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CONTINUITY OF CONDITIONAL MEASURES ASSOCIATED TO
MEASURE-PRESERVING SEMIFLOWS

DAVID M. MCCLENDON

Abstract. Let X be a standard probability space and Tt a measure-preserving

semiflow on X. We show that there exists a set X0 of full measure in X such

that for any x ∈ X0 and t ≥ 0 there are measures µ+
x,t and µ−x,t which for all

but a countable number of t give a distribution on the set of points y such

that Tt(y) = Tt(x). These measures arise by taking weak∗−limits of suitable
conditional expectations. Say that a point x has a measurable orbit discon-

tinuity at time t0 if either µ+
x,t or µ−x,t is weak∗− discontinuous in t at t0.

We show that there exists an invariant set of full measure in X such that any

point in this set has at most countably many measurable orbit discontinuities.

Furthermore we show that if x has a measurable orbit discontinuity at time 0,
then x has an orbit discontinuity at time 0 in the sense of [1] .

1. Introduction

Let (X,F , µ) be a standard Lebesgue space and Tt : X × R+ → X be a
F−measurable, µ−preserving semiflow on X. The following two questions mo-
tivate this paper:

(1) Given a point x ∈ X and some time t ≥ 0, does there exist a natural
“distribution” (measure) on the set of points identified with x at time t
(i.e. the set of all y ∈ X such that Tt(y) = Tt(x))?

(2) Given a fixed x ∈ X, how do these distributions change as t increases? In
particular, are the measures weak∗−continuous in t?

We approach the questions posed above by using weak∗−limits of conditional
expectations to define for each point x (in a set of full measure) two “measure
paths” µ+

x,t and µ−x,t which give a natural distribution on the set of points which
are identified with x at all times greater than t, and the set of points identified with
x at some time less than t, respectively. (We note that we do not specifically answer
question (1) above in that we do not explicitly construct measures on the set of
points identified with x at time t.) We say x has a “measurable orbit discontinuity”
at time t0 if the two measures µ+

x,t0 and µ−x,t0 differ; these are precisely the times
at which µ+

x,t or µ−x,t is weak∗−discontinuous in t. Our main result is:

Theorem 1. Given a measure-preserving semiflow (X,F , µ, Tt) on a Lebesgue
space, there exists an invariant set X ′ of full measure in X such that for every
x ∈ X ′, x has at most countably many measurable orbit discontinuities.
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2 D. MCCLENDON

We consider an example which describes what is meant by “measurable orbit dis-
continuity”. Start with the circle S1 = I/∂I and let F̂ be the Lebesgue σ−algebra
of S1. Let X = (S1 × [0, 1])/ ∼ where (z, 1) ∼ (2z mod 1, 0) and let Tt be the
suspension semiflow on X over the map T̂ : S1 → S1 taking z to 2z mod 1 with
constant height function (equal to 1). This action is measurable and preserves the
product of Lebesgue measure on S1 with Lebesgue measure on [0, 1]. Now given a
point (z, s) ∈ X (assume s 6= 0, 1), we see that the only point identified with (z, s)
at times 0 ≤ t < 1−s is (z, s) itself. However, if t ∈ [1−s, 2−s), there are two points
identified with (z, s) at time t. The measure we seek in the first question above
should therefore be, in this case, atomic, and supported on the two points (z, s) and
((z +1/2) mod 1, s) with masses 1/2 and 1/2. This makes sense, as the conditional
expectation E(f |T̂−1(F̂))(z) is given by 1

2f(z) + 1
2f((z + 1

2 ) mod 1). Similarly, for
any integer n > 0, for t ∈ [n− s, n + 1− s) the measure we seek should be atomic,
supported on 2n points each having mass 2−n. Hence at each time n− s where n is
a positive integer we see that these measures are weak∗−discontinuous in t. So the
point (z, s) is thought of as having a countably infinite number of “measurable orbit
discontinuities”. In fact every point in this example has infinitely many measurable
orbit discontinuities, so Theorem 1 is in this sense the strongest statement that can
be made about the prevalence of measurable orbit discontinuities along the orbits
of an arbitrary measure-preserving semiflow.

Questions (1) and (2) above are motivated by a broader program to study the
structure of general measure-preserving semiflows. In particular, understanding the
structure and prevalence of discontinuous behavior is relevant to the problems of
universally modeling semiflows (see [1], [2]) and building an isomorphism theory
for such actions. (Any measurable conjugacy between two semiflows must preserve
measurable orbit discontinuities.) In [1] similar ideas of “continuous” and “discon-
tinous” behavior in semiflows were explored from the viewpoint of topology. Given
a Borel measurable semiflow Tt on a standard Polish space X, it was shown that
for any x ∈ X the set of points identified with x at time t by the semiflow grows
continuously (in some sense) in t except for at most a countable number of times t.
The times where T−tTt(x) grows discontinuously are called the orbit discontinuities
of x. In Section 3 of this paper, we show that if a point has a measurable orbit
discontinuity at time 0, then it must also have an orbit discontinuity there in the
sense of [1] as well.

The work in this paper is part of the author’s Ph.D. research conducted under
the direction of Dan Rudolph. His assistance and advice has been invaluable and
is greatly appreciated.

2. Measurable orbit discontinuities

First denote for each t > 0 the σ−algebras

Ft = T−t(F) = {A ⊆ X : A = T−t(B) for some B ∈ F}.

A set A belongs to Ft if and only if T−tTt(A) = A. In particular observe that F0 is
the original σ−algebra F and that as t increases, the Ft get smaller. Extend this
notation to negative t by setting Ft = F0 for t < 0.

Now consider the Rohklin decompositions of (F , µ) over the subalgebras Ft. By
this we mean that for each t, X can be conjugated measurably to the unit square
I2 = [0, 1]× [0, 1] where the Ft−measurable sets correspond to subsets of I2 of the
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form A × [0, 1] where A is Lebesgue measurable in I [3]. The measure µ can then
be written as

µ =
∫ 1

0

µx,t dx

where µx,t is the corresponding fiber measure for the point x with respect to Ft and
dx is a Lebesgue measure on [0, 1] (by “a” Lebesgue measure we mean a measure
which is isomorphic to the usual Lebesgue measure on [0, 1] with a possible addition
of up to countably many atoms). The measures µx,t (if they exist) are defined by∫

f dµx,t = E(f |Ft)(x).

Any µ−integrable function f : X → R is therefore µx,t−measurable for µ−almost
every x by Fubini’s theorem and satisfies∫

f dµ =
∫ 1

0

∫
f dµx,t dx =

∫ 1

0

E(f |Ft)(x) dx.

In particular µx,t = δx (a point mass at x) whenever t ≤ 0.
Of course there is a problem concerning the existence of the fiber measures µx,t.

Conditional expectations of the form E(f |Ft) are only guaranteed to exist for almost
every x; consequently it is only immediate that given t ≥ 0, for µ−almost every
x, the measure µx,t is defined as above. We would like to “reverse the quantifiers”
and characterize a set of full measure in X on which µx,t can be defined for every
t. First for each t ≥ 0 define

Gt = {x ∈ X : E(f |Ft)(x) is uniquely defined for any µ−integrable f}.

We think of Gt as a set of x for which µx,t “exists”. Since µ(Gt) = 1∀ t, we have
µ(

⋂
q∈Q+ Gq) = 1.

Lemma 2.1. Let x ∈ X and t ≥ 0 be such that x ∈ Gt. Then for 0 ≤ s ≤ t,
Ts(x) ∈ Gt−s and µTs(x),t−s = Ts(µx,t).

Proof. Let f be an integrable function. Then∫
f d(Ts(µx,t)) =

∫
(f ◦ Ts) dµx,t

= E(f ◦ Ts|Ft)(x)

= E(f |Ft−s)(Ts(x))

=
∫

f dµTs(x),t−s

as desired. �

As a consequence we see that Ts(µx,t) is a point mass for s ≥ t.

Corollary 2.2. X0 = {x ∈ X : x ∈ Gt for a dense set of t ∈ R} is forward
invariant under Tt.

Proof. It suffices to show that A = X−X0 is backward invariant. Let x ∈ A; there
exists an interval S ⊆ R+ such that x /∈ Gs for all s ∈ S. Let y ∈ T−t(x). Given
s ∈ S, µy,t+s cannot exist; otherwise x ∈ Gs exists by Lemma 2.1. Thus for any
time in the set S+t (which is of positive Lebesgue measure) y has no fiber measure,
so y ∈ A. �
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Now X0 contains (
⋂

q∈Q+ Gq), so µ(X0) = 1. Therefore X0 is an invariant set
of full measure, so we can without loss of generality assume X0 = X. So for any
x, the fiber measure µx,t exists for a dense set G(x) ⊇ Q+ of t in [0,∞). Now we
describe how to “fill in” the gaps where the measure is not guaranteed to exist.
Notice that for each t ∈ G(x), E(f |Ft) exists for any measurable f . Now define for
each nonnegative integer k the sets

Gk =
{

j

2k
: j ∈ Z, j ≥ 0

}
and let G =

⋃∞
k=1 Gk. Notice the following:

(1) Gk ⊆ Gk+1 for all k.
(2) For all k, Gk ⊆ G(x) for every x ∈ X.
(3) G = R+.

For any f : X → [0, 1] that is F-measurable, we can define a function Ex(f) :
G → [0, 1] by

Ex(f)(d) = E(f |Fd)(x) =
∫

f dµx,t.

We need an analog of Doob’s Upcrossing lemma (our version deals with downcross-
ings) to establish the existence of right- and left- hand limits of Ex(f) at any time
t. A function h whose domain and range are subsets of R has n downcrossings of
the interval [a, b] (a 6= b) if there exist lists of numbers a1, ..., an and b1, ..., bn in the
domain of h with ai < bi < ai+1 ∀i and h(ai) ≥ b, h(bi) < a∀i. Similarly we say h
has n upcrossings of the interval [a, b] if there exist lists of numbers a1, ..., an and
b1, ..., bn in the domain of h with ai < bi < ai+1 ∀i and h(ai) ≤ b, h(bi) > a∀i. If a
function has n downcrossings of [a, b], then it must have (at least) n−1 upcrossings
of that interval, and vice versa.

Proposition 2.3. Given any [a, b] ⊆ [0, 1],

µ ({x : Ex(f) has m downcrossings of [a, b]}) ≤
(

1− b

1− a

)m

.

Proof. For each d ∈ Gk define

Ak,d = {x ∈ X : Ex(f)(d) ≥ b and Ex(f)(δ) < b for all δ < d in Gk}.

Ak,d is the set of points for which the function Ex(f)|Gk
first crosses above the

interval [a, b] at time d. In particular, it is a stopping time which is Fd−measurable.
Now let

Ak,d = {x ∈ Ak,d : Ex(f)(δ) < a for some δ > d in Gk}.
The set Ak,d indicates those points in Ak,d which eventually cross beneath the
interval [a, b]. For any x ∈ Ak,d, there must be a least δ in Gk greater than d for
which Ex(f)(δ) < a. Call this number ∆k,d(x). Now

(2.1)
∫

Ak,d

f dµ =
∫

Ak,d−Ak,d

f dµ +
∫

Ak,d

f dµ;

manipulating the left-hand side of (2.1) we get∫
Ak,d

f dµ =
∫

Ak,d

Ex(f)(d) dµ ≥ b · µ(Ak,d).
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As for the right-hand side of (2.1), we note that since f ≤ 1,∫
Ak,d−Ak,d

f dµ ≤ µ(Ak,d)− µ(Ak,d),

and by the definition of Ak,d,∫
Ak,d

f dµ =
∫

Ak,d

Ex(f)(d) dµ ≤ a · µ(Ak,d).

Putting this all together, equation (2.1) becomes the inequality

b · µ(Ak,d) ≤ µ(Ak,d)− (1− a)µ(Ak,d)

which can be rewritten to obtain

µ(Ak,d)
µ(Ak,d)

≤ 1− b

1− a
.

In particular, this means that only a fraction (1 − b)/(1 − a) of the points x for
which Ex(f) crosses above b at time d can have Ex(f) cross below a after time d.
Using this fact, we proceed inductively. Given a finite list d1, ..., dm of elements of
Gk, we define the sets Ak,(d1,...,dm) and Ak,(d1,...,dm) and the function ∆k,(d1,...,dm) :
Ak,(d1,...,dm) → Gk inductively as follows:

Ak,(d1,...,dm) =


Ak,d1 if m = 1
{x ∈ Ak,(d1,...,dm−1) : Ex(f)(dm) ≥ b and

Ex(f)(δ) < b for all δ ∈ (∆k,(d1,...,dm−1), d)} if m > 1

Ak,(d1,...,dm) = {x ∈ Ak,(d1,...,dm) : Ex(f)(δ) ≤ a for some δ > dm in Gk}

∆k,(d1,...,dm)(x) = min{δ > dm : Ex(f)(δ) ≤ a}

The set Ak,(d1,...,dm) is the set of points x for which Ex(f) first becomes at least b
at time d1, then drops below a (at time ∆k,d1(x)), then next becomes at least b at
time d2, then drops below a, then next becomes at least b at time d3, etc. Inside
each set Ak,(d1,...,dm) we pick out those points for which Ex(f) drops below a again
after time dm and call them Ak,(d1,...,dm). For any point in this set, there is a first
time where Ex(f) ≤ a; this time is called ∆k,(d1,...,dm)(x).

Now by the same argument as given above, we see that

µ(Ak,(d1,...,dm)) ≤
(

1− b

1− a

)
µ(Ak,(d1,...,dm)).

Hence

µ

 ⋃
dm>dm−1

Ak,(d1,...,dm)

 ≤
(

1− b

1− a

)
µ

 ⋃
dm>dm−1

Ak,(d1,...,dm)


≤

(
1− b

1− a

)
µ(Ak,(d1,...,dm−1)).
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Applying the argument again we see

µ

 ⋃
dm>dm−1>dm−2

Ak,(d1,...,dm)

 ≤
(

1− b

1− a

)
µ

 ⋃
dm−1>dm−2

Ak,(d1,...,dm−1)


≤

(
1− b

1− a

)2

µ(Ak,(d1,...,dm−2))

≤
(

1− b

1− a

)2

µ(Ak,(d1,...,dm−2))

and inductively

µ

 ⋃
(d1,...,dm)∈Gk

Ak,(d1,...,dm)

 ≤
(

1− b

1− a

)m

.

Let
Sm,k = {x : Ex(f)|Gk

has m downcrossings of [a, b]};
in fact this set is equal to ⋃

(d1,...,dm)∈Gk

Ak,(d1,...,dm)

so µ(Sm,k) ≤
(

1−b
1−a

)m

for all k, m. Finally if we let

Sm = {x : Ex(f) has m downcrossings of [a, b]},
we observe Sm =

⋃
k Sm,k and Sm,k ⊆ Sm,k+1 so

µ(Sm) = lim
k→∞

µ(Sm,k) ≤
(

1− b

1− a

)m

.

as desired. �

Corollary 2.4. Let f be F0−measurable and Ex(f) defined as above. For µ−almost
every x ∈ X, the function Ex(f)(d) has left- and right-hand limits at every t ∈ R+,
i.e. there exist numbers L− and L+ so that:

• Given any ε > 0 there exists a δ > 0 such that whenever d ∈ (t− δ, t)
⋂

G,
|Ex(f)(d)− L−| < ε.

• Given any ε > 0 there exists a δ > 0 such that whenever d ∈ (t, t + δ)
⋂

G,
|Ex(f)(d)− L+| < ε.

Proof. Let l− = lim infd→t− Ex(f)(d) and l+ = lim supd→t+ Ex(f)(d). Define

X0(f) = {x ∈ X : ∀α, β ∈ Q, Ex(f) has only finitely many

downcrossings of [α, β]}.
Let Sm be as in the previous proposition; then

X0(f) = X −
⋃

α∈Q

⋃
β∈Q,β>α

∞⋂
m=1

Sm.

By the previous proposition µ (
⋂∞

m=1 Sm) = 0 so X0(f) has full measure in X. If
l+ 6= l−, we can choose rational numbers α and β with

l− +
l+ − l−

4
< α < β < l+ − l+ − l−

4
.
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The function Ex(f) must have infinitely many downcrossings of the interval [α, β]
so x cannot lie in X0(f). �

This result allows us to extend (for µ−almost every x) the function Ex(f) : G →
[0, 1] to the reals in two ways by taking limits as in the previous corollary. First,
we define the right-continuous function E+

x (f) : R → [0, 1] by setting

E+
x (f)(t) = lim

d→t+
Ex(f)(d).

Similarly, define left-continuous E−
x (f) : R → [0, 1] by setting

E−
x (f)(t) = lim

d→t−
Ex(f)(d).

Observe that for x ∈ X0(f), lims→t− E+
x (f)(s) = E−

x (f)(t). For if not, there exist
sequences sn and tn of points in G with sn → t− and tn → t− with Ex(f)(sn) close
to E−

x (f)(t) but Ex(f)(tn) uniformly bounded away from E−
x (f)(t). Consequently

Ex(f) has infinitely many downcrossings of some interval; this is impossible since
x ∈ X0(f). Similarly lims→t+ E−

x (f)(t) = E+
x (f)(t) for x ∈ X0(f) so E+

x (f)(t) is
continuous at t if and only if E−

x (f)(t) is continuous at t if and only if E+
x (f)(t) =

E−
x (f)(t). Furthermore, since both E+

x (f) and E−
x (f) have left- and right-hand

limits at every t, any discontinuities of either of these functions are necessarily
jump discontinuities.

Corollary 2.5. For any f which is F0− measurable, E+
x (f) and E−

x (f) have only
countably many discontinuities for any x ∈ X0(f).

Proof. Suppose t is a point of discontinuity for E+
x (f). Then there exist rational

numbers α, β in between limd→t− Ex(f)(d) and limd→t+ Ex(f)(d) such that Ex(f)
has either an upcrossing or downcrossing of [α, β]. However, for x ∈ X0(f), every
such rational interval can only be crossed by Ex(f) a finite number of times. Since
there are only countably many choices for α and β, Ex(f) can only have countably
many discontinuities. �

Take a countable family of continuous functions F = {fi}∞i=1 mapping X into
[0, 1] whose linear span is dense in L1(X, µ). By Corollary 2.5, for each fi ∈ F
there is a set Xi of full measure in X such that Ex(fi) has only countably many
discontinuities. Let X0 =

⋂
i Xi (this is a set of full measure in X); then for each

x ∈ X0 define

C(x) = {t : Ex(fi) is continuous at t for every fi};

the complement of C(x) is countable.
We now have two mappings from X × F × R into [0, 1] defined by (x, f, t) 7→

E+
x (f)(t) and (x, f, t) 7→ E−

x (f)(t). Fix x and t; the resulting mappings f 7→
E+

x (f)(t) and f 7→ E−
x (f)(t) are bounded functionals since |fi| ≤ 1 and are lin-

ear by the linearity of the conditional expectation operator. Hence by the Riesz
representation theorem they extend to probability measures µ+

x,t and µ−x,t on X.

Proposition 2.6. For every x ∈ X0 and every t, µ+
x,t and µ−x,t are the left- and

right-hand weak∗− limits of the µx,t. More precisely, fix x and t and let d∗ be a
metric for the weak∗− topology on X. Then:

• For every ε > 0, there is a δ > 0 so that for every s ∈ (t, t + δ) for which
µx,s exists, d∗(µx,s, µ

+
x,t) < ε.
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• For every ε > 0, there is a δ > 0 so that for every s ∈ (t, t − δ) for which
µx,s exists, d∗(µx,s, µ

−
x,t) < ε.

Proof. Let f : X → [0, 1] be continuous. Then there exists a sequence fi with
fi → f in L1(X) and each fi in the linear span of the F. Fix ε > 0 and let s > t.
Then:∣∣∣∣∫ f dµ+

x,t −
∫

f dµx,s

∣∣∣∣ ≤ ∣∣∣∣∫ (f − fi) dµ+
x,t

∣∣∣∣ +
∣∣∣∣∫ fi dµ+

x,t −
∫

fi dµx,s

∣∣∣∣ +∣∣∣∣∫ (f − fi) dµx,s

∣∣∣∣
≤

∫
|f − fi| dµ+

x,t + |E+
x (fi)(t)− Ex(fi)(s)|

+
∫
|f − fi| dµx,s.

The outer expressions in this final expression are less than ε/3 if i is chosen large
enough, and the interior summand is less than ε/3 if s is chosen close enough to t
by Corollary 2.4. Thus

∫
f dµx,s →

∫
f dµ+

x,t as s → t+ as desired. The proof that
µ−x,t is the left-hand limit is similar. �

Now for each x ∈ X0 we have two measure paths of x: the measures µ+
x,t which

are weak∗ right-continuous, and the measures µ−x,t which are weak∗ left-continuous.
We say that x has a measurable orbit discontinuity at time t0 if µ+

x,t0 6= µ−x,t0 .

Proposition 2.7. The following are equivalent:
(1) x has no measurable orbit discontinuity at time t0.
(2) The measure path µ+

x,t is weak∗−continuous at t0.
(3) The measure path µ−x,t is weak∗−continuous at t0.

Proof. Notice µ+
x,t0 = µ−x,t0 if and only if the weak∗-limits of µx,t as t approaches

t0 from both the right and left are the same. The assumption that either µ+
x,t or

µ−x,t is continuous at t0 is equivalent to the equality of the left- and right-hand
weak∗-limits. �

Notice that for t ∈ C(x), µ+
x,t = µx,t = µ−x,t so therefore x cannot have a

measurable orbit discontinuity at time t. Consequently we immediately see the
following:

Proposition 2.8. Every x ∈ X0 has only countably many measurable orbit discon-
tinuities.

Proposition 2.9. Suppose x ∈ X has a measurable orbit discontinuity at time t0.
Then for any z ∈ T−s(x), z has a measurable orbit discontinuity at time s + t0.

Proof. Recall that by Lemma 2.1 we know that µx,t = Ts(µz,t+s) so long as the
first measure exists. Consequently by taking weak∗−limits as t → t0 from both the
left and right we obtain

µ+
x,t0 = Ts(µ+

z,s+t0)

and
µ−x,t0 = Ts(µ−z,s+t0).
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By assumption µ+
x,t0 6= µ−x,t0 . Therefore µ−z,s+t0 6= µ+

z,s+t0 so z has a measurable
orbit discontinuity at time t0 as desired. �

As a consequence, we see that the set of points x which have only countably
many measurable orbit discontinuities is an invariant set. From Proposition 2.8 we
know that this set X ′ is of full measure in X (it contains X0) so we have established
Theorem 1.

3. Orbit discontinuities: measure theory versus topology

We now examine the relationship between orbit discontinuities in the sense of
[1] and the measurable orbit discontinuities constructed here. Let X be a standard
Polish space and let ν be any probability measure on X such that all the Borel
subsets of X are ν−measurable; we define the support of ν, denoted supp(ν), to be
the complement of all open sets in X which have ν−measure zero. Notice that for
any open A ⊆ X disjoint from T−tTt(x), µx,t(A) = E(A|Gt)(x) = 0. Consequently
the support of µx,t is contained in the closure of T−tTt(x).

Lemma 3.1. supp(µ+
x,t) ⊆

⋂
s>t T−sTs(x).

Proof. Recall first that the support of each µx,t is contained in T−tTt(x). Let tn be
a decreasing sequence of numbers converging to t from above for which µx,tn

exists
for every n; consequently µ+

x,t is the weak∗−limit of the µx,tn
.

Let A = X −
⋂

s>t T−sTs(x). If A = ∅ we are done. Otherwise let A′ be
any nonempty closed set contained in A; by the Urysohn lemma there exists a
continuous function f on X such that f = 0 on

⋂
s>t T−sTs(x) and f = 1 on A′.

Notice that
∫

f dµx,tn = 0 for every n; therefore
∫

f dµ+
x,t = 0 since µ+

x,t is the
weak∗−limit of the µx,tn . But also∫

f dµ+
x,t ≥ µ+

x,t(A
′)

so µ+
x,t(A′) = 0. But since X is a metric space, A can be written as the increasing

union of closed sets contained in A. Therefore µ+
x,t(A) = 0. �

We now give a correspondence between measurable orbit discontinuities and
topological orbit discontinuities. Of course, measurable orbit discontinuities are
defined for actions on Lebesgue spaces and orbit discontinuities are defined for Borel
actions on Polish spaces, so we must assume here that the space under consideration
has both the structure of a Lebesgue space and standard Polish space.

Proposition 3.2. Let X be a standard Polish space; let B(X) be the σ−algebra
of Borel subsets of X and suppose that F be a σ−algebra containing B(X) such
that (X,F , µ) is a Lebesgue space. Suppose Tt is an action of R+ on X such
that (X,B(X), µ, Tt) is a Borel semiflow and (X,F , µ, Tt) is a measure-preserving
semiflow. If x ∈ X has a measurable orbit discontinuity at time 0, then x has an
orbit discontinuity at time 0.

Proof. By hypothesis µ+
x,0 6= δx. Consequently µ+

x,0 must be supported on a set
strictly larger than {x}. Let z ∈ supp(µ+

x,0) − {x}. Then by the preceding lemma
z ∈

⋂
t>0 T−tTt(x) so there exist a sequence of points zn ∈ X with zn → z and

T1/n(zn) = T1/n(x). Denote by i the inclusion iQ
+

T : X → XQ+

1 and consider
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the sequence i(zn) in XQ+

1 ; let ζ be the limit of any subsequence i(znk
) which

converges; ζ(0) = limk→∞ i(znk
)(0) since the mapping from XQ+

1 to X taking f to
f(0) is continuous. Therefore ζ(0) = z so in particular there is no subsequence of
the i(zn) converging to i(x). Consequently there exists a δ > 0 and an N > 0 such
that for all n > N , d(i(zn), i(x)) > δ.

Take a refining, generating sequence Pk of partitions for XQ+
. Choose k large

enough such that the maximum diameter of a Pk−atom is less than δ/4. For every
rational q > 0, σ−qσq(i(x)) intersects an atom of Pk which is dM−distance at least
δ from the atom of Pk containing x, namely an atom containing an i(zn). Such an
atom cannot contain x, so we see x must have an orbit discontinuity at time 0. �

It is unknown if anything more general can be said in this context. If a point
x has a measurable orbit discontinuity at time t0 > 0, we can conclude using
reasoning along the lines of the proof of Proposition 3.2 that for every s > t0 there
is at least one point ys with Ts(ys) = Ts(x) but Tt(ys) 6= Tt(x) for every t < t0.
However, it could be the case that the sequence iQ

+

T (ys) is the limit of points zn in
XQ+

1 with σtn
(zn) = σtn

(i(x)) for tn < t0, in which case x would not have an orbit
discontinuity at time t0.

Consider also this (admittedly simple) example which illustrates that topological
orbit discontinuities can occur where there is no measurable orbit discontinuity.
Let ΩL be the set of functions f from [0,∞) into {0, 1} for which there exists a
number c = c(f) ∈ [0, 1) such that f(t) is constant on every interval of the form
[0,∞)

⋂
(c + i, c + i + 1] for i ∈ Z. (This is the same as the space ΞL constructed

in Section 3 of [1] without the “marker”.) We put a metric on ΩL by

d(f, f ′) =
∫ ∞

0

|f(t)− f ′(t)|
et

dt;

this makes ΩL a Polish space. The semiflow σt is defined on ΩL by the shift
σt(f)(s) = f(t + s); this is a Borel action. Let δ1 be the Dirac measure assigning
mass 1 the σt−fixed point g(x) ≡ 1 and 0 to the rest of the space; our Borel
measure-preserving semiflow is (ΞR, δ1, σt).

The (topological) orbit discontinuities of this action do not depend on the mea-
sure; every f ∈ ΞL has infinitely many orbit discontinuities at the times c, c+1, c+
2, .... But the function g ≡ 1 has no measurable orbit discontinuities; for every t we
have µ+

g,t = µ−g,t = δ1. (The set of full measure on which the measure paths exist
can be taken to be the fixed point g.)
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