n,k and L∗n,k − L

(1)
n,k gives the inequality in the

statement of the lemma. �

The “initial values” of Q(n, k) given in Lemma 4.2 and the recursive formula of
Lemma 4.3 can be combined to obtain the following upper bound on Q(n, k):
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Lemma 4.4 (Upper bound on Q(n, k)). Let Q(n, k) be defined as above. Then

Q(n, k) ≤
(
n− 1

2k

)
2k−1.

Proof. For n ≥ 1 and k ≥ 0, define numbers R(n, k) by using the information from
Lemma 4.2 and pretending that the inequality given in Lemma 4.3 is actually an
equality: more formally, set

R(n, k) = 0 for any n < 2k + 1;(4.2)

R(n, 0) = 1 for any n ≥ 0;(4.3)

R(2k + 1, k) = 2k−1 for any k ≥ 1;(4.4)

and recursively define, for any n > 2k + 1,

(4.5) R(n, k) = R(n− 1, k) +

n−1∑
j=0

k−1∑
s=0

R(j, s)R(n− j − 1, k − s− 1).

In light of Lemma 4.3, Q(n, k) ≤ R(n, k) for all n and k. We will prove the lemma
by showing R(n, k) =

(
n−1
2k

)
2k−1.

The key to this lemma is to see that for each n ∈ {1, 2, 3, ...} and each k ∈
{0, 1, 2, ...}, R(n, k) is a polynomial of degree 2k in the variable n. To prove this
claim, we use induction on k. The base case k = 0 is obvious since R(n, 0) = 1 for
all n ≥ 1.

For the induction step, fix k > 0 and assume that for all j < k, R(n, j) is a degree
2j polynomial in the variable n. Now define R(0, k) = 0 and for n ∈ {1, 2, 3, ...},
set D(n, k) = R(n, k)−R(n− 1, k). By the formula (4.5) above, we see that

D(n, k) =

n−1∑
j=0

k−1∑
s=0

R(j, s)R(n− j − 1, k − s− 1).

By the induction hypothesis, R(j, s) is a polynomial of degree 2s in the variable j
and R(n − j − 1, k − s − 1) is a polynomial of degree 2(k − s − 1) in the variable
n− j − 1. Therefore, for each j and s, the expression

R(j, s)R(n− j − 1, k − s− 1)

is a polynomial in two variables n and j (degree 2(k − 1) in the variable j and
2(k− s− 1) in the variable n). When these polynomials are summed from s = 0 to
k − 1, we obtain a polynomial which is degree 2(k − 1) = 2k − 2 in the variable j
and degree 2(k− 1) in the variable n. Therefore D(n, k), being the sum from j = 0
to n−1 of such polynomials, is a polynomial of degree 2k−1 in the variable n (the
highest degree coming from the polynomials in variable j being added together).
Finally,

R(n, k) =

n∑
j=0

D(j, k)

is the sum of n + 1 polynomials of degree 2k − 1 in the variable n, which is a
polynomial of degree 2k. This establishes the claim.

At this point, we know that R(n, k) is a polynomial of degree 2k which has roots
when n = 1, 2, 3, 4, ..., 2k. Therefore, for some constant C depending on k,

R(n, k) = C(n− 1)(n− 2) · · · (n− 2k)
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and in particular, R(2k + 1, k) = C(2k)!. But we know R(2k + 1, k) = 2k−1 by

(4.4), and it follows that C = 2k−1

(2k)! . Therefore

R(n, k) =
2k−1

(2k)!
(n− 1)(n− 2) · · · (n− 2k)

=
2k−1

(2k)!

(n− 1)!

(n− 2k − 1)!

= 2k−1
(
n− 1

2k

)
as needed. �

To summarize, at this point we know by combining Theorem 4.1 and Lemma 4.4
that the number TJ (n) of buildings made from n LEGO jumper plates satisfies

TJ (n) ≤
bn−1

2 c∑
k=0

Q(n, k)6n−1−2k

≤
bn−1

2 c∑
k=0

(
n− 1

2k

)
2k−1 · 6n−1

(
1

36

)k

.

Using the convention that
(
n
k

)
= 0 when n < k, this inequality can be rewritten as

(4.6) TJ (n) ≤ 1

2
· 6n−1

∞∑
k=0

(
n− 1

2k

)(
1

18

)k

.

We have obtained a series on the right-hand side of (4.6) which, fortunately, can
be summed using the binomial theorem:

Lemma 4.5. For any r ∈ (0, 1),
∞∑
k=0

(
n− 1

2k

)
rk =

(1 +
√
r)n−1 + (1−

√
r)n−1

2
.

Proof. Let r ∈ (0, 1). From the binomial theorem,

(1 +
√
r)n−1 =

∞∑
k=0

(
n− 1

k

)(√
r
)k

(1)n−1−k

=

(
n− 1

0

)
+

(
n− 1

1

)
r1/2 +

(
n− 1

2

)
r +

(
n− 1

3

)
r3/2 + ...

and also

(1−
√
r)n−1 =

∞∑
k=0

(
n− 1

k

)
(−
√
r)k(1)n−1−k

=

(
n− 1

0

)
−
(
n− 1

1

)
r1/2 +

(
n− 1

2

)
r −

(
n− 1

3

)
r3/2 + ...

When the two preceding series are added together, the non-integer powers of r
cancel; dividing the sum by 2 gives the formula in the claim. �

Finally, we are able to put all the work of this section together and deduce the
upper bound on hJ :
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Figure 13. If c > 1, then no matter the values of positive integers
a, b1 and b2, this labelled graph cannot be Θ(b) for any b ∈ BJ (n)
for any n, because the plate corresponding to the top-most branch-
ing would have 3 grandchildren.

a

1

b1

b2

c

Theorem 4.6. The entropy hJ of a 1×2 jumper plate satisfies hJ ≤ log
(
6 +
√

2
)
.

Proof. Applying the formula in Lemma 4.5 to Equation (4.6), we get

TJ (n) ≤ 6n−1
(

1

4

)(1 +

√
1

18

)n−1

+

(
1−

√
1

18

)n−1


=
1

4

[(
6 +
√

2
)n−1

+
(

6−
√

2
)n−1]

and therefore

hJ = lim
n→∞

1

n
log TJ (n)

≤ lim
n→∞

1

n
log

1

4

[(
6 +
√

2
)n−1

+
(

6−
√

2
)n−1]

.

The dominant exponential term inside the brackets comes from the
(
6 +
√

2
)n−1

term, so we obtain hJ ≤ log
(
6 +
√

2
)

as desired. (Alternatively, this limit can be
evaluated rigorously using logarithm rules and L’Hôpital’s Rule.) �

5. Further improvements to the upper bound

Recall from the discussion in Section 4 that many labelled binary graphs in Ln,k

cannot be obtained as Θ(b) for any building b made from n jumper plates. We

obtained the upper bound hJ ≤ log
(
6 +
√

2
)

by throwing out some labelled binary
graphs for which some nodes have four grandchildren. However, this technique
does not come close to discarding all the labelled binary graphs which are not in
the range of Θ. In particular, any labelled binary graph containing a subgraph like
either of those in Figures 11 or 13 cannot be Θ(b) for any building b.

We propose a program to further improve our upper bound as follows: as before,
for each n and k, let

L∗n,k = Range(Θ) ∩ Ln,k

and let Q∗(n, k) be any sequence satisfying Q∗(n, k) ≥ #(L∗n,k). By the same
argument as the one given in Section 4, we have

hJ ≤
bn−1

2 c∑
k=0

Q∗(n, k)6n−1−2k.
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Figure 14. The top and bottom of a 2× 1 LEGO roof tile.

so any Q∗(n, k) which grows more slowly than ours (in this language, what we used
for “Q∗(n, k)” in Section 4 was R(n, k) =

(
n−1
2k

)
2k) would improve the upper bound.

One way to do this is would be to count the number of labelled binary graphs coming
from binary graphs in which no node has more than two grandchildren. By itself,
however, this improvement would not give the exact value of Q∗(n, k), as there are
other restrictions on the kinds of labelled binary graphs which lie in the range of
Θ.

6. Remarks on the entropy of LEGO roof tiles

S. Eilers asked whether our methods can be adapted to study 2× 1 LEGO roof
tiles (such a piece, which we denote by class R, slopes inward at a 45◦ angle from
a base which measures 1 × 2 to a top that measures 1 × 1; see Figure 14). Unlike
jumper plates, the bottom of a roof tile allows only two slots for the top stud of a
child to be inserted into its parent.

First, the argument given in Section 2 for jumper plates carries over directly to
show that hR = limn→∞

1
n log TR(n) exists. Second, it’s easy to see that for 2× 1

roof tiles, TR(2) = 8, because to connect two such pieces together, one needs to
choose a slot to insert the child (2 options) and independently choose a direction
for the slope of the child to point (4 options). Thus a crude lower bound on the
entropy is hR ≥ log 8, and this bound could be improved by methods akin to what
we executed for jumper plates in Section 3 (for this class of brick, c1 = 8 and
c3 = 144, producing a lower bound of hR ≥ log 9.57174).

As for an upper bound on hR, by associating a labelled graph Θ(b) to any
building b made from n 2× 1 roof plates in the same way we did for jumper plates
in Section 4, one obtains

TR(n) ≤
bn−1

2 c∑
k=0

8n−1−2k9k#(Ln,k).

The extra 9k term in this expression comes from the fact that there are 9 distinct
ways to attach two roof tiles underneath a particular roof tile, and a building
associated to a graph in Ln,k has exactly k of these branchings.

Unfortunately, at this point the problem becomes more difficult, because unlike
jumper plates, a roof plate may have 4 grandchildren. Our methods do provide an
upper bound of hR ≤ log 14, but with far more complicated analysis using special
mathematical functions which we briefly outline in the next paragraph, leaving the
details for the interested reader to work out.
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Using methods similar to what we did in Lemmas 4.2 to 4.4, one can show that
that

#(Ln,k) =

(
n− 1

2k

)(
2k

k

)
1

k + 1

and therefore

TR(n) ≤ 8n−1
bn−1

2 c∑
k=0

(
n− 1

2k

)(
2k

k

)
1

k + 1

(
9

64

)k

= 8n−1
∞∑
k=0

(n− 1)!

(n− 2k − 1)!(k + 1)!

(9/64)k

k!

= 8n−1 2F1

(
1

2
− n

2
, 1− n

2
, 2;

9

16

)
where 2F1 is the Gauss hypergeometric function [OD, Sl]. Using a symmetry of the
hypergeometric function called the Pfaff transformation (see, for example, [KO]),

and the definition of the Jacobi polynomial P
(a,b)
m (see Chapter 4 of [Sz]), this upper

bound can be rewritten as

8n−1
(

7

16

)m
1

m+ 1
P

(1,−1
2 )

m

(
25

7

)
where m = 1

2 (n − 1). For large m, this Jacobi polynomial can subsequently be
approximated using Darboux’s formula (see formula (1.2) of [BG]) as

P
(1,−1

2 )
m

(
25

7

)
=

K√
m

7m+1 (1 + o(1))

for a suitable constant K. Putting all this together,

TR(n) ≤ 8n−1
(

7

16

)n−1
2

7
n+1
2

K

(m+ 1)
√
m

(1 + o(1))

and by taking the logarithm of this expression, dividing by n and letting n → ∞,
one obtains the upper bound

hR ≤ log 8 + log

√
7

4
+ log

√
7 = log 14.

It would be interesting to study other LEGO bricks for which an upper bound
on their entropy can be computed using our methods.
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