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1 Introduction

It has long been asserted that the number of ways to combine six 2 × 4 LEGO

blocks of the same color is
102981500

This number was computed at LEGO in 1974 ([2]) and has been systematically
repeated, for instance in [4, p. 15] and [3]. Consequently, the number can be
found in several “fun fact” books and on more than 250 pages on the World
Wide Web1. However, this number only gives (with a small error, as we shall
see) the number of ways to build a tower of LEGO blocks of height six. The
total number of configurations is

915103765

as found by independent computer calculations by the second author and by
Abrahamsen [1]. This figure has now been accepted by LEGO Company, cf. [5].

Figure 1: 46 basic positions

∗LEGO is a trademark of LEGO Company
1Google search, October 2004
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We consider contiguous buildings of LEGO blocks, disregarding color, and
identify them up to translation and rotation. We think of a b× w LEGO block
as a subset of R

3 of the form

[x;x+ b] × [y, y + w] × [z; z + 1]

or
[x;x+ w] × [y, y + b] × [z; z + 1]

Since the top and bottom of a LEGO block are distinguishable we will only
consider rotations in the xy-plane.

It is easy to see that one such block may be put on top of another in

(2b− 1)(2w − 1) + (b+ w − 1)2 (1.1)

different ways if b 6= w and in
(2b− 1)2 (1.2)

different ways if b = w.
With w = 4 and b = 2 we get 46 possibilities, and note (as depicted in blue

on Figure 1) that 2 of these are symmetric. Thus, letting H2×4(n,m) denote
the number of ways to build a building of height m with n 2 × 4 LEGO blocks
one then clearly has

H2×4(n, n) =
1

2
(46n−1 + 2n−1)

Note that H2×4(6, 6) = 102981504, so that in fact LEGO’s computation is off by
four.

By combining results of computer-aided enumerations with elementary com-
binatorics one can further establish

H2×4(n, n− 1) = 46n−4(−89115 + 37065n) + 2n−4(−8 + 16n) (1.3)

for n ≥ 3 and

H2×4(n, n− 2) = 2n−7(1785 − 825n+ 256n) (1.4)

+46n−7(−918674675− 5330182078n+ 1373814225n2)

for n ≥ 5, but as the problem is rather hopelessly non-markovian there seems to
be no way to give formulae for the number of buildings of relatively low height,
or indeed for the total number T2×4(n) of contiguous configurations, counted
up to symmetry. Although symmetry arguments and other tricks can be used
to prune the search trees somewhat, we are essentially left with the very time-
consuming option of going through all possible configurations to determine these
numbers, which even with efficient computers seems completely out of range for
numbers such as T2×4(12). A sample of our results may be seen in Figure 2.

These results seem to indicate, as shown on Figure 3, that T2×4(n) grows
exponentially in n. In this paper we will show that this is indeed the case, and
give upper and lower bounds on the rate of growth – the entropy of the blocks.
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H2×4(n,m) m = 2 m = 3 m = 4 m = 5 m = 6

n = 2 24
n = 3 500 1060
n = 4 11707 59201 48672
n = 5 248688 3203175 4425804 2238736
n = 6 7946227 162216127 359949655 282010252 102981504

Figure 2: H2×4(n,m) for m,n ≤ 6

n T2×4(n)

1 1
2 24
3 1560
4 119580
5 10116403
6 915103765
7 85747377755
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Figure 3: Rate of growth of T2×4 with semilogarithmic plot

2 Entropy of b × w blocks

It is the goal of the present section to prove that the following definition makes
sense:

Definition 2.1 The entropy of a b× w LEGO block is

sb×w = lim
n−→∞

log(Tb×w(n))

n
(2.5)

We let hb×w = exp(sb×w).

That the limit exists is by no means obvious, except of course for s1×1 = 0.
We shall prove that this is the case in two steps, first establishing convergence
in [0;∞] and then proving that the limit is finite.

It is inconvenient and irrelevant for our theoretical considerations to identify
buildings up to symmetry, so we establish definiteness in another fashion. Sup-
pressing the block size from the notation, we will by An denote all contiguous
buildings containing [0;w] × [0; b] × [0; 1] with the further property that there
is no other block in R

2 × [0; 1] and no block at all in R
2 × [−1; 0]. Thus, the

configuration can be thought of as sitting on a base block at a fixed position.
We let an = #An and note
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Lemma 2.2 We have

lim
n−→∞

log(Tb×w(n))

n
= lim

n−→∞

log(an)

n

in the sense that if one limit exists, so does the other.

Proof: The claims follow immediately by the inequalities

Tb×w(n− 1) ≤ an ≤ 4Tb×w(n)

The leftmost inequality follows by mapping each equivalence class of configura-
tions with n− 1 blocks to a representative placed on top of [0;w]× [0; b]× [0; 1]
and noting that this map is injective. The rightmost follows by mapping each
configuration to an equivalence class and noting that this map is at most 4− 1.
�

We now get

Proposition 2.3 log(an)/n converges in [0;∞] as n −→ ∞.

Proof: One sees that an+m ≥ anam by noting that an injective map from
An × Am to Am+n is defined by placing the base block of the element of Am

somewhere on the top layer of the element of An.
Hence log(an) is a superadditive sequence, and log(an)/n converges to

sup
n∈N

log(an)/n.

�

To prove that this limit is finite, i.e. that an grows no faster than exponen-
tially, we describe a surjective map associating to each function

Sn : {1, . . . , 2bw(n− 2)} −→ {−bw,−bw + 1, . . . , bw − 1, bw} (2.6)

an element of
An ∪ {FAIL}.

Clearly the number of such functions grows only exponentially in n. We
shall subsequently look closer at which functions do indeed lead to buildings
with n LEGO blocks, and give much better estimates for hb×w than the obvious
(2bw + 1)2bw.

With a fixed enumeration of the studs and holes of a b× w LEGO block by
the numbers 1, . . . , bw, a map of the form (2.6) gives rise to an element of An,
or the symbol FAIL, as follows.

Take one LEGO block and call it block 1. Then read Sn(1), . . . , Sn(bw) from
left to right to specify what to build on top of block 1 as follows. If Sn(1) > 0,
take another LEGO block and place it parallely to block 1 with hole Sn(1) on
top of stud 1. If Sn(1) < 0, take a LEGO block and place it orthogonally, rotated
+90◦, to block 1 with hole −Sn(1) on top of hole 1. In both cases, give the new
block the number 2. If Sn(1) = 0, do nothing. Then proceed to read Sn(2) to
see what, if anything, to place on stud 2, and so on until Sn(bw). Enumerate
the blocks as they are introduced.

Terminal state 2.4 If at any point a block collides with one which has already

been placed, the procedure terminates with FAIL.
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These steps will result in the placing of between 0 and bw blocks on block 1.

Terminal state 2.5 If at any point all n blocks have been placed, consider the

unread values of Sn. If they are all 0, the procedure terminates successfully

with an element of An. If not, the procedure terminates with FAIL.

Terminal state 2.6 If, after reading the specifications for the first m < n− 1
blocks, no block m+1 has been introduced, the procedure terminates with FAIL.

We may now assume that a block 2 has been introduced and look at Sn(bw+
1), . . . , Sn(2bw) which will specify what to build on top of this block, if anything,
in the same way that Sn(1), . . . , Sn(bw) specified what to build on block 1. A
positive number at Sn(bw + 1) will result in the placing of a block on stud 1
of block 2 parallel to block 1, a negative number at Sn(bw + 1) will result in
the placing of a block on stud 1 of block 2 orthogonal to block 1, etc. We
proceed in the same way for blocks 3, . . . , n− 1, but now read 2bw values where
Sn((2m−4)bw+1), . . . , Sn((2m−3)bw) will specify what to put on top of block
m, and Sn((2m − 3)bw + 1), . . . , Sn((2m − 2)bw) will specify what to put on
underneath it in an analogous way.

Terminal state 2.7 If at any point a second block is placed at the level R
2 ×

[0; 1], the procedure terminates with FAIL.

Terminal state 2.8 If Sn has been read to the end, consider the number of

blocks placed. If it is less than n, the procedure terminates with FAIL. If not,

it terminates successfully with an element of An.

We repeat this until one of the terminal states are reached.
If the procedure does not fail, it will result in a building of n contiguous

blocks, and clearly any such building may be constructed in this way. Thus, the
number of possibilites for maps Sn dominates an, as desired, and we have:

Theorem 2.9 The limit in (2.5) exists for any block dimension b× w.

We can give general bounds of hb×w, but as wee shall see below in the case
w = 4, b = 2, these bounds can in general be rather dramatically improved.

Theorem 2.10 If b 6= w we have

(2b− 1)(2w − 1) + (b+ w − 1)2 ≤ hb×w ≤
(2bw)2bw+1

(2bw − 1)2bw−1
(2.7)

If b = w we have

(2b− 1)2 ≤ hb×w ≤
(b2)2b2+1

(b2 − 1)2b2−1
(2.8)

Proof: By (1.1) we clearly have

an ≥ ((2b − 1)(2w − 1) + (b+ w − 1)2)n−1

when b 6= w, and this gives the lower bound in that case. For the upper bound,
note that a function Sn with nonzero entries at m locations will yield FAIL if
m 6= n− 1. Hence we get

an ≤

(
2bw(n− 2)
n− 1

)

(2bw)n−1

5



1 2 3 4

5 6 7 8

Figure 4: Enumeration of studs and holes

By Stirling’s formula we then get

an ≤
(2bw(n− 2))!

(n− 1)!((2bw − 1)n− 4bw + 1)!
(2bw)n−1

=
(2bwn)!(2bw)n

n!((2bw − 1)n)!
O(1)

=
(2bwn)2bwn(2bw)n

nn((2bw − 1)n)(2bw−1)n
O(n−1/2)

=
(2bw)2bwn(2bw)n

(2bw − 1)(2bw−1)n
O(n−1/2)

=

(
(2bw)2bw+1

(2bw − 1)2bw−1

)n

O(n−1/2)

from which the claim follows directly.
The square case follows similarly by (1.2) and by noting that functions Sn

may be chosen non-negative. �

Example 2.11 We enumerate the studs of a 2 × 4 LEGO block according to

Figure 4. Now consider functions {1, . . . , 32} 7→ {−8, . . . , 8} given by

(

1
︷ ︸︸ ︷

0, 5, 0, 0,−4, 0, 0, 0,

2
︷ ︸︸ ︷

0, 0, 0, 0,−1, 0, 0, 0,

3
︷ ︸︸ ︷

0, . . . , 0, 0, . . . , 0) (2.9)

(

1
︷ ︸︸ ︷

0,−1, 0, 0, 0, 0, 0, 0,

2
︷ ︸︸ ︷

0, 5, 0, 0, 0, 0, 0, 0,

3
︷ ︸︸ ︷

0, . . . , 0, 0, 0, 0,−1, 0, 0, 0) (2.10)

(

1
︷ ︸︸ ︷

1, 1, 0, 0, 0, 0, 0, 0,

2
︷ ︸︸ ︷

0, . . . , 0,

3
︷ ︸︸ ︷

0, . . . , 0, 0, . . . , 0) (2.11)

(

1
︷ ︸︸ ︷

0,−1, 0, 0, 0, 0, 0, 0,

2
︷ ︸︸ ︷

0, 5, 0, 0, 0, 0, 0, 0,

3
︷ ︸︸ ︷

0, . . . , 0, 0, 0, 0,−1, 0,−1, 0) (2.12)

(

1
︷ ︸︸ ︷

0, . . . , 0,

2
︷ ︸︸ ︷

0, . . . , 0,

3
︷ ︸︸ ︷

0, . . . , 0, 0, . . . , 0) (2.13)

(

1
︷ ︸︸ ︷

0,−1, 0,−1, 0, 0, 0, 0,

2
︷ ︸︸ ︷

0, . . . , 0,

3
︷ ︸︸ ︷

0, 0, 2, 0, 0, 0, 0, 0, . . . , 0) (2.14)

(

1
︷ ︸︸ ︷

0,−1, 0, 0, 0, 0, 0, 0,

2
︷ ︸︸ ︷

0, 5, 0, 0, 0, 0, 0, 0,

3
︷ ︸︸ ︷

0, . . . , 0, 0, . . . , 0) (2.15)

where all ellipses indicate six consecutive zeros. The functions (2.9) and (2.10)
give rise to the buildings depicted on Figure 5. The remaining five functions

give simple examples of functions resulting in the procedure failing at Terminal

state 2.4, 2.5, 2.6, 2.7, and 2.8, respectively.
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Figure 5: Buildings associated to (2.9) and (2.10)

3 Improved upper bounds

In this section we shall describe methods to improve the upper bound on hb×w

given in Theorem 2.10. They apply to any dimension, but as they are somewhat
ad hoc we shall concentrate on our favored dimension 2×4 and leave other cases
to the reader.

From Theorem 2.10 we know that h2×4 ≤ 1617/1515 ≤ 647.02. We shall give
a simple improved estimate leading to h2×4 ≤ 203.82 and a somewhat more
complicated one leading to h2×4 ≤ 191.35. Besides being easier to state, the
simpler estimate has applications in producing statistical estimates for an for
relatively large n.

Note that the surjective map associating buildings (or FAIL) to certain maps

Sn : {1, . . . , 16(n− 2)} −→ {−8,−7, . . . , 7, 8}

is very far from being injective. We have already employed the fact that unless
the number of nonzero values is n− 1, the function is mapped to FAIL. But we
may also use that the placement of a block onto another may be indicated in
ℓ different ways, where ℓ is the number of studs of the lower block which are
inserted into the upper block. Restricting attention to maps where placements
are indicated in a fixed way will not affect surjectivity of the map.

Any partition of the 46 positions in Figure 1 into 8 sets P1, . . . ,P8 with
the property that any position in Pi employs stud i of the lower block can be
used to improve the upper bound. One uses the convention that a position in
Pi is always indicated by a symbol at stud i, thus restricting the number of
possibilities.

Another restriction is available when specifying what to add to block m for
m > 2. If we keep track of how block m was introduced, we know a priori

that one hole or one stud of it has already been used, thus eliminating at least
16 out of the 46 possibilities on the relevant side of the block. Dividing up the
remaining 30 positions as above, we get 64 sets Pj

i with the property that P i
i = ∅

and that Pj
1 , . . . ,P

j
8 is a partition of the 30 positions which do not employ stud

j.

Theorem 3.1 We have

an ≤

(
13n− 23
n− 1

)

6n−1 (3.16)

and, consequently, that h2×4 ≤ 6 · 1313/1212 < 203.82
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Figure 6: Even distribution

Proof: We partition the 46 positions into 8 sets, each consisting of 6 or 5 con-
figurations, as indicated by the rows of Figure 6. Thus on indices related to one
side of blocks 1, . . . , n− 1, we need only allow for 6 different symbols.

On the other side of blocks 3, . . . , n− 1, we can do even better, as outlined
above. We leave to the reader to check that the 30 positions may be distributed
evenly over 5 studs. Hence, (3.16) is established, and the remaining claim follows
by Stirling’s formula as in Theorem 2.10. �

It turns out – somewhat counterintuitively? – that uneven distributions of
the positions give slightly better estimates than what we obtained above. We
have not carried out a systematic analysis and can not claim that the distribu-
tion leading to Theorem 3.3 is optimal, but trial and error with the following
proposition make us believe that there is only marginal room for improvement
by this method.

If (a1, . . . , a8) and (b1, . . . , b8) are tuples of integers, we write (a1, . . . , a8) ≤
(b1, . . . , b8) if there is a permutation σ of {1, . . . , 8} with the property that
aσ(i) ≤ bi for each i.

The methods leading to the following result are surely known.

Proposition 3.2 Let Pi and Pj
i be partitions of the sets of positions as outlined

8



above, and assume that

(#P1, . . . ,#P8) ≤ (a1, . . . , a8)

(#Pj
1 , . . . ,#Pj

8) ≤ (b1, . . . , b8), j ∈ {1, . . . , 8}.

With

P0(y) = (y + a1) · · · (y + a8) P (y) = P0(y)(y + b1) · · · (y + b8)

we have that an is dominated by the coefficient of y15n−31 in (P0(y))
2(P (y))n−3

and that

h2×4 ≤
P (x0)

x15
0

where x0 is the largest real root of

Q(x) = 15P (x) − xP ′(x)

With the even distribution described above we get x0 = 72, which, since
P (72)/7215 = 6 · 1313/1212 is consistent with Theorem 3.1. Using that in fact
(#P1, . . . ,#P8) ≤ (5, 5, 6, 6, 6, 6, 6, 6) we may improve the estimate on h2×4

sligthly to 198.57.
However, we can do even better with very uneven distributions:

Theorem 3.3 h2×4 ≤ 191.35

Proof: There exist partitions with

(#P1, . . . ,#P8) ≤ (16, 15, 7, 5, 2, 1, 0, 0)

(#Pj
1 , . . . ,#Pj

8) ≤ (15, 7, 4, 3, 1, 0, 0, 0), j ∈ {1, . . . , 8}.

so by Proposition 3.2 we are lead to consider

P (x) = −x5(x + 15)(x+ 7)(x+ 1)R(x)

where R(x) is the polynomial

x8−23x7−2056x6−38700x5−332657x4−1504645x3−3645736x2−4392600x−2016000

which has a largest real root which is approximately 65.05. The estimate follows
by Proposition 3.2. �

4 Improved lower bounds

It follows from Theorem 2.10 that h2×4 ≥ 46. We shall in this section improve
this estimate to h2×4 > 78.32.

We let Bn ⊂ An+1 denote the set of LEGO configurations as above consisting
of n + 1 blocks and such that both the top and the bottom layer consists of a
single block. Setting bn = #Bn we then clearly have

an ≤ bn ≤ an+1

9



Figure 7: Two bottlenecks

and hence, as in Lemma 2.2,

h2×4 = exp

(

lim
n−→∞

log bn

n

)

. (4.17)

We say that a configuration c in Bn has a bottleneck at height z ∈ N if c
has exactly one block in the layer R

2 × [z; z + 1]. By convention the top and
bottom blocks are not bottlenecks. This ensures that removal of a bottleneck
decomposes c into two configurations c′0 and c′′0 one of which, say c′0, contains the
bottom block of c. Re-inserting the removed block in c′0 yields a configuration c′

in some Bn with the inserted block as the top block. Re-inserting the removed
block into c′′0 yields, after a translation, a configuration c′′ in Bn−m with the
inserted block (translated) as the bottom block. Evidently, we can reconstruct
c in a unique fashion from (c′, c′′). Repeating this decomposition procedure we
conclude that any configuration in Bn with exactly k ≥ 0 bottlenecks can in a
unique way be decomposed into a sequence (c(1), . . . , c(k+1)) of configurations
such that c(i) ∈ Bmi

has no bottlenecks and m1 + · · · +mk+1 = n.
Letting Cn denote the subset of Bn consisting of configurations without bot-

tlenecks we obtain in this way a one-to-one correspondence between elements of
Bn and those of

∞⋃

k=0




⋃

m1+···+mk+1=n

Cm1
× · · · × Cmk+1



 (4.18)

Let now
cn = #Cn

and let ψ and ψ0 denote the generating functions

ψ(z) =
∞∑

n=1

bnz
n ψ0(z) =

∞∑

n=1

cnz
n (4.19)

10



It follows from (4.18) that

ψ(z) =

∞∑

i=1

(ψ0(z))
i =

ψ0(z)

1 − ψ0(z)
. (4.20)

From the definition of ψ(z) and h2×4 it follows that ψ is analytic in the disc

D = {z | |z| < (h2×4)
−1}

and, since bn > 0, that ψ is non-analytic at z = (h2×4)
−1. From (4.20) we hence

conclude that
|ψ0(z)| < 1 for |z| < (h2×4)

−1 (4.21)

In particular, we get

c1(h2×4)
−1 + · · · + cn(h2×4)

−n ≤ 1

which gives our claimed lower bounds on h2×4, depending on the number of
terms n on the lefthand side.

We shall describe in detail how to get the first order of improvement of the
estimate from Theorem 2.10. As evidently c2 = 0 we turn to c3 for this.

The configurations contributing to c3 have one bottom block, one top block.
and two blocks in between. The number of ways of placing two blocks on top of
the bottom block is rather easily seen to be 480, so the number of configurations
where the two middle blocks are both attached to the bottom block is 2·46·480−
4730, where 4730 is the number of configurations where the middle blocks are
both attached to the top block as well as to the bottom block. The remaining
configurations are those where the middle blocks are both attached to the top
block but only one of them to the bottom. This number is seen to be 2 · 46 ·
480 − 2 · 4730. Thus we have

c3 = 4 · 46 · 480 − 3 · 4730 = 74130

and P3(h
−1
2×4) ≤ 1 where

P3(x) = 46x+ 74130x3

This gives
h2×4 ≥ 64.06

which can be improved as follows.

Theorem 4.1 h2×4 > 78.32

Proof: Computer-aided computations give

c4 = 867346

c5 = 318434429

c6 = 18335373238

so we have that P6(h
−1
2×4) ≤ 1 where

P6(x) = 46x+ 74130x3 + 867346x4 + 318434429x5 + 18335373238x6

11



which gives h2×4 > 76.67.
To improve the estimate we prove that

cn+2 ≥ 1248cn (4.22)

for n ≥ 6. To see this, we devise 1248 different ways to construct an element c′

of Cn+2 from an element c of Cn, in such a way that the original configuration
can be recovered from the resulting one.

Of these 1248 configurations, 480 are gotten from a fixed configuration d of
two blocks sitting on one base block b by identifying the base block of c with the
block at the second level of d which meets the stud of lowest index on b according
to the enumeration of Figure 4. We get the configuration c′ by rotating 90◦,
if necessary. The remaining 768 configurations are gotten by placing one block
underneath the base block of c, and placing one more block at the level of this
original base block, such that these two added blocks do not meet. A computer
search shows that there is always at least this number of ways to do so since
there are at least two blocks at level 1 of c but only one at level 0. We get the
configuration c′ by translating the configuration upwards and rotating 90◦, if
necessary.

To reconstruct c from c′, one first sees how many blocks are attached to the
base block of c′. If there are two, c is gotten by discarding the base block of c′

and the block at the next level sitting at the highest index of it, translating down
and rotating 270◦, if necessary. If there is only one, c is gotten by discarding
the base block of c′ and the block at the next level which does not meet that
block, translating down and rotating 270◦, if necessary.

By repeated application of (4.22) we get c6+2k ≥ 1248kc6 and c5+2k ≥
1248kc5, so that r(h2×4) ≤ 1 with

r(x) = P6(x) +
c5x

7 + c6x
8

1/1248− x2
,

leading to the stated lower bound. �

5 Concluding remarks

We do not at present have the software nor the computer power to perform
numerical experiments to get a good idea of the true value of h2×4. Our best
guess, based mainly on data achieved by Abrahamsen on the presumably closely
related case of 1 × 2-blocks would be that the number is rather close to 100.
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