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We define what it means to ‘speed up’ a Z
d -measure-preserving dynamical system, and

prove that given any ergodic extension Tσ of a Z
d -measure-preserving action by a

locally compact, second countable group G, and given any second G-extension Sσ of
an aperiodic Z

d -measure-preserving action, there is a relative speedup of Tσ , which
is relatively isomorphic to Sσ . Furthermore, we show that given any neighbourhood of
the identity element of G, the aforementioned speedup can be constructed so that the
transfer function associated with the isomorphism between the speedup and Sσ almost
surely takes values only in that neighbourhood.

Keywords: ergodic Z
d -action; speedup; group extension; relative isomorphism
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1. Introduction

In a 1985 paper of Arnoux, Ornstein, and Weiss,[1] it is shown that for any ergodic
measure-preserving transformation (X,X , μ, T ) and any aperiodic (not necessarily er-
godic) measure-preserving transformation (Y,Y, ν, S), one can find a measurable func-
tion p : X → N such that, by setting T (x) = T p(x)(x), (X,X , μ, T ) is isomorphic to
(Y,Y, ν, S). In other words, it is always possible to ‘speed up’ one such transformation to
‘look like’ another. If restrictions are placed on the type of function allowed for p, then the
result is also restricted. For instance, Neveu [2] gives a generalized version of Abramov’s
formula, showing that if p is integrable, then h(Tp) = ∫

p dμ · h(T), thus restricting the
class of aperiodic measure-preserving transformations that T can ‘integrably speed up’
to look like. In recent work, Babichev, Burton, and Fieldsteel [3,4] improve the Arnoux–
Ornstein–Weiss result by demonstrating that p can be taken to be measurable with respect
to a factor. More specifically, they consider a locally compact, second countable group G
and a group extension of the form Tσ : X × G → X × G where Tσ (x, g) = (Tx, σ (x)g)
and σ : X × Z → G is a cocycle for T. They show that given any pair of aperiodic group
extensions (by the same group G) where the first extension is ergodic, the first extension
can be sped up to look like the second using a speedup function measurable with respect
to the base factor X. In this sense, the work in [4] can be thought of as an extension of the
results on relative orbit equivalence found in [5] and [6].

It is then natural to ask what happens for higher dimensional actions. This first begs
the question of what ‘speedup’ means when there is no ‘up’. One possibility is that the

∗Corresponding author. Email: aimee@swarthmore.edu

C© 2014 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

Fe
rr

is
 S

ta
te

 U
ni

ve
rs

ity
],

 [
D

av
id

 M
cC

le
nd

on
] 

at
 1

2:
22

 2
4 

Fe
br

ua
ry

 2
01

4 

http://dx.doi.org/10.1080/14689367.2014.884542
mailto:aimee@swarthmore.edu


2 A.S.A. Johnson and D.M. McClendon

analogous function p be taken to be p : X → N
d . In fact, we will show something more

general.

Theorem 1.1: Fix a locally compact, second countable group G and a neighbourhood
U ⊆ G of the identity element of G. Let (X,X , μ, T) and (Y,Y, ν, S) be measure-preserving
Z

d -actions with (Y,Y, ν, S) aperiodic. Let Tσ be an ergodic G-extension of T and Sσ be
a G-extension of S. Let C ⊆ Z

d be any cone.

Then there is a speedup T
σ

of Tσ for which the speedup function is measurable with

respect toX and takes values only in C, such that T
σ

is isomorphic to Sσ , via an isomorphism
of the form (x, g) �→ (φ(x), α(x)g), where φ: X → Y is an isomorphism from a speedup of
T to S and α : X → G is a measurable function taking values in U almost surely.

The idea of the proof is as follows: we approximate the action S by a sequence of partially
defined actions defined on larger and larger unions of Rohklin towers of (Y,Y, ν, S). For
each of these partially defined actions, we first choose sets in X, the phase space of the
T-action, to mimic the sets found in the Rohklin towers. We next use a ‘quilting’ argument
to show that these sets can be realized as the orbit of a partially defined speedup of T,
with the speedup constructed at each step extending the speedup from the previous step.
We show further that this can be done in such a way that respects the cocycles defining Tσ

and Sσ .
These types of constructions have their roots in the proof given in [1] and in the proof

of Dye’s Theorem [7,8] given by Hajian, Ito and Kakutani in [9]. Theorem 1 then yields
a generalization of the main result of [4]: in fact, their result is exactly Theorem 1.1 with
d = 1. While our proof follows the ideas of those in [4], it is not enough to simply use that
result on each generator of the d-dimensional action, as the resulting speedups would not
necessarily commute.

The next section provides the necessary definitions and background results. In Section 3,
we develop a series of technical lemmas which will let us ‘quilt’ together a collection of sets
to yield a partially defined speedup of T. The final section is then the recursive argument
needed to yield the required speedup.

Note that if G is trivial, Theorem 1.1 can simplify to the following.

Corollary 1.2: Let (X,X , μ, T) and (Y,Y, ν, S) be two ergodic Z
d -actions and C ⊆ Z

d

be any cone. Then there exists a speedup T of T, such that T is isomorphic to S and for
which the speedup function takes values only in C.

Thus we have a generalization of Theorem 4 in [1] to higher dimensional actions.

2. Preliminaries

2.1. Background on group extensions

2.1.1. Z
d -actions

Let X be a Lebesgue probability space with measure μ. Given d commuting, invertible,
measurable, measure-preserving transformations T1, T2, . . . , Td of X, the collection {Tj}
generates a Z

d -action T on X. In particular, given vector v = (v1, . . . , vd ) ∈ Z
d , we write

Tv for the transformation T
v1

1 ◦ T
v2

2 ◦ . . . ◦ T
vd

d : X → X. The action is said to be ergodic
if the only sets invariant under every Tv, v ∈ Z

d are of zero or full measure.
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Dynamical Systems 3

2.1.2. Group extensions

Let G be a locally compact, second countable group; let λ be Haar measure on G (λ need not
be finite). Given a Z

d -action T, a cocycle for T is a measurable function σ : X × Z
d → G

satisfying the cocycle equation: for any x ∈ X and v, w ∈ Z
d ,

σ (x, v + w) = σ (Tv(x), w)σ (x, v). (2.1)

Given a cocycle σ for T, we define a Z
d -action Tσ on X × G by setting

Tσ
v (x, g) = (Tv(x), σ (x, v)g),

for each v ∈ Zd . Tσ preserves μ × λ and is called a G-extension of T; conversely T is
referred to as the base or base factor of Tσ . In fact, a locally compact, second-countable
group G admits an ergodic G-extension if and only if G is amenable.[10,11]

In this setting, we can also define a cocycle on the orbit relation of T, which is again
labelled σ : if z = Tv(x) for some v ∈ Z

d , we set σ (x, z) = σ (x, v).
In this paper, we use the symbol σ to refer to all our cocycles and when necessary,

distinguish between the cocycles for different actions with subscripts (i.e. σ T is the cocycle
associated with the G-extension of T).

2.1.3. Factor maps and G-isomorphisms

Let (X,X , μ, T) and (Y,Y, ν, S) be two measure-preserving Z
d -actions with respective

G-extensions Tσ and Sσ . We say Sσ is a G-factor of Tσ if there is a measurable and
measure-preserving map (defined on an invariant set of full measure, mapping onto an
invariant set of full measure) �: X × G → Y × G satisfying Sσ ◦ � = � ◦ Tσ , which is
measurable with respect to the base factors, i.e. for all measurable B ∈ Y , �−1(B × G) =
A × G a.s. for some A ∈ X . Equivalently, this means

�(x, g) = (φ(x), α(x)g),

where φ is a factor map from (X,X , μ, T) to (Y,Y, ν, S) and α: X → G is measurable. If a
G-factor map � exists, which is almost surely 1 − 1, we say Tσ and Sσ are G-isomorphic
and we call � a G-isomorphism.

To say that two G-extensions are G-isomorphic means that the base transformations are
isomorphic and the corresponding cocycles σ S and σ T on the orbit relations of the base
transformations are cohomologous. The α in the previous paragraph is called the transfer
function relating the cocycles. In particular, if Tσ is G-isomorphic to Sσ by the map �

described above, then the cocycle σ S must satisfy

σS(φ(x), v) = α(Tvx)σT(x, v)α(x)−1.

Motivated by this fact, if Tσ is a G-extension of a Z
d action and α: X → G is any measurable

function, we define the skewing of σ by α to be the cocycle,

σα(x, v) = α(Tvx)σ (x, v)α(x)−1,

and remark that Tσ is G-isomorphic to Tσα

by the map (x, g) �→(x, α(x)g).
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4 A.S.A. Johnson and D.M. McClendon

2.2. Partial iterates and Z
d-speedups

We define a filled cone C to be any open, connected subset of R
d whose boundary consists

of d distinct hyperplanes passing through the origin. A cone is the intersection of a filled
cone with (Zd − {0}). In particular, note that the zero vector does not belong to any cone.
Given a cone C and any vector v ∈ Z

d , set Cv = C ∩ (C + v).

Definition 2.1: Given a Z
d -action (X,X , μ, T) and a set Dom(R) ∈ X of positive measure,

a partial iterate of T is a 1 − 1, measurable and measure-preserving function R: Dom(R)
→ X such that R(x) = Tk(x)(x) for some measurable function k : Dom(R) → Z

d . The
function k is called the iterate function (of R). If k takes values only in some cone C, we
call R a C-partial iterate. A C-partial iterate R with Dom(R) = X a.s. is called a C-iterate
of T.
Remark: In what follows, we will frequently say that a partial iterate R ‘takes A to B’,
where A and B are measurable subsets of X. What we mean by this phrase is that R is a
partial iterate, whose domain Dom(R) is equal to A almost surely, and whose codomain is
equal to B almost surely.

Definition 2.2: Given two Z
d -actions (X,X , μ, T) and (X,X , μ, T), and given a cone C,

we say T is a C-speedup (or just speedup) of T if there are C-iterates T 1, T 2, . . . , T d of
T such that T i ◦ T j = T j ◦ T i for all i, j and such that for almost every x ∈ X and every
v = (v1, . . . , vd ) ∈ Z

d ,

Tv(x) = T
v1

1 ◦ T
v2

2 ◦ · · · ◦ T
vd

d (x).

We use the word ‘speedup’ here because this definition generalizes to Z
d -actions the

notion of ‘speedup’ defined in [4]. In particular, when d = 1, there are only two cones, namely
C+ = {1, 2, 3, . . .} and C− = {. . . ,−3,−2,−1}. The main theorem of [4] is exactly our
Theorem 1.1 with d = 1, C = C+. That said, our usage of the word ‘speedup’ in the
context of Z

d -actions is a bit of a misnomer, in that our speedups need not have any direct
interpretation as systems, which send ‘points forward in time more quickly than the original
system’.

Equivalently, T is a C-speedup of T if there is a measurable map V = (v1, . . . , vd ) :
X → Cd , such that the iterates Tv1 , . . ., Tvd

commute and the generators of T are
Tv1 , . . ., Tvd

. V is called the speedup function of T.

2.3. Speedup blocks, Rohklin towers and castles

2.3.1. Speedup blocks

We begin with some notation: given a non-negative real number vj, define [vj ] = [0, vj ) ∩ Z.
Given a vector v = (v1, . . . , vd ), where vj > 0 for all j, define [v] = ×d

j=1[vj ]. Thus [v] is a
rectangle with side lengths vj. We denote the cardinality of [v] by |v| = v1 · v2 . . . vd . Given
v and w ∈ R

d , we say v ≥ w if vj ≥ wj for all j, and we say v > w if vj > wj for all j. Given
integer vectors v ≤ w, set [v, w] = ×d

j=1

(
[vj , wj ) ∩ Z

)
. Let {e1, . . ., ed} be the standard

basis of R
d (just as well, Z

d ). Let 0 = (0, 0, . . ., 0) ∈ Z
d and let 1 = (1, 1, 1, . . ., 1) ∈ Z

d .
Given any set S ⊆ Z

d , set bj (S) = {v ∈ S : v + ej ∈ S}.
Definition 2.3: Given a measure space (X,X , μ) and m ∈ Z

d with m ≥ 0, a rectangular
collection of size m is a collection {Av}v∈[m] of subsets Av ∈ X , where the sets are pairwise
disjoint and all have the same measure.
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Dynamical Systems 5

We remark that if at least one component of m is zero, then we obtain the empty
collection of no sets; this is a rectangular collection.

Definition 2.4: Let (X,X , μ, T) be a Z
d -action and let {Av}v∈[m] be a rectangular collec-

tion. A collection T = (T 1, . . ., T d ) of maps is called a partial speedup of T if

(1) each T j is a partial iterate of T taking Av to Av+ej
for all v ∈ bj ([m]);

(2) the T j commute, i.e. for any v ∈ bj ([m])
⋂

bk([m]),

T j ◦ T k(x) = T k ◦ T j (x)

on Av.

In this setting, the rectangular collection {Av}v∈[m] is called a speedup block for T. If
C is some cone such that for each j, the iterate function of T j takes values only in C, we
say T is a C-partial speedup.

2.3.2. Rohklin towers

Definition 2.5: Let m > 0. A Rohklin tower τ for a Z
d -action (X,X , μ, T) is a rectangular

collection {Av}v∈[m] of measurable sets, such that Tj (Av) = Av+ej
for all v ∈ bj ([m]). Each

set Av is called a level of the tower, m is called the height of the tower, A0 is called the base
of the tower and the common value μ(Av) is called the width of the tower.

Speedup blocks are closely related to Rohklin towers; given a speedup T of T, any
Rohklin tower for T is a speedup block for the restriction of T to the tower.

We see that for any Rohklin tower of height m, Av = Tv(A0) for all v ∈ [m]. A column
of a Rohklin tower is another tower of the form {Tv(B0)}v∈[m] where B0 is a measurable
subset of A0. We denote by |τ | the union of the levels of the tower, and let the interior of
the tower be

int(τ ) =
⋃

v∈[1,m−1]

Av.

The error set of a Rohklin tower τ is E(τ ) = X − ⋃
v∈[m] Av.

The classical Rohklin lemma for Z
d -actions [12] can be stated as follows.

Lemma 2.6 (Rohklin Tower Lemma): Let (Y,Y, ν, S) be an aperiodic Z
d -action. Then

for every ε > 0 and every integer vector m > 0, there is a Rohklin tower τ for S of height
m, such that ν(E(τ )) = ε.

2.3.3. Castles

Given a Z
d -action (Y,Y, ν, S), a castle C is a finite collection τ 1, . . . , τ s of Rohklin towers

for S, where |τi |
⋂ |τj | = ∅ for all i 
= j. Denote by |C| the union of all the levels of all the

towers comprising the castle, and let the interior of the castle, denoted int(C), be the union
of the interiors of the towers comprising C. The error set of C is E(C) = X − |C|. By a
level of C, we mean a level of any of the towers comprising C, and we define a column
of C to be a column of any of the towers comprising C. The set of levels of the castle C is
denoted L(C), and the σ -algebra generated by the levels of C is denoted L(C).
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6 A.S.A. Johnson and D.M. McClendon

Given a tower τ of size m and a finite, measurable partition Q = {Q1, . . . ,Qs} of the
base of τ , we obtain a castle τQ whose bases are the atoms of Q.

Given a finite measurable partition Q = {Q1, . . . , Qs} of |τ | (just as well, of Y), we
define the partition Qτ of the base of τ by setting the atoms of this partition to be maximal
sets Bj, such that for every v ∈ [m], Sv(Bj ) is contained entirely within one atom of Q. We
call the partition Qτ the partition into Q-names and the resulting castle τ(Qτ ) the castle of
Q-columns in τ .

Given a castle C and a finite measurable partition Q of |C| (or of Y), by repeating the
construction of the previous paragraph on each tower comprising C, we obtain a castle CQ,
which we call the castle of Q-columns in C.

2.3.4. Cutting and stacking constructions

Following the work in [1], we make the following definition.

Definition 2.7: Given two castles C1 and C2 for (Y,Y, ν, S), we say C2 is obtained from
C1 via a cutting and stacking construction if:

(1) |C1| ⊆ int(C2);
(2) there is a finite partition Q of the bases of C1, such that each level of the castle

(C1)Q is a level of C2; and
(3) for each tower of (C1)Q, there is a tower of C2 that contains it.

Observe that criterion (1) above implies that if {Av}v∈[m] is a tower in C2 and if Aw is a
base of a tower of (C1)Q of size h, then we have w + h < m.

Lemma 2.8 (Castle Lemma): Let G be a locally compact, second countable group and let
Sσ be an ergodic G-extension of the Z

d -action (Y,Y, ν, S). Let {Uk}∞k=1 be a neighbourhood
base for G at eG. Then there is a sequence {Ck}∞k=1 of castles for S satisfying:

(1) for each k, all towers in the castle Ck have the same height Nk;
(2) for each k, Ck+1 is obtained from Ck via a cutting and stacking construction;
(3) ν

(⋃∞
k=1 Ck

) = 1;
(4)

⋃∞
k=1 L(Ck) = Y; and

(5) for each tower τ in Ck , and for each v ∈ [Nk], there is a group element g ∈ G such
that for all y in the base of τ , σ (y, v) ∈ Ukg.

Proof: The proof is divided into two phases: first, following the work in [1] for Z-actions,
we construct a sequence of towers via cutting and stacking constructions. Second, we
modify these towers in a way similar to [4] to yield a sequence of castles satisfying the
conclusions of the lemma.

Phase 1: Construction of the towers {τ i}. Let {εi}∞i=1 be a decreasing sequence of
positive numbers such that

∑∞
i=1 εi < 1/2, and choose a sequence {Ni}∞i=1 of vectors in Z

d ,
where Ni = (Ni(1), . . . , Ni(d) ), such that

2
∑d

j=1

(
Ni(j )

∏
k 
=j Ni−1(k)

)
|Ni | <

εi

4
. (2.2)
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Dynamical Systems 7

For each i, define the boundary of [Ni] to be the set of indices v ∈ [Ni] such that v ± ej /∈
[Ni] for some j ∈ {1, . . . , d}. Next, we define the collar of [Ni] to be the following set of
indices in [Ni]:

{v ∈ [Ni] : v ± Ni−1(k) ek /∈ [Ni] for some k = 1, . . ., d}.

In other words, the collar of [Ni] is the set of indices which are close to its boundary, where
‘close’ is defined by the size of [Ni−1]. Note that the portion of [Ni] contained in its collar
is bounded by the left-hand expression in inequality (2.2) above.

Next, take a sequence of Rohklin towers τ 1
i of size Ni, whose error sets have measure

1
2εi ; let B1

i be the base of each τ 1
i . Define the boundary of each tower to be {Sv(B1

i ) : v is
in the boundary of [Ni]}.

To satisfy criteria (2) of the lemma, we successively alter the towers by an inductive
process. The idea is to remove points from the ith tower, which are not in the interior of
the (i + 1)th tower, and then to justify that the resulting tower has measure only slightly
smaller than the original. Now for the details: our first step is to

(1) remove y from B1
1 if for any v ∈ [N1], Sv(y) is in the boundary of τ 1

2 (notice that
the measure of this set is bounded by the measure of the set of points in τ 1

2 in the
collar of [N2], which by Equation (2.2) is less than ε2

4 ), and
(2) then remove from B1

1 any point y such that for any v ∈ [N1], Svy ∈ E(τ 1
2 ) (having

already removed such points in the collar of [N2], the only points in τ 1
1 ∩ E(τ 1

2 ) are
those for which Svy ∈ E(τ 1

2 ) for every v ∈ [N1]; this set of points is bounded in
measure by ν(E(τ 1

2 )) = ε2
2 ).

Let B2
1 be set of the points remaining in B1

1 after these two steps. Let τ 2
1 = {SvB

2
1 }v∈[N1]

(this tower is our first modification of τ 1
1 ). Note that

ν
(
τ 2

1

) ≥ ν
(
τ 1

1

) −
(ε2

4
+ ε2

2

)
> ν(τ 1

1 ) − ε2,

and ν(E(τ 2
1 )) < μ(E(τ 1

1 )) + ε2.
For our second step, we similarly remove the following points from B1

2 :

(1) those associated with points in the tower τ 1
2 , which intersect the collar of τ 1

3 ;
(2) those associated with points in τ 1

2 , which intersect the error set E(τ 1
3 ).

We define B2
2 analogously and let τ 2

2 = {SvB
2
2 }v∈[N2]. Similarly to our first step, we will

have ν(τ 2
2 ) ≥ ν(τ 1

2 ) − ε3, and ν(E(τ 2
2 )) < ν(E1

2) + ε3.
This in turn means we must modify τ 2

1 , removing those points which intersect E(τ 2
2 )

(which is larger than E(τ 1
2 )). Much like how we previously removed points in τ 1

1 that
intersected E(τ 1

2 ), we see that the points we must remove at this step have measure at most
ν(E(τ 2

2 )) − ν(E(τ 1
2 )) ≤ ε3. Thus we create τ 3

1 , our second modification of the first tower,
and we note ν(τ 3

1 ) > ν(τ 1
1 ) − ε2 − ε3.

We continue in this manner. At the ith step, we modify τ 1
i by removing points from

B1
i , then let τ 2

i = {SvB
2
i }v∈[Ni ] and note ν(τ 2

i ) ≥ ν(τ 1
i ) − εi+1. The corresponding error set

E(τ 2
i ) has measure which is less than ν(E(τ 1

i )) + εi+1. We then modify all the previous
towers to compensate for the increased error set; this results in the removal of a portion of
those towers which has measure at most εi + 1.
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8 A.S.A. Johnson and D.M. McClendon

At the end of the ith step, we will have defined {τ i+2−h
h } for h ∈ {1, . . . , i}, with

ν
(
τ i+2−h
h

) ≥ ν
(
τ 1
h

) − εh+1 − · · · − εi+1.

Defining τi = ∩∞
j=1τ

j
i , we end up with a sequence {τ i} of towers with limi → ∞ν(τ i) = 1.

Let Bi be the base of tower τ i.
Phase 2: Altering the towers and building the castles. We again successively alter the

towers by an inductive process. To start, fix a sequence of finite partitions {Pk} which
generate Y and a sequence {αk}∞k=1 of positive numbers such that

∑
kαk < 1. As G is locally

compact, we can choose compact K1 ⊂ G, so that if

B ′
1 =

⋂
v∈[N1]

{y ∈ B1 : σ (y, v) ∈ K1},

then ν(B ′
1) > (1 − α1)ν(B1). Let τ ′

1 be the portion of τ 1 over B ′
1, i.e. τ ′

1 = {SvB
′
1}v∈[N1].

We partition K1 into sets {K1,i}s1
i=1 such that for each i, there exists a g1, i ∈ G with K1, i ⊂

U1 g1, i. Let κ1: G → G be given by

κ1(g) =
{

g1,i if g ∈ K1,i

eG otherwise.

We next partition B ′
1 according to both the values of {κ1(σ (y, v))}v∈[N1] and {P1(Tvy)}v∈[N1].

Calling this partition Q1, we let C ′
1 = (τ1)Q1 .

Now, choose compact K2 ⊂ G, so that if

B ′
2 =

⋂
v∈[N2]

{y ∈ B2 : σ (y, v) ∈ K2},

then ν(B ′
2) > (1 − α2)ν(B2). Let τ ′

2 be the portion of τ 2 over B ′
2. We can partition K2 into

sets {K2,i}s2
i=1 such that for each i, there exists a g2, i ∈ G with K2, i ⊂ U1 g2, i. Let κ2: G →

G be given by

κ2(g) =
{

g2,i if g ∈ K2,i

eG otherwise.

Define R1 to be the partition of Y into the levels of C ′
1. Now partition B ′

2 according to
the values of {κ2(σ (y, v))}v∈[N2], {P2(Tvy)}v∈[N2] and {R1(Tvy)}v∈[N2]. Calling this partition
Q2, we set C ′

2 = (τ2)Q2 . In particular, the towers comprising C ′
2 each have a fixed pattern of

locations of the C ′
1 towers and fixed (P2 ∨ κ2) − N2-names.

Note that to maintain conclusion (2) of the lemma, we must remove points from C ′
1 that

intersect with the new error portion of C ′
2. But the set of such points has measure less than

α2.
We continue in the same way, constructing C ′

k and altering the proceeding C ′
i’s at each

step. The resulting castles will be denoted Ck . By construction, conclusions (1), (2) and
(5) of the lemma hold. Since the partitions Pk generate Y , we have (4). Last, note that
ν(Ck) > ν(C ′

k) − ∑∞
i=k+1 αi , and by our choice of αk’s, this yields conclusion (3). �
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Dynamical Systems 9

3. Quilting arguments

The goal of this section is to prove the following theorem, which is central to a recursive
argument used in the proof of Theorem 1.1. Colloquially, the theorem says that if we
consider a rectangular collection of size N and a collection of (disjoint) smaller speedup
blocks of size h which sit inside the rectangular collection, then we can define a partial
speedup which has the rectangular collection as a speedup block and which extends the
previously defined partial speedups.

Theorem 3.1: Fix N ≥ 0, h ≥ 0, and a cone C ⊂ Z
d . Let Tσ be an ergodic G-extension of

the Z
d -action (X,X , μ, T) and let {Av}v∈[N] be a rectangular collection of subsets of X. Let

U be a neighbourhood of eG, and suppose that for each v ∈ [N], we are given a measurable
function gv: A0 → G (where g0(x) is the constant function eG).

Suppose that there are vectors k1, . . ., kr ∈ [N − h] such that the sets
⋃

v∈[h] Akj +v are

pairwise disjoint, and that each {Akj +v}v∈[h] is a speedup block for a C-partial speedup Tj

of T.
Then, there is a C-partial speedup T extending the Tj such that {Av}v∈[N] is a speedup

block for T, and for all v in

[N] −
r⋃

j=1

⋃
w∈[h],w
=0

{kj + w},

we have σT(x, Tv(x))(gv(x))−1 ∈ U for a.e. x ∈ A0.

We prove this theorem via a series of technical lemmas, which describe how increasingly
complicated configurations of sets and partial iterates can be ‘quilted’ together to form a
speedup block for a partial speedup of T.

3.1. Initial arguments

The goal of this subsection is to prove Lemma 3.9, which essentially says that if we are
given a rectangular collection of sets and partial iterates defined on a ‘lower triangular’
subset of the rectangular collection, then we can ‘complete’ the rest of the rectangle, i.e.
we can define partial iterates on the remainder of the rectangular collection so that the
rectangular collection becomes a speedup block for a partial speedup of T.

We begin by showing that given two subsets of X, we can find an iterate of the action
T that sends a portion of one set to the other, and in such a way that the cocycle lies in a
predetermined subset of G.

Lemma 3.2: Fix a cone C and suppose Tσ is an ergodic G-extension of the Z
d -action

(X,X , μ, T). For all sets A, B ⊆ X of positive measure, for all v ≥ 0, and for any non-empty
open set U ⊆ G, there is a set A′ ⊆ A and a vector n ∈ Cv such that

(1) μ(A′) > 0;
(2) Tn(A′) ⊆ B; and
(3) σ (x, n) ∈ U for all x ∈ A′.

Proof: Given A, B and U, choose non-empty open subsets V0 and V1 of G so that
eG ∈ V0 and V1V

−1
0 ⊆ U . Since C is a cone, there exists a Følner sequence {Fn} for

the group Z
d consisting of parallepipeds, each of whom are subsets of Cv. Without loss of
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10 A.S.A. Johnson and D.M. McClendon

generality, assume this sequence is tempered (see Proposition 1.4 of [13]). Now, applying
the pointwise ergodic theorem of [13] to the indicator function of B × V1, we can conclude
that for almost every (x, g) ∈ A × V0, there exists (infinitely many) m ∈ Cv such that
(Tσ )m(x, g) ∈ B × V1.

Hence there is a g0 ∈ V0 such that for almost every x ∈ A, there is m ∈ Cv such
that (Tσ )m(x, g0) ∈ B × V1. For each m ∈ Cv, let Am = {x ∈ A : (Tσ )m(x, g0) ∈ B × V1}.
Since A = ⋃

m Am almost surely, there exists n ∈ Cv such that μ(An) > 0; set A′ to be
this An. We have, for any x′ ∈ A′, σ (x ′, n)g0 ∈ V1 so σ (x ′, n) ∈ V1g

−1
0 ⊂ V1V

−1
0 ⊆ U as

desired. �

The next lemma says that if the two sets have the same measure, we can, by repeating
the above procedure, construct a partial iterate that takes one set to the other, with the
cocycle similarly well-behaved.

Lemma 3.3: Fix a cone C and suppose Tσ is an ergodic G-extension of the Z
d -action

(X,X , μ, T). Given two subsets A, B ⊆ X of equal positive measure, then for all v ∈ Z
d ,

and for all non-empty open sets U ⊆ G, there is a partial iterate R of T such that

(1) R takes A to B;
(2) the iterate function k of R takes values only in Cv; and
(3) for almost every x ∈ A, σ (x, k(x)) ∈ U .

Proof: Given A, B, U, and v, fix some decreasing, positive sequence εj satisfying∑
jεj < ∞. Define

a1 = sup{μ(A′) : A′ satisfies the conclusions of Lemma 3.2 for A,B,U, and v}.

Choose A1 to be a set satisfying the conclusions of Lemma 3.2 for A, B, U and v, where
μ(A1) > a1 − ε1; let n1 be the corresponding vector coming from Lemma 3.2 such that
Tn1 (A1) ⊆ B.

If μ(A1) = μ(A), we are done (set R = Tn1 ). Otherwise, set A1 = A − A1, B1 =
B − Tn1 (A1) and

a2 = sup{μ(A′) : A′ satisfies the conclusions of Lemma 3.2 for A1, B1, U and v}.

Then choose A2 ⊆ A1 such that A2 satisfies the conclusions of Lemma 3.2 for A1, B1, U and
v, where μ(A2) > a2 − ε2.

Continuing in this fashion, we obtain a pairwise disjoint sequence of sets A1, A2, . . .

and corresponding vectors n1, n2, . . . ∈ Cv such that the sets Tnj
(Aj ) are disjoint subsets

of B.
If at any point, μ(

⋃p
j=1 Aj ) = μ(A), we are done (define R so that its restriction to each

Aj is Tnj
).

Otherwise, for all p > 0, μ
(⋃p

j=1 Aj

)
< μ(A). Suppose μ(

⋃∞
j=1 Aj ) < μ(A); then

by Lemma 3.2, there is a set A′ ⊆ A − ⋃∞
j=1 Aj and a vector n′ satisfying the conclusions

of Lemma 3.2. However, since μ(A) < ∞,
∑∞

j=1 μ(Aj ) < ∞, so limj → ∞μ(Aj) = 0 and
also limj → ∞(μ(Aj) + εj) = 0. Therefore, for some j we have

aj < μ(Aj ) + εj < μ(A′),
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Dynamical Systems 11

which contradicts the choice of aj. Therefore, μ(
⋃∞

j=1 Aj ) = μ(A), and we can therefore
define R on

⋃∞
j=1 Aj by setting R(x) = Tnj

(x) whenever x ∈ Aj. �

If we think of the last lemma as creating a ‘patch’ between two sets, the next lemma
tells us how we can add one patch onto another: we start with a partial iterate between two
sets and construct another partial iterate that connects them to a third set.

Lemma 3.4: Fix a cone C and suppose Tσ is an ergodic G-extension of the Z
d -action

(X,X , μ, T). Given three subsets A, B, C ⊆ X of equal positive measure and a partial
iterate R of T taking A to B, then for all v ∈ Z

d , and for any non-empty open set U ⊆ G,
there is a partial iterate R′ of T such that

(1) R′ takes B to C;
(2) the iterate function k of R′ takes values only in Cv; and
(3) for almost every x ∈ A, σT(x,R′ ◦ R(x)) ∈ U .

Proof: Given U, choose open subsets V1, V2, . . . and W1, W2, . . . of G such that WjVj ⊆ U
for all j and

⋃
j Vj = G. Partition A into measurable sets A1, A2, . . . where

Aj =
{

x ∈ A : σT(x,R(x)) ∈ Vj −
j−1⋃
i=1

Vi

}
,

and for each j, let Bj = R(Aj). The sets Bj form a measurable partition of B. Partition C
into measurable sets C1, C2, . . . so that μ(Cj) = μ(Bj) = μ(Aj) for all j. Use Lemma 3.3 to
construct maps R′

j : Bj → Cj such that the iterate function of R′
j takes values only in Cv

and σT(z, R′
j (z)) ∈ Wj for almost every z ∈ Bj. Then define R′ so that it coincides with R′

j

on each Bj; we have for a.e. x ∈ Aj, σ T(x, R′ ◦ R(x)) ∈ WjVj ⊆ U as desired �.

So far we have found partial iterates, i.e. one-dimensional actions with particular proper-
ties. Now we move to the d-dimensional scenario: first, let Q denote the d-dimensional cube
{0, 1}d. For each j ∈ {0, . . . , d}, set Qj = {v ∈ Q : v1 + · · · + vd = j}. Note that Qd con-
sists of exactly one point, which we think of as the ‘last’ corner of the cube. The next lemma
says that if we have partial iterates defined on the parts of the cube which do not involve
Qd, then we can ‘finish the cube’, i.e. create a d-dimensional action, which is a C-partial
speedup extending the iterates already defined, whose speedup block is in the shape of Q.

Lemma 3.5: Fix a cone C and suppose Tσ is an ergodic G-extension of the Z
d -action

(X,X , μ, T) and let U be an open subset of G. Suppose further that {Ay}y ∈ Q is a rectan-
gular collection of size (2, 2, . . . , 2), and

(1) for every y ∈ bj (Q) with y + ej 
= 1, there is a C-partial iterate Ij taking Ay to
Ay+ej

; and
(2) the partial iterates described in (1) commute, i.e. if y ∈ bj (Q)

⋂
bk(Q) is such that

y + ej + ek 
= 1, then Ij ◦ Ik = Ik ◦ Ij a.s. on Ay.

Then there exists a C-partial speedup T = (T 1, . . ., T d ) of T such that

(i) T j = Ij wherever the iterate Ij is defined;
(ii) {Ay}y ∈ Q is a speedup block for T; and

(iii) σT(x, T 1T 2 · · · T d (x)) ∈ U for a.e. x ∈ A0.
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12 A.S.A. Johnson and D.M. McClendon

Proof: Note that for x ∈ Qd−1, exactly one component of x is zero, so we can enumerate
the elements of Qd − 1 by setting gk to be the element of Qd − 1 with kth component 0. For
each j ∈ {1, . . . , d}, set

Rj = I1 ◦ I2 ◦ · · · Ij−1 ◦ Ij+1 ◦ Ij+2 ◦ · · · ◦ Id : A0 → Agj
.

Thus Rj(x) has the form Trj (x)(x).
Let P be the partition of A0 into maximal sets on which r1, . . ., rd are constant; let the

atoms of P be denoted P1, P2, . . . . Partition A1 into sets D1, D2, . . . where μ(Pj) = μ(Dj)
for all j.

Consider an arbitrary partition element Pi. Note that for each j, rj (x) is constant on Pi,
thus we can denote it by rj . Let v be such that

Cv ⊆ C ∩ (C + (r2 − r1) ) ∩ . . . ∩ (C + (rd − r1) ).

Use Lemma 3.4 (with sets Pi, R1(Pi) and Di; partial iterate R1 restricted to Pi; the
vector v specified above, and the set U from the hypothesis) to construct a partial iterate
R′

1 : R1(Pi) → Di whose iterate function k1 takes values in Cv (and thus in C) and where
σT(x,R′

1 ◦ R1(x)) ∈ U for a.e. x ∈ Pi.
For j > 1, we define partial iterates R′

j as follows: for z ∈ Rj(Pi), find x ∈ Pi with Rj(x) =
z. Then set kj (z) = −rj + r1 + k1(R1(x)) and define R′

j (z) = Tkj (z)(z). Note that this yields
R′

j (Rj (x)) = R′
1(R1(x)) and kj (z) ∈ C.

Repeat the above construction for each Pi. Then define

T j =
{

R′
j on Agj

Ij elsewhere on bj (Q)
.

Then T j is a C-partial iterate and σT(x, T 1T 2 · · · T d (x)) equals, for instance,
σT(x,R′

1(R1(x)) ∈ U . �

The next lemma says that a given C-partial speedup defined on a certain type of
subset of Q, it can be extended to all of Q. These certain subsets of Q are defined as
follows.

Definition 3.6: Let N ≥ 0. We say a subset B ⊆ [N] is lower triangular if for all j = 1,
. . . , d, (B − ej )

⋂
[N] ⊆ B.

Lemma 3.7: Fix a cone C and suppose Tσ is an ergodic G-extension of the Z
d -action

(X,X , μ, T). Suppose {Ay}y ∈ Q is a rectangular collection of size (2, 2, . . . , 2) and F is a
lower triangular subset of Q. Suppose further that

(1) for every y ∈ Q − F , we are given an open subset Uy ⊆ G;
(2) for every set Av with v ∈ bj (F ), there is a C-partial iterate Ij of T taking Av to

Av+ej
; and

(3) the partial iterates defined in (2) commute, i.e. when v ∈ bj (Q)
⋂

bk(Q) has v +
ej + ek ∈ F , then Ij ◦ Ik = Ik ◦ Ij a.s. on Av.

Then there exists a C-partial speedup T = (T 1, . . ., T d ) of T such that
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Dynamical Systems 13

(i) T j = Ij wherever the iterate Ij is defined;
(ii) {Ay}y ∈ Q is a speedup block for T; and

(iii) for every y ∈ Q − F , σT(x, Ty(x)) ∈ Uy for almost every x ∈ A0.

Proof: The proof is done inductively on the dimension of ‘subcubes’ of Q containing 0.
We begin by setting T j = Ij , where the C-partial iterate Ij is defined.

Recall that Q1 = {v ∈ Q : v1 + · · · + vd = 1} = {e1, . . ., ed}. If there exists ej ∈ Q1 −
F , use Lemma 3.3 (with sets A0 and Aej

, v = 0, and U = Uej
) to yield a C-partial iterate

T j : A0 → Aej
with σT(x, T j (x)) ∈ Uej

.
Next, ‘complete’ all the faces of the cube containing the origin (a face can be thought

of as a two-dimensional ‘subcube’ of Q). More specifically, if there exists y ∈ Q2 − F , so
y = ei + ej , use Lemma 3.5 (with the Q in that statement equal to the two-dimensional cube
{0, ei , ej , y} and U = Uy) to construct C-partial iterates T i : Aej

→ Ay and T j : Aei
→ Ay

satisfying T i ◦ T j = T j ◦ T i on A0 and σT(x, Ty(x)) ∈ Uy.
Repeat this process for the three-dimensional subcubes containing the origin, then the

four-dimensional subcubes, etc. More specifically, given that we have ‘completed’ the
(k − 1)-dimensional subcubes containing the origin, we complete the k-dimensional
subcubes containing the origin as follows: if there exists y ∈ Qk − F of the form
y = ei1 + · · · + eik , where the eij are distinct elements from {e1, . . .ed}, use Lemma 3.5
(with the Q in that statement being the k-dimensional cube in the dimensions i1 through ik
and U = Uy) to construct the remaining C-partial iterates T ij on this cube, which commute
and for which σT(x, Ty(x)) ∈ Uy.

After completing the d-dimensional subcube, we obtain a C-partial speedup T satisfying
the conclusions of the lemma. �

The next lemma (Lemma 3.9) is the key result of this subsection. It essentially says that
given a picture like the one below, where the partial iterates indicated by the solid arrows
are already defined, we can construct the partial iterates indicated by the dashed arrows so
that the diagram commutes and the cocycles associated with these iterates take values in
prescribed open subsets of G.

The sets connected by the solid arrows above constitute an example of a ‘lower triangular
speedup block’. More generally,

Definition 3.8: Let (X,X , μ, T) be an ergodic Z
d -action. Let B be a lower triangular

subset of [N]. We say AB = {Av}v∈B is a lower triangular speedup block (ltsb) if the sets
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14 A.S.A. Johnson and D.M. McClendon

Av are disjoint, measurable, of the same positive measure, and

(1) for every j = 1, . . . , d, given any v ∈ bj (B) there exists a partial iterate Ij of T
taking Av to Av+ej

; and
(2) for any j, k ∈ {1, . . . , d} with j 
= k, given any v ∈ bj (B)

⋂
bk(B), Ij ◦ Ik(x) = Ik ◦

Ij(x) for every x ∈ Av.

We call the maps I1, I2, . . . , Id, the iterates of the block AB.
Given a cone C ⊂ Z

d , we say the ltsb is a C-ltsb if the iterate functions of I1, . . . , Id

take values only in C.

Lemma 3.9 (Completing Lemma): Fix a cone C ⊂ Z
d and N ≥ 0, and suppose Tσ is an

ergodic G-extension of the Z
d -action (X,X , μ, T). Let {Av}v∈[N] be a rectangular collection

and suppose B ⊆ [N] is such that AB = {Av}v∈B is a C-lower triangular speedup block
with iterates I1, . . . , Id. Suppose that for every v ∈ [N] − B, we are given an open subset
Uv ⊆ G. If 0 ∈ [N] − B, we assume eG ∈ U0.

Then there is a C-partial speedup T = (T 1, . . ., T d ) of T such that

(1) T j = Ij wherever the iterate Ij is defined;
(2) {Av}v∈[N] is a (rectangular) speedup block for T; and
(3) for every v ∈ [N] − B, σT(x, Tv(x)) ∈ Uv for a.e. x ∈ A0.

Proof: If B = [N] then the lower triangular speedup block is already the desired (rectan-
gular) speedup block and we are done. If B = ∅, use Lemma 3.3 to construct a C-partial
iterate I1 : A0 → Ae1 satisfying σT(x, I1(x)) ∈ Ue1 for almost every x ∈ A0. Rename B to
be {0, e1} and continue as below.

For r ∈ {1, . . . , d}, set

Q(r) = {(x1, x2, . . ., xr , 0, 0, . . ., 0) ∈ Z
d : xj ∈ {0, 1} for j = 1, . . ., r}.

Thus Q(r) is an r-dimensional cube sitting in Z
d . Given a d-dimensional rectangular col-

lection {Av}v∈[N], w ∈ [N], and 1 ≤ r ≤ d, set Q
(r)
w to be the r-dimensional rectangular

collection {Av+w}v∈Q(r) of size (2, 2, . . . , 2). We also set 1(r) equal to the vector in Q(r) with
xj = 1 for all 1 ≤ j ≤ r.

We will prove this theorem by repeated application of Lemma 3.7 applied to larger
and larger dimensional cubes. For the example shown in the picture above, we would first
extend the C-partial iterates to the one-dimensional cube, that is {(3, 0), (4, 0)} = Q

(1)
w with

w = (3, 0). We would next extend the C-partial iterates to the two-dimensional cube that
is {(1, 0), (1, 1), (2, 0), (2, 1)} = Q

(2)
w with w = (1, 0) and continue with the rest of the

two-dimensional cubes that make up the first row of the array. We would then extend to
the second row, starting with the two-dimensional cube Q

(2)
w with w = (1, 1) and moving,

cube by cube, to the right until that row is complete. Next, we extend the C-partial iterates to
the one-dimensional cube {(0, 2), (0, 3)} = Q

(1)
w with w = (0, 2). Finally, we would extend

to Q
(2)
w with w = (0, 2) and continue along that row until the C-partial iterates are defined

on the entire rectangular collection, yielding the result.
To write out the general case, let r be the smallest natural number such that (N1 −

1, N2 − 1, .., Nr − 1, 0, 0, . . . , 0) /∈ B. Let gr = max{y : (N1 − 1, N2 − 1, . . ., Nr−1 − 1,
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Dynamical Systems 15

y, 0, . . ., 0) ∈ B} and define gr−1, gr−2, . . . , g1 recursively by setting

gj = max{y : (N1 − 1, N2 − 1, . . ., Nj−1 − 1, y, gj+1 + 1, . . ., gr + 1, 0, . . ., 0) ∈ B}.

If no such y exists, set gj = 0. For the example shown above, r = 1 and g1 = 3.
Set g = (g1, g2, . . ., gr , 0, . . ., 0) ∈ [N]. Note that g ∈ B and g + 1(r) /∈ B.
Now use Lemma 3.7 to extend the C-partial iterates I1, . . . , Ir to the rectangular

collection {Av}v∈Q
(r)
g

. Let B′ = B ∪ Q
(r)
g , and note that B′ is lower triangular and strictly

contains B. The C-partial iterates are now defined on more of the rectangular collection
{Av}v∈[N] than before, and the portion they are defined on satisfies the hypotheses of this
lemma.

Rename B′ as B and repeat the above steps. As the size of B has increased and yet our
rectangle [N] has finite size, this process will eventually end; this will occur when r = d
and B = [N], yielding the result.

Corollary 3.10: Fix a cone C ⊂ Z
d and suppose Tσ is an ergodic G-extension of the Z

d -
action (X,X , μ, T). Let {Av}v∈[m] be any rectangular collection. Then, for any collection
{Uv}v∈[m] of open subsets of G with eG ∈ U0, there is a C-partial speedup T of the original
action T such that {Av}v∈[m] is a speedup block for T and σT(x, Tv(x)) ∈ Uv for every
v ∈ [m], for μ-a.e. x ∈ A0.

Proof: Apply the previous result to the block B = ∅. �

3.2. L-collections

Definition 3.11: Let k, h ∈ (Z+)d . An L-set is a subset L(k, h) of Z
d of the form

L(k, h) = [k, k + h + 1] − [k + 1 + 1, k + h + 1].

Given an L-set L(k, h) and j ∈ {1, . . . , d}, the jth side of L(k, h) is the set of vectors
v ∈ L(k, h) satisfying vj = kj. The outside of L(k, h) is the set Out (L) of vectors v ∈ L(k, h)
satisfying vj = kj for some j; the inside of L(k, h) is the set In(L) of vectors in L(k, h) not
on the outside.

Note that the vector k lies on all d sides of L(k, h).

Definition 3.12: Let (X,X , μ, T) be an ergodic Z
d -action. An L-collection is a collection

of pairwise disjoint measurable subsets {Av}v∈L(k,h) of the same positive measure, where
the indexing set L(k, h) is an L-set, together with partial iterates f1, f2, . . . , fd of T satisfying
fj (Av) = Av+ej

if v and v + ej are both in the outside of L(k, h), or both in the inside of
L(k, h).

We define C − L-collections in the obvious way: they are L-collections where the partial
iterates f1, f2, . . . , fd of T have iterate functions which take values only in cone C.

As an example, the two-dimensional L-collection with k = (1, 3) and h = (4, 3) is the
following collection of sets and partial iterates indicated below by the solid arrows (this
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16 A.S.A. Johnson and D.M. McClendon

picture explains why we use the terminology ‘L-collection’).

The next lemma says that given an L-collection, we can ‘quilt’ the outside to the inside
via partial iterates. For instance, in the previous example, we can construct the iterates
indicated by the dashed arrows in the above picture.

Lemma 3.13: Fix a cone C ⊂ Z
d , an open set U ⊆ G, and N ≥ 0 . Let Tσ be an ergodic

G-extension of the Z
d -action (X,X , μ, T). Suppose that

(1) {Av}v∈[N] is a rectangular collection;
(2) L(k, h) is an L-set with L(k, h) ⊂ [N];
(3) {Av}v∈L(k,h) is a C − L-collection with partial iterates f1, . . ., fd; and
(4) for every v ∈ Out(L), there is a partial iterate Iv taking A0 to Av, and these iterates

satisfy fs ◦ Iv = Iv+es
a.s. on A0 whenever {v, v + es} ⊆ Out(L).

Then there are C-partial iterates g1, . . ., gd of T such that

(i) for each v which is in the jth side of L(k, h) but not in any other side, gj takes Av

to Av+ej
;

(ii) the maps fj and gk commute, i.e. if v ∈ Out(L) and v + ej ∈ Out(L) but v + ek ∈
In(L), then fj ◦ gk = gk ◦ fj a.s. on Av;

(iii) for a.e. x ∈ Ak, the base of the L-collection, and for any permutation ρ of {1, . . . ,
d}, we have gd ◦ fd − 1 ◦ ··· ◦ f1(x) = gρ(d) ◦ fρ(d − 1) ◦ ··· ◦ fρ(1)(x); and

(iv) for a.e. x ∈ A0, σT(x, g1 ◦ Ik+1−e1 (x)) ∈ U .

Proof: The proof is divided into three parts. First, we partition the sets Ak and Ak+1

so that various iterate functions are constant on the atoms. We then work inductively on
these atoms, first to find an appropriate set Cw ⊂ Z

d and then to use this set as we apply
Lemma 3.4 to find one of our partial iterates, namely g1. This will be one ‘stitch’ between
the outside and the inside of the C − L-collection, and the final step of our proof is to use
this stitch to define the other partial iterates that will ‘quilt’ the C − L-collection together.
The details of the proof are as follows.

For any v = (v1, . . . , vd ) ∈ L(k, h), some (possibly none or all) of the partial iterates
f1, . . . , fd are defined on Av. Let Pv be a finite or countable partition of Av so that on each
atom of Pv, all the iterate functions f1, f2, . . ., fd : Av → C of the partial iterates defined
on Av are constant. Then for v ∈ Out(L), f

−(v1−k1)
1 ◦ f

−(v2−k2)
2 ◦ · · · ◦ f

−(vd−kd )
d Pv is the
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Dynamical Systems 17

pullback of this partition onto Ak, the base of the L-collection. Set

Pout =
∨

v∈ Out(L)

f
−(v1−k1)
1 ◦ · · · ◦ f

−(vd−kd )
d (Pv).

Similarly, for v ∈ In(L), f −(v1−(k1+1))
1 ◦ · · · ◦ f

−(vd−(kd+1))
d Pv is the pullback of this partition

onto Ak+1. Set

Pin =
∨

v∈In(L)

f
−(v1−(k1+1))
1 ◦ · · · ◦ f

−(vd−(kd+1))
d (Pv).

Then Pout and Pin are partitions on Ak and Ak+1, respectively. Denote the atoms of Pout by
B1, B2, . . . and arbitrarily partition Ak+1 into sets B ′

1, B
′
2, . . . such that μ(B ′

j ) = μ(Bj ) for
all j.

Consider the partition Pin|B ′
1
: list the positive-measure elements of this partition of

B ′
1 ⊂ Ak+1 as C ′

1, C
′
2, . . . . Partition B1 arbitrarily into sets C1, C2, . . . with μ(Cj ) = μ(C ′

j )
for all j. Note that for each j, we have

• for any v ∈ Out(L), the iterate function of f
v1−k1
1 ◦ · · · ◦ f

vd−kd

d is constant on Cj: set
aj,v to be this constant;

• for any v ∈ In(L), the iterate function of f
v1−(k1+1)
1 ◦ · · · ◦ f

vd−(kd+1)
d is constant on

C ′
j : set bj,v to be this constant.

Now fix j. Let w ∈ Z
d be a vector such that

Cw ⊂ C ∩ (C + aj,v − aj,(k+1−e1) − bj,(v+es )),

for every v and s such that v ∈ Out(L) and v + es ∈ In(L). Let Dj = f2 ◦ f3 ◦ · · · ◦
fd (Cj ) ⊆ Ak+1−e1 . Now use Lemma 3.4 with sets Cj, Dj and C ′

j , partial iterate f2 ◦ ···
◦ fd and vector w from above; this defines the partial iterate g1 : Dj → C ′

j whose iterate
function g1 takes values only in Cw (thus in C) and for which σT(x, g1 ◦ Ik+1−e1 (x)) ∈ U

for almost every x ∈ A0.
What remains is for us to define the other gi’s and the rest of g1. Let v and s be such that

v ∈ Out(L) and v + es ∈ In(L). We need to define gs on f
v1−k1
1 ◦ · · · ◦ f

vd−kd

d (Cj ), which
we do by moving a point in this domain first back to Cj ⊂ Ak, then moving it to the set Dj,
where we can use the already defined g1 to move it to C ′

j , and finally moving it to Av+es
. In

other words, for z ∈ f
v1−k1
1 ◦ · · · ◦ f

vd−kd

d (Cj ), set

gs(z) = (
f

u1
1 ◦ · · · ◦ f

ud

d

) ◦ g1 ◦ (f2 ◦ · · · ◦ fd ) ◦ (
f

−(v1−k1)
1 ◦ · · · ◦ f

−(vd−kd )
d

)
(z),

where u = v + es − (k + 1).
The iterate function associated with gs is

gs = bj,(v+es ) + g1 + aj,(k+1−e1) − aj,v.

Thus gs ∈ C exactly when g1 ∈ C + aj,v − aj,(k+1−e1) − bj,(v+es ), which follows since
g1 ∈ Cw.
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18 A.S.A. Johnson and D.M. McClendon

Having now defined the gs on the images of Cj, repeat the argument for each j to define
the iterates on all the appropriate images of B1. Then repeat this argument for B2, B3,. . . ;
this produces partial iterates {gs}ds=1, which satisfy the conclusions of the lemma. �

3.3. Completing the proof of Theorem 3.1

The next result tells us that if we are given a rectangular collection where commuting partial
iterates have been defined on some lower triangular set, and if we are given a rectangular
speedup block within the rectangular collection which is disjoint from the lower triangular
set, then we can extend the partial iterates to a larger lower triangular block, encompassing
both the original lower triangular set and the given speedup block. By repeating the argument
in this lemma, we obtain a construction which establishes Theorem 3.1 in the case where
the functions gv are constant. Then by approximating the gv by step functions, we obtain a
proof of Theorem 3.1.

Observe first that given a two-dimensional lower triangular subset (or ltsb) of
[(N1, N2)], there exists a non-increasing function,

J1 : {0, 1, 2, . . ., N1 − 1} → {−1, 0, 1, 2, . . ., N2 − 1},

such that

(x, y) ∈ B ⇔ (x ≥ 0 and 0 ≤ y ≤ J1(x)).

Note that if J1(x) = −1, then (x, y) /∈ B for any y.
Similarly, given a d-dimensional lower triangular subset (or ltsb) of [N] =

[(N1, . . ., Nd )], there exists a sequence of functions J1, . . . , Jd − 1 called the height func-
tions of B such that

(1) for each r ∈ {1, . . . , d − 1}, Jr maps [(N1, . . . , Nr)] into the finite set {−1, 0, . . . ,
Nr + 1 − 1};

(2) each Jr is non-increasing along any one coordinate if the other coordinates are kept
fixed; and

(3) v ∈ B ⇔ (v ≥ 0 and for each r ∈ {2, . . . , d}, vr ≤ Jr − 1(v1, . . . , vr − 1)).

As an example, if J1(0) = J1(1) = 2, J1(2) = J1(3) = 0 and J1(4) = −1, the (two-
dimensional) ltsb with height function J1 is the collection of sets shown below with iterates
I1 and I2 (here N can be any integer vector greater than or equal to (5, 3)).

Lemma 3.14 (Iterative Filling Lemma): Fix a cone C ⊂ Z
d . Fix N, k, h ∈ Z

d where N >

k + h, h > 0, and k ≥ 0. Let Tσ be an ergodic G-extension of the Z
d -action (X,X , μ, T)

and {Av}v∈[N] be a rectangular collection in X.
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Dynamical Systems 19

Suppose that B ⊆ [N] is such that

• AB = {Av}v∈B is a C-ltsb with partial iterates I1, . . ., Id, and
• the last height function Jd−1 of B satisfies Jd−1(k1, . . . , kd−1) < kd.

Suppose also that

• the sets {Av}v∈[k,k+h] form a speedup block for a C-partial speedup T = (T 1, . . ., T d )
of T, and

• we are given, for every v ∈ [N] − B, an open subset Uv ⊆ G. If 0 ∈ [N] − B, we
assume eG ∈ U0.

Then, if we define for each j ∈ {1, . . . , d − 1}, J̃j : [(N1, . . ., Nj )] → {−1, 0, . . ., Nj+1 − 1}
by

J̃j (x1, . . ., xj ) =

⎧⎪⎪⎨⎪⎪⎩
max{Jj (x1, . . ., xj ), kj+1 + hj+1 − 1} if (x1, . . ., xj ) <

(k1 + h1, . . ., kj + hj )
Jj (x1, . . ., xj ) otherwise

,

and let B̃ be the lower triangular subset with height functions J̃1, . . ., J̃d−1, the sets {Av}v∈B̃
form a C-ltsb AB̃ with partial iterates Ĩ1, . . . , Ĩd , which simultaneously extend the partial
iterates associated with the block AB and the partial speedup T, i.e.

(i) for every v ∈ bj (B), Ĩj = Ij on Av, and
(ii) for every v ∈ [k, k + h − ej ], Ĩj = T j on Av.

Furthermore, given any v = (v1, . . ., vd ) ∈ (B̃ − B − [k, k + h]
) ⋃{k}, we have

σT
(
x, Ĩ

v1
1 ◦ · · · ◦ Ĩ

vd

d (x)
) ∈ Uv

for a.e. x ∈ A0.

Proof: First, use Lemma 3.9 to find a partial speedup R extending the iterates I1, . . . ,
Id of AB such that {Av}v∈[N] is a speedup block for R, where for each v ∈ [N] − B,
σT(x, Rv(x)) ∈ Uv for a.e. x ∈ A0.

Consider the L-set L(k − 1, h). Restricting the action R to the sets Av where v ∈ Out(L),
and restricting the action T to the sets Av where v ∈ In(L) turns {Av}v ∈ L into an L-
collection. By Lemma 3.13 there are partial iterates g1, . . . , gd mapping sets associated
with vectors in Out(L) to sets associated with respective vectors in In(L), with σT(x, g1 ◦
Rk+1−e1 (x)) ∈ Uk for a.e. x ∈ A0.

Now, if we define, for each j ∈ {1, . . . , d}, maps Ĩ1, . . . , Ĩd so that

• Ĩj coincides with gj on Av whenever v ∈ Out(L) and v + ej ∈ In(L);
• Ĩj coincides with T j on Av whenever v ∈ [k, k + h − ej ]; and
• Ĩj coincides with Rj on all other v ∈ bj (B̃);

then the iterates Ĩ1, . . ., Ĩd satisfy the conclusions of the lemma. �
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20 A.S.A. Johnson and D.M. McClendon

Lemma 3.15: Fix N ≥ 0, h ≥ 0 and a cone C ⊂ Z
d . Let Tσ be an ergodic G-extension

of the Z
d -action (X,X , μ, T) and let {Av}v∈[N] be a rectangular collection in X.

Suppose that there are vectors k1, k2, . . ., kr ∈ [N − h] such that the sets Cj =⋃
v∈[h] Akj +v are pairwise disjoint, and that each Cj is a speedup block for a C-partial

speedup Tj of T. Suppose also that for all v ∈ [N], we are given an open set Uv ⊆ G where
eG ∈ U0.

Then there is a C-partial speedup T extending the Tj such that {Av}v∈[N] is a speedup
block for T and for all v in ([N] − ⋃r

j=1 Cj ) ∪ {k1, . . . , kd}, we have σT(x, Tv(x)) ∈ Uv

for a.e. x ∈ A0.

Proof: We will begin by using the last lemma with B = ∅ and one of the speedup blocks,
say C1, to yield a lower triangular speedup block with iterates that extend T1. We will then
repeat this using the last lemma again with this new lower triangular speedup block and
another speedup block, say C2.

So that we can continue this process, we need to order the Cj in such a way that when
the lower triangular speedup block is increased to include the next Cj, the unincorporated
Cj’s are left entirely disjoint from the new, larger, lower triangular speedup block. This leads
us to define

(v1, . . . , vd ) ≺ (w1, . . . , wd ) iff

⎧⎪⎪⎨⎪⎪⎩
|h|
h1

v1 + · · · + |h|
hd

vd < |h|
h1

w1 + · · · + |h|
hd

wd

or
|h|
h1

v1 + · · · + |h|
hd

vd = |h|
h1

w1 + · · · + |h|
hd

wd

(v1, . . . , vd−1) ≺ (w1, . . . , wd−1)

,

where v1 ≺ w1 means v1 < w1. We renumber k1, k2, . . ., kr as necessary so that ki ≺ ki+1

for 1 ≤ i < r.
Now we can begin as described above. Apply the Iterative Filling Lemma (Lemma

3.14) with B the empty set and k = k1. We obtain a C-ltsb AB1 with iterates T, which
extend T1 on speedup block C1 and such that for every v ∈ (B1 − [k1, k1 + h]) ∪ {k1},
σT(x, Tvx) ∈ Uv for a.e. x ∈ A0.

Apply the Iterative Filling Lemma again, with B = B1 and k = k2 to obtain a
C-ltsb AB2 whose iterates extend both T on B1 and T2 on speedup block C2. For each
v ∈ (B2 − [k1, k1 + h] − [k2, k2 + h]) ∪ {k1, k2}, σT(x, Tvx) ∈ Uv for a.e. x ∈ A0.

We can continue in this fashion, applying the Iterative Filling Lemma repeatedly to
obtain larger and larger lower triangular speedup blocks. Eventually we obtain a C-ltsb ABr

containing all the Cj, where the iterates of ABr
coincide with the components of Tj on

each Cj and for every v in (Br − ⋃r
j=1[kj , kj + h])

⋃{k1, . . ., kr}, σT(x, Tv(x)) ∈ Uv for
almost every x ∈ A0. Apply the Completing Lemma (Lemma 3.9) to ABr

to complete the
construction of T. �

We now complete the proof of Theorem 3.1.

Proof of Theorem 3.1: Choose a neighbourhood V of eG such that VV−1 ⊆ U. Partition
A0 into measurable sets B1, B2, . . . such that for each x ∈ Bi and each v in⎛⎝[N] −

r⋃
j=1

Cj

⎞⎠ ∪ {k1, . . . , kr},

there is a group element gi,v such that gv(x) ∈ V gi,v.
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Dynamical Systems 21

For each v ∈ ([N] − ⋃r
j=1 Cj ) ∪ {k1, . . . , kr}, partition Av into disjoint sets Bv, i such

that μ(Bv, i) = μ(Bi) for each i.
Next, define the rectangular collection {D(i)

v }v∈[N] by setting

• D
(i)
0 = Bi ;

• D
(i)
v = Bv,i when v ∈ ([N] − ⋃r

j=1 Cj ) ∪ {k1, . . . , kr}; and

• D
(i)
v = (Tj )v−kj

(Bkj ,i) if v ∈ [kj , kj + h].

Apply Lemma 3.15 with the same cone C, the rectangular collection {D(i)
v }v∈[N], speedup

blocks {(Tj )v(Bkj ,i)}v∈[h], and Uv = Vgi,v to produce a C-partial speedup T
(i)

extending

the Tj such that {D(i)
v }v∈[N] is a speedup block for T

(i)
and given almost every x ∈ Bi, we

have σT(x, (T
(i)

)v(x)) ∈ Vgi,v for every v ∈ ([N] − ⋃
j Cj ) ∪ {k1, . . . , kd}.

But for such a v, we have σT(x, (T
(i)

)v(x))(gv(x))−1 ∈ (Vgi,v)(Vgi,v)−1 = V V −1 ⊆ U

as desired. Setting T so that it coincides with T
(i)

on the rectangular collection {D(i)
v }v∈[N]

produces the speedup with the desired properties. �

4. Proof of Theorem 1.1

We now turn to proving our central result. The idea of the argument is this: we use
Lemma 2.8 to find an increasing sequence of castles for (Y,Y, ν, S); for each of
these castles we construct a rectangular collection in X. Using Theorem 3.1, we realize
these rectangular collections as speedup blocks for C-partial speedups T1, T2, . . . of T,
where each speedup extends the last and is defined on more of the space X. The correspond-

ing G-extensions of these speedups will increase to a speedup T
σ

of Tσ , which satisfies the
conclusions of Theorem 1.1.

Proof of Theorem 1.1: Recall that we have Tσ and Sσ , G-extensions of the respective
Z

d -actions (X,X , μ, T) and (Y,Y, ν, S) with Tσ ergodic and S aperiodic. As G is locally
compact, we can find a complete, right-invariant metric ρ compatible with the topology
on G (there need not be a two-sided invariant metric compatible with the topology, see
[14]). Choose ε > 0 such that Bε(eG), the closed ball of ρ-radius ε centered at the identity,
is compact and contained in U. Let εk be a decreasing sequence of positive real numbers
satisfying

∑∞
k=1 εk < ε

4 .
Step 1 (preliminaries): For each k, choose a compact neighbourhood Uk of the identity

such that UkU
−1
k ⊆ Bεk

(eG). Using Lemma 2.8, choose a sequence {CS
k }∞k=1 of castles for

S with respect to these Uk. For each k, let {τ S
k,j }j denote the towers comprising the castle

CS
k , let Nk be the common height of these towers, and let AS

k,j,v be the level at height v of
tower τ S

k,j . Observe that from Lemma 2.8 we obtain, for each k, j and v, a group element
gk,j,v ∈ G such that for all y ∈ AS

k,j,0,

σS(y, v) ∈ Uk gk,j,v

(in particular, gk,j,0 can be taken to be eG for every k and j). Thus Uk gk,j,v contains all
values of the cocycle associated with movement from the base of τS

k,j to height v in the
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22 A.S.A. Johnson and D.M. McClendon

tower. Next, define for each k the set K̃k = ⋃
j

⋃
v∈[Nk ] Ukgk,j,v and let

Kk = Bε(eG) K̃k (K̃k)−1 Bε(eG);

observe that Kk is compact for all k. If y ∈ |CS
k | ⋂ S−w(|CS

k |), then y ∈ AS
k,j,v for some j and

v and

σS(y, w) = σS(S−vy, v + w) σS(S−vy, v)−1 ∈ K̃k(K̃k)−1 ⊆ Kk.

Thus Kk contains all values of the cocycle σS associated with the kth castle CS
k . As we will

later see, the use of the balls Bε(eG) will ensure Kk contains all values of the cocycle σT

associated with the kth partially defined speedup of T.
By the uniform continuity of the inverse function and of group multiplication on the

compact set Bε(eG) × Kk × Bε(eG), we can choose for each k a constant δk > 0 such that
if h1, h2, h3, h4 ∈ Bε(eG) are such that ρ(h1, h2) < δk, ρ(h3, h4) < δk, and g ∈ Kk, then

ρ(h1gh3, h2gh4) <
1

k
and ρ

(
h1gh−1

3 , h2gh−1
4

)
<

1

k
.

Finally, we fix an increasing sequence {Pk}∞k=1 of finite partitions of X, which
generate X .

Step 2 (base case): Here we construct an initial partial speedup (T1)σ1 of Tσ , which is
partially G-isomorphic to Sσ .

Consider the castle CS
1 consisting of towers τ S

1,j , each of size [N1]. For each AS
1,j,v ∈

τ S
1,j , let AT

1,j,v be a subset of X with μ(AT
1,j,v) = ν(AS

1,j,v) such that {AT
1,j,v}v∈[N1] forms a

rectangular collection, denoted τT
1,j , with |τT

1,j | ∩ |τT
1,l| = ∅ when j 
= l . For each j, because

μ(AT
1,j,0) = ν(AS

1,j,0) , we can find an isomorphism φ1,j : AT
1,j,0 → AS

1,j,0. We will consider

the collection {τT
1,j }j , denoted CT

1 , to be a copy in X of CS
1 .

Use Corollary 3.10 for each j (with m = N1 and Uv = Bε1 (eG)σS(φ1,j (x), v)) to con-
struct a C-partial speedup T1,j of T such that

(1) τT
1,j is a speedup block for T1,j , and

(2) for every v ∈ [N1], for μ-a.e. x ∈ AT
1,j,0,

σT(x, (T1,j )v(x))(σS(φ1,j (x), v))−1 ∈ Bε1 (eG). (4.1)

Given x ∈ AT
1,j,v and w ∈ Z

d such that v + w ∈ [N1], define the cocycle associated with

the speedup T1,j to be

σ1,j (x, w) = σT(x, (T1,j )w(x)).

We can then define T1 so that T1
v coincides with T1,j

v wherever the latter map is defined;
CT

1 is therefore a speedup block for T1. We similarly define σ 1 so that σ1(x, v) = σ1,j (x, v)
where the latter is defined.
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Dynamical Systems 23

What remains is to define the partial G-isomorphism between (T1)σ1 and Sσ . We first
extend, for each j, the isomorphism φ1, j to the entire tower |τT

1,j | so that for μ-a.e. x ∈ AT
1,j,0

and each v ∈ [N1],

φ1,j ◦ T1,j
v (x) = Sv ◦ φ1,j (x).

We next define α1,j : |τT
1,j | → G by setting for x ∈ AT

1,j,v,

α1,j (x) = σS
(
φ1,j

(
T1,j

−vx
)
, v

)
σ1,j

(
T1,j

−vx, v
)−1

.

Similar in spirit to what we did before, define φ1 : |CT
1 | → |CS

1 | and α1 : |CT
1 | → G, so that

for each j they coincide with φ1, j and α1, j, respectively, on τT
1,j . Set α1(x) = eG for x /∈ |CT

1 |.
We then have that the map,

�1(x, g) = (φ1(x), α1(x)g)

is a G-isomorphism between
(
T1

)σ1 and Sσ , where these maps are thus far defined, i.e. for
any x ∈ AT

1,j,v and any w ∈ Z
d such that v + w ∈ [N1], we have

α1
(
T1

w(x)
)

σ1(x, w) (α1(x))−1 = σS(φ1(x), w).

Note that by the right invariance of ρ and Equation (4.1), we have for all x ∈ CT
1 ,

ρ(α1(x), eG) < ε1.

We complete the base case by setting m1 = 1.
Step 3 (inductive step):Here we extend the partial speedup (Tk)σk to another partial

speedup (Tk+1)σk+1 , which is defined on more of X and is also partially G-isomorphic
to Sσ .

Assume that we have defined

(1) numbers 1 = m1 < m2 < . . . < mk, where for every i ∈ {2, . . . , k}, we have

∞∑
n=mi

2εn < δi ;

(2) C-partial speedups T1, T2, . . ., Tk of T, defined on respective speedup blocks
CT

1 , CT
2 , . . . , CT

k of respective heights Nm1 , . . ., Nmk
such that

|CT
1 | ⊆ |CT

2 | ⊆ · · · ⊆ |CT
k |,

and each Ti+1 extends Ti ;
(3) isomorphisms φ1, . . . , φk, where each φi : |CT

i | → |CS
mi

| satisfies

φi ◦ Ti
w(x) = Sw ◦ φi(x),

for all x ∈ |CT
i | ⋂

Ti
−w(|CT

i |);
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24 A.S.A. Johnson and D.M. McClendon

(4) corresponding cocycles σ 1, . . . , σ k of the above partial speedups satisfying, for
each i,

σi (x, w) (σS(φi(x), w))−1 ∈ Bεmi
(eG), (4.2)

for a.e. x ∈ ∪jA
T
i,j,0 and all w ∈ [Nmi

]; and
(5) transfer functions α1, . . . , αk: X → G such that

• for all x ∈ |CT
i | ⋂

Ti
−w(|CT

i |),

αi

(
Ti

w(x)
)

σi(x, w) (αi(x))−1 = σS(φi(x), w); (4.3)

• for every x ∈ X and for every i ∈ {1, . . . , k − 1},

ρ(αi+1(x), αi(x)) ≤ 2εmi
; and (4.4)

• ρ(αi(x), eG) < ε for every x ∈ X.

Choose mk + 1 > mk so that

(1)
∑∞

n=mk+1
2εn < δk+1; and

(2) φk(Pk) is approximated within distance 1
2k+1 (in the usual partition metric) by the

levels of CS
mk+1

.

To find our next speedup block CT
k+1, note that we want it to be a copy in X of CS

mk+1
.

Recall that |CS
mk

| ⊆ |CS
mk+1

| and CS
mk+1

consists of the towers τ S
mk+1,j

. For each level AS
mk+1,j,v

contained in |CS
mk

|, we define AT
k+1,j,v = φ−1

k

(
AS

mk+1,j,v

)
. Additional disjoint subsets of

X − φ−1
k (|CS

mk
|) are arbitrarily chosen for the remaining levels AT

k+1,j,v so that μ(AT
k+1,j,v) =

ν(AS
mk+1,j,v) for all j and v. Thus for each j, {AT

k+1,j,v}v∈[Nmk+1 ] forms a rectangular collection

which we denote by τT
k+1,j and |τT

k+1,j | ∩ |τT
k+1,l | = ∅ when j 
= l. By Lemma 2.8, AS

mk+1,j,0
is

disjoint from CS
mk

and thus φk is not defined on AT
k+1,j,0: we let φk+1,j : AT

k+1,j,0 → AS
mk+1,j,0

be an arbitrary isomorphism.
We then use Theorem 3.1 to construct our next C-partial speedup. For the neighbourhood

of eG, we use the closed ball Bζk+1 (eG) where ζ k + 1 is chosen so that ζk+1 < εmk+1 and (by
the uniform continuity of group multiplication restricted to the compact set Kk + 1 × Kk + 1)
if a, a′, b ∈ Kk + 1 satisfy ρ(a, a′) < ζ k + 1, then ρ(ba, ba′) < εmk+1. Now fix j and let

Rj = {
v ∈ [Nmk+1 ] : AT

k+1,j,v ⊆ ∣∣CT
k

∣∣}.
Observe that

⋃
v∈Rj

AT
k+1,j,v is the disjoint union of r (r is a finite number, possibly zero)

speedup blocks C1, . . . , Cr for Tk . For l = 1, . . . , r, we denote by kl the initial vector of
the speedup block Cl. We now use Theorem 3.1 (with N = Nmk+1 , h = Nmk

, Av = AT
k+1,j,v,

U = Bζk+1 (eG) and gv(x) = σS(φk+1,j (x), v)) to construct a C-partial speedup Tk+1,j of T
such that
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Dynamical Systems 25

(1) {AT
k+1,j,v}v∈[Nmk+1 ] is a speedup block for Tk+1,j ;

(2) Tk+1,j extends Tk; and
(3) for every v ∈ (⋃r

l=1{kl}
)⋃ (

[Nmk+1 ] − ⋃
l Cl

)
, for μ-a.e. x ∈ AT

k+1,j,0,

σT
(
x, (Tk+1,j )v(x)

) (
σS

(
φk+1,j (x), v

))−1 ∈ Bζk+1 (eG).

We now extend φk + 1,j to the entire tower |τT
k+1,j | in the following way: for y ∈ |τT

k+1,j |,
write y = Tk+1,j

v (x) for some x ∈ AT
k+1,j,0 and some v. Then define

φk+1,j (y) = Sv(φk+1,j (x)).

After repeating the above procedure for each j, we set CT
k+1 to be the union of the towers

τT
k+1,j and define Tk+1 so that Tk+1

v coincides with Tk+1,j
v wherever the latter map is defined.

Similarly, define φk+1 : |CT
k+1| → |CS

mk+1
| so that it coincides with each φk + 1,j on |τT

k+1,j |.
Also, let σ k + 1 be the cocycle for Tk+1, i.e. set

σk+1(x, w) = σT(x, Tk+1
w x)

for any x ∈ |CT
k+1|

⋂
Tk+1

−w (|CT
k+1|).

All that remains is for us to define the transfer function αk + 1: X → G and show it
satisfies the stated properties. By our induction step, the transfer function αk: X → G
relates σk(x, v) and σS(φk(x), v). As φk + 1(x) does not necessarily equal φk(x) even when
both are defined, we cannot define αk + 1 to simply extend αk. So we first define a function
αk , which keeps track of the change from φk(x) to φk + 1(x) by setting

αk(x) =
⎧⎨⎩

σS(φk+1(x),−v)−1σS(φk(x),−v) if x ∈ AT
k,j,v ⊆ |CT

k |

eG if x /∈ |CT
k |

.

One can then check that for x ∈ AT
k,j,v,

αk(Tk
−vx) αk(Tk

−vx) σk(x,−v) αk(x)−1 αk(x)−1 = σS(φk+1(x),−v).

Since σ k + 1 = σ k and Tk+1 = Tk where all are defined, the above can be written as

σ
αkαk

k+1 (x,−v) = σS(φk+1(x),−v) for x ∈ AT
k,j,v. (4.5)

However, we need a transfer function which satisfies Equation (4.3) for all x ∈ CT
k+1 and all

u such that Tk+1
u x ∈ CT

k+1. In this more general case, the left side of Equation (4.5) may or
may not be equal to the right side. Thus we define a function α̃k : X → G to keep track of
this difference:

α̃k(x) =
⎧⎨⎩σS(φk+1(x),−w)−1σ

(αkαk)
k+1 (x,−w) if x ∈ AT

k+1,j,w ⊆ |CT
k+1|

eG if x /∈ |CT
k+1|

.
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26 A.S.A. Johnson and D.M. McClendon

It can be shown that

α̃k

(
Tk+1

−w x
)
σ

αkαk

k+1 (x,−w) α̃k(x)−1 = σS(φk+1(x),−w).

In other words, by setting

αk+1(x) = α̃k(x) αk(x) αk(x),

we obtain

αk+1
(
Tk+1

−w x
)
σk+1(x,−w)αk+1(x)−1 = σS(φk+1(x),−w). (4.6)

Equation (4.6) has w, where x ∈ AT
k+1,j,w. Now let u be such that Tk+1

u x ∈ CT
k+1: then

Tk+1
u x ∈ AT

k+1,j,w+u and we also know

αk+1
(
Tk+1

−w x
)
σk+1

(
Tk+1

u x,−(w + u)
)
αk+1

(
Tk+1

u x
)−1 =

σS
(
φk+1

(
Tk+1

u x
)
,−(

w + u
))

.
(4.7)

By the cocycle equation,

σS
(
φk+1(x), u

) = σS
(
φk+1

(
Tk+1

−w x
)
, w + u

)
σS(φk+1(x),−w)

= (
σS

(
φk+1

(
Tk+1

u x
)
,−(w + u)

))−1
σS(φk+1(x),−w).

Plugging in Equations (4.6) and (4.7), this reduces to

σS(φk+1(x), u) = αk+1
(
Tk+1

u x
)
σk+1(x, u) αk+1(x)−1,

which shows our αk + 1 satisfies condition (4.3).
For condition (4.4), rewrite ρ(αk + 1(x), αk(x)) as

ρ (̃αk(x) αk(x) αk(x), αk(x)) = ρ (̃αk(x), αk(x)−1) ≤ ρ (̃αk(x), eG) + ρ(eG, αk(x)−1).

Consider first ρ(eG, αk(x)−1) = ρ(αk(x), eG). For x ∈ AT
k,j,v, this equals

ρ(σS(φk+1(x),−v)−1σS(φk(x),−v), eG)

= ρ(σS(φk+1(Tk
−vx), v) σS(φk(Tk

−vx), v)−1, eG).

Although φk(x) is not necessarily equal to φk + 1(x), they are both on the same level in CS
mk

and by Lemma 2.8, both σS(φk+1(Tk
−vx), v) and σS(φk(Tk

−vx), v) lie in Umk
gv. Thus

σS
(
φk+1

(
Tk

−vx
)
, v

)
σS

(
φk

(
Tk

−vx
)
, v

)−1 ∈ Umk
U−1

mk
⊆ Bεmk

(eG)

and we have

ρ(eG, αk(x)−1) ≤ εmk
.

Note that if x /∈ CT
k , then αk(x) = eG and the above holds trivially.
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Dynamical Systems 27

For ρ (̃αk(x), eG), we have two cases: in the first, x ∈ |CT
k+1| − |CT

k | or x is in the base
of |CT

k |, and in the second x is in some AT
k+1,j,w ∩ AT

k,l,v with v 
= 0. In the first case,
αk(x) = αk(x) = eG and

α̃k(x) = (σS(φk+1(x),−w))−1σk+1(x,−w)

= σS
(
φk+1

(
Tk+1

−w x
)
, w

)
σk+1(Tk+1

−w x, w)−1,

where x ∈ AT
k+1,j,w. We know by Theorem 3.1 that

σk+1
(
Tk+1

−w x, w
)
σS

(
φk+1

(
Tk+1

−w x
)
, w

)−1 ∈ Bζk+1 (eG),

so, therefore, ρ(σk+1(Tk+1
−w x, w) σS(φk+1(Tk+1

−w x), w)−1, eG) < ζk+1. But

ρ(σk+1(Tk+1
−w x, w)σS(φk+1(Tk+1

−w x), w)−1, eG)

= ρ
(
eG, σS

(
φk+1

(
Tk+1

−w x
)
, w

)
σk+1

(
Tk+1

−w x, w
)−1)

,

and we end up with ρ (̃αk(x), eG) < ζk+1 < εmk+1 .
In the second case, ρ (̃αk(x), eG) = ρ(σS(φk+1(x),−w)−1, σ

αkαk

k+1 (x,−w)−1) which

equals ρ(σS(φk+1(Tk+1
−w x), w), σ

αkαk

k+1 (Tk+1
−w x, w) ). Using the cocycle equation, we relate

the position of x and φk + 1(x) in their (k + 1)-tower to their location in the k-tower and the
k-tower’s location in the (k + 1)-tower, i.e.

σS(φk+1(Tk+1
−w x), w) = σS(φk+1(Tk+1

−v x), v) σS(φk+1(Tk+1
−w x), w − v)

and

σ
αkαk

k+1 (Tk+1
−w x, w) = σ

αkαk

k+1 (Tk+1
−v x, v) σ

αkαk

k+1 (Tk+1
−w x, w − v).

Note that the first terms of the right-hand sides are equal by (4.5) and

ρ(σS(φk+1(Tk+1
−w x)), w − v), σ

αkαk

k+1 (Tk+1
−w x, w − v) < ζk+1

by the argument used in the first case. We thus have that ρ (̃αk(x), eG) has the form ρ(ba, ba′)
with ρ(a, a′) < ζ k + 1 The result then follows from the definition of ζ k + 1 once we know all
the terms are elements of Kk + 1. We first note that σS(φk+1(Tk+1

−w x), w − v) ∈ K̃k+1 ⊂ Kk+1

by definition. By rewriting

σS
(
φk+1

(
Tk+1

−v x
)
, v

) = σS
(
φk+1

(
Tk+1

−w x
)
, w

) [
σS

(
φk+1

(
Tk+1

−w x
)
, w − v

)]−1
,

we see that

σS(φk+1(Tk+1
−v x), v) ∈ K̃k+1(K̃k+1)−1 ⊂ Kk+1.

Finally, since σ
αkαk

k+1 (T k+1
−w x, w − v) is within ζ k + 1 of σS(φk+1(Tk+1

−w x), w − v) ∈ K̃k+1, we
have

σ
αkαk

k+1

(
T k+1

−w x, w − v
) ∈ Bζk+1 (eG)K̃k+1 ⊂ Bε(eG)K̃k+1 ⊂ Kk+1,

as wanted.
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28 A.S.A. Johnson and D.M. McClendon

We can then say that our transfer function satisfies condition (4.4) by noting

ρ (αk+1(x), αk(x)) ≤ εmk+1 + εmk
< 2εmk

.

For the last criterion on αk, note

ρ (αk+1(x), eG) ≤ ρ (αk+1(x), αk(x)) + · · · + ρ (α1(x), eG)

< 2εmk
+ 2εmk−1 + · · · + 2εm1 + ε1

< ε.

This completes the inductive step.
Step 4 (define the speedup T): After repeating the procedure in Step 3 indefinitely, we

obtain a sequence of castles CT
k in X for C-partial speedups Tk of T, where

(1) the levels of CT
k approximate the partition Pk−1 to within 1

2k ;
(2) each CT

k is a speedup block for Tk;
(3) each Tk+1 extends Tk;
(4) for each castle CT

k , there is an isomorphism φk : |CT
k | → |CS

mk
| intertwining Tk and

S; and
(5) for each castle CT

k , there is a function αk: X → G so that
• the map �k: (x, g) �→ (φk(x), αk(x)g) is a G-isomorphism between (Tk)σk and Sσ ,
• ρ(αk(x), αk+1(x)) ≤ 2εmk

, and
• ρ(αk(x), eG) < ε.

We can then define the C-speedup to be T = limk→∞ Tk . We define its cocycle σ by
setting σ (x, v) = σk(x, v) where k is large enough so that x and Tv(x) lie in CT

k . Since ρ

is a complete metric, we see that the sequence {αk} converges uniformly to a function
α : X → G which satisfies ρ(α(x), eG) ≤ ε for all x ∈ X. Note that by our construction,
each φk + 1 agrees (setwise, but not necessarily pointwise) with φk on the levels of CT

k . Since
these levels increase to the full σ -algebra X , the maps φk determine an isomorphism φ

between T and S which, for each k, agrees setwise with φk on the levels of CT
k .

Finally, we explain why the map �: X × G → Y × G defined by �(x, g) =
(φ(x), α(x)g) is a G-isomorphism between T

σ
and Sσ . Fix v ∈ Z

d and note that for a.e. x,
we can find K such that for all k ≥ K, Tv(x) = Tk

v(x). It is sufficient to show that

ρ(σα(x, v), σS(φ(x), v))

is arbitrarily small.
By the triangle inequality we see

ρ(σα(x, v), σS(φ(x), v)) ≤ ρ(σα(x, v), σS(φk(x), v)) + ρ(σS(φk(x), v), σS(φ(x), v)).

Consider the first term. Recall that S is isomorphic to Tσk

k on the appropriate domain, so
we know

σS(φk(x), v) = σ
αk

k (x, v) = αk(Tk
vx) σk(x, v) αk(x)−1

= αk(Tvx) σ (x, v) αk(x)−1,
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and thus

ρ(σα(x, v), σS(φk(x), v))
= ρ(α(Tvx) σ (x, v) α(x)−1, αk(Tvx) σ (x, v) αk(x)−1).

(4.8)

But we know that for all z ∈ X,

ρ(αk(z), α(z)) ≤ ρ(αk(z), αk+1(z)) + ρ(αk+1(z), αk+2(z)) + · · · ≤
∞∑
i=k

2εmi
< δk.

Thus Equation (4.8) has the form ρ(h1g h3, h2g h4) where ρ(h1, h2) < δk and ρ(h3, h4) < δk.
Once we have that σ (x, v) ∈ Kk , the choice of δk made in Step 1 gives us that Equation (4.8)
is less than 1

k
.

To show that σ (x, v) ∈ Kk , let w be such that x ∈ AT
k,j,w. Using the cocycle condition

and that σ (x, v) = σk(x, v) here, we have

σk(x, v) = σk(Tk
−wx, v + w) σk(Tk

−wx, w)−1.

We then use that σS = σ
αk

k can be written σ
α−1

k

S = σk to write σk(x, v) as

αk(Tk
vx)−1σS(φk(Tk

−wx), v + w)αk(Tk
−wx) [αk(x)−1σS(φk(Tk

−wx), w)αk(Tk
−wx)]−1

= αk(Tk
vx)−1σS(φk(Tk

−wx), v + w)(σS(φ(Tk
−wx), w))−1αk(x),

which is in Bε(eG) K̃k K̃−1
k Bε(eG) = Kk , as wanted.

Now we consider the second term, ρ(σS(φ(x), v), σS(φk(x), v)). We know φ(x) and
φk(x) lie on the same level of CS

mk
; call the height of that level w. Let z = S−w(φ(x)) and

zk = S−w(φk(x)). Then

ρ(σS(φ(x), v), σS(φk(x), v) )

= ρ(σS(z, v + w) σS(z, w)−1, σS(zk, v + w) σS(zk, w)−1)

= ρ(σS(z, v + w) eG σS(z, w)−1, σS(zk, v + w) eG σS(zk, w)−1).

Recall the castles for S were chosen so that for each tower and each level v at the kth
step, there is a vector gv such that σS(z, v) ∈ Ukgv for all z in the base of that tower. Thus,
we have that σS(z, v + w) and σS(zk, v + w) both belong to Umk

gv+w, i.e.

σS(z, v + w) σS(zk, v + w)−1 ∈ Umk
U−1

mk
⊆ Bεmk

(eG).

By our choice of mk made at the beginning of Step 3, we have ρ(σS(z, v + w), ρ(σS(zk, v +
w) ) < δk and similarly ρ(σS(z, w), σS(zk, w)) < δk . Again we use our choice of δk to
conclude ρ(σS(φ(x), v), σS(φk(x), v) ) < 1

k
.

Putting these two terms together yields

ρ(σα(x, v), σS(φ(x), v)) ≤ 1

k
+ 1

k
= 2

k
.
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Since k is arbitrary, we get σS(φ(x), v) = σα(x, v) for a.e. x and all v and thus Sσ = T
σ

, as
desired.

Theorem 1.1 asserts that the transfer function can be restricted to take values in any
predetermined neighbourhood of the identity element of G. If G is a discrete group, then
such a neighbourhood can be chosen to consist of only the identity element itself, and we
immediately get the following stronger result.

Corollary 4.1: Fix a finite or countable group G, and let (X,X , μ, T) and (Y,Y, ν, S) be
Z

d -actions with S aperiodic. Set Tσ and Sσ to be G-extensions of T and S, respectively.
Let C ⊆ Z

d be any cone. Suppose Tσ is ergodic.

Then there is a speedup T
σ

of Tσ for which the speedup function is measurable with

respect to X and takes values only in C, such that T
σ

is G-isomorphic to Sσ , via a
G-isomorphism whose transfer function α satisfies α(x) = eG a.e.
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