This article was downloaded by: [Ferris State University], [David McClendon]

On: 24 February 2014, At: 12:22

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Dynamical Systems: An International
Journal

Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/cdss20

Speedups of ergodic group extensions

of -actions

Aimee S.A. Johnson® & David M. McClendon”
% Department of Mathematics and Statistics, Swarthmore College,
500 College Ave., Swarthmore, PA 19081, USA

b Department of Mathematics and Computer Science, Ferris State
University, ASC 2021, Big Rapids, Ml 49307, USA
Published online: 20 Feb 2014.

To cite this article: Aimee S.A. Johnson & David M. McClendon , Dynamical Systems (2014):
Speedups of ergodic group extensions of -actions, Dynamical Systems: An International Journal,
DOI: 10.1080/14689367.2014.884542

To link to this article: http://dx.doi.org/10.1080/14689367.2014.884542

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content™) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,

and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever

or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions



http://www.tandfonline.com/loi/cdss20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/14689367.2014.884542
http://dx.doi.org/10.1080/14689367.2014.884542
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Downloaded by [Ferris State University], [David McClendon] at 12:22 24 February 2014

Dynamical Systems, 2014 Taylor & Francis
http://dx.doi.org/10.1080/14689367.2014.884542 e Taylor & Francis Group

Speedups of ergodic group extensions of Z“-actions

Aimee S.A. Johnson®* and David M. McClendon®

“Department of Mathematics and Statistics, Swarthmore College, 500 College Ave., Swarthmore,
PA 19081, USA; bDepartment of Mathematics and Computer Science, Ferris State University,
ASC 2021, Big Rapids, MI 49307, USA

(Received 8 June 2012; final version received 14 January 2014)

We define what it means to ‘speed up’ a Z¢-measure-preserving dynamical system, and
prove that given any ergodic extension T? ofa Z<-measure-preserving action by a
locally compact, second countable group G, and given any second G-extension S? of
an aperiodic Z¢-measure-preserving action, there is a relative speedup of T, which
is relatively isomorphic to S”. Furthermore, we show that given any neighbourhood of
the identity element of G, the aforementioned speedup can be constructed so that the
transfer function associated with the isomorphism between the speedup and S° almost
surely takes values only in that neighbourhood.
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1. Introduction

In a 1985 paper of Arnoux, Ornstein, and Weiss,[1] it is shown that for any ergodic
measure-preserving transformation (X, X, u, T') and any aperiodic (not necessarily er-
godic) measure-preserving transformation (Y, ), v, §), one can find a measurable func-
tion p : X — N such that, by setting T(x) = T?%)(x), (X, X, u, T) is isomorphic to
(Y, Y, v, S). In other words, it is always possible to ‘speed up’ one such transformation to
‘look like’ another. If restrictions are placed on the type of function allowed for p, then the
result is also restricted. For instance, Neveu [2] gives a generalized version of Abramov’s
formula, showing that if p is integrable, then 2(7P) = [pdu - h(T), thus restricting the
class of aperiodic measure-preserving transformations that 7 can ‘integrably speed up’
to look like. In recent work, Babichev, Burton, and Fieldsteel [3,4] improve the Arnoux—
Ornstein—Weiss result by demonstrating that p can be taken to be measurable with respect
to a factor. More specifically, they consider a locally compact, second countable group G
and a group extension of the form 7,: X x G — X x G where T,(x, g) = (Tx, o(x)g)
and o : X x Z — G 1is a cocycle for 7. They show that given any pair of aperiodic group
extensions (by the same group G) where the first extension is ergodic, the first extension
can be sped up to look like the second using a speedup function measurable with respect
to the base factor X. In this sense, the work in [4] can be thought of as an extension of the
results on relative orbit equivalence found in [5] and [6].

It is then natural to ask what happens for higher dimensional actions. This first begs
the question of what ‘speedup’ means when there is no “up’. One possibility is that the
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analogous function p be taken to be p : X — N¢. In fact, we will show something more
general.

Theorem 1.1: Fix a locally compact, second countable group G and a neighbourhood
U C G of the identity element of G. Let (X, X, u, T)and (Y, Y, v, S) be measure-preserving
Z2-actions with (Y, Y, v, S) aperiodic. Let T® be an ergodic G-extension of T and S° be
a G-extension of S. Let C C Z¢ be any cone.

Then there is a speedup T of T° for which the speedup function is measurable with
respect to X and takes values only in C, such that T' is isomorphic to S°, via an isomorphism
of the form (x, g) — (¢(x), o(x)g), where ¢: X — Y is an isomorphism from a speedup of
TtoSando : X — G is a measurable function taking values in U almost surely.

The idea of the proofis as follows: we approximate the action S by a sequence of partially
defined actions defined on larger and larger unions of Rohklin towers of (Y, ), v, S). For
each of these partially defined actions, we first choose sets in X, the phase space of the
T-action, to mimic the sets found in the Rohklin towers. We next use a ‘quilting” argument
to show that these sets can be realized as the orbit of a partially defined speedup of T,
with the speedup constructed at each step extending the speedup from the previous step.
We show further that this can be done in such a way that respects the cocycles defining T
and S°.

These types of constructions have their roots in the proof given in [1] and in the proof
of Dye’s Theorem [7,8] given by Hajian, Ito and Kakutani in [9]. Theorem 1 then yields
a generalization of the main result of [4]: in fact, their result is exactly Theorem 1.1 with
d = 1. While our proof follows the ideas of those in [4], it is not enough to simply use that
result on each generator of the d-dimensional action, as the resulting speedups would not
necessarily commute.

The next section provides the necessary definitions and background results. In Section 3,
we develop a series of technical lemmas which will let us ‘quilt’ together a collection of sets
to yield a partially defined speedup of T. The final section is then the recursive argument
needed to yield the required speedup.

Note that if G is trivial, Theorem 1.1 can simplify to the following.

Corollary 1.2: Let (X, X, u, T) and (Y, )i, v, S) be two erggdic Z%-actions and C C 74
be any cone. Then there exists a speedup T of T, such that T is isomorphic to S and for
which the speedup function takes values only in C.

Thus we have a generalization of Theorem 4 in [1] to higher dimensional actions.

2. Preliminaries

2.1. Background on group extensions

2.1.1. Z4-actions

Let X be a Lebesgue probability space with measure . Given d commuting, invertible,
measurable, measure-preserving transformations 7y, 73, ..., Ty of X, the collection {7}}
generates a Z%-action T on X. In particular, given vector v = (v, ..., vg) € Z¢, we write
Ty for the transformation 7," 0 7,% o ... o T,* : X — X. The action is said to be ergodic
if the only sets invariant under every Ty, v € 74 are of zero or full measure.
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2.1.2. Group extensions

Let G be a locally compact, second countable group; let A be Haar measure on G (A need not
be finite). Given a Z?-action T, a cocyele for T is a measurable functiono : X x Z¢ — G
satisfying the cocycle equation: for any x € Xand v, w € Z¢,

o(x,v+w)=o(Ty(x), wo(x,v). (2.1)
Given a cocycle o for T, we define a Z?-action T° on X x G by setting

TV (x, 8) = (Ty(x), o (x, V)g),

for each v € Z?. T preserves 1 x A and is called a G-extension of T; conversely T is
referred to as the base or base factor of T?. In fact, a locally compact, second-countable
group G admits an ergodic G-extension if and only if G is amenable.[10,11]

In this setting, we can also define a cocycle on the orbit relation of T, which is again
labelled o': if z = Ty(x) for some v € Z4, we set o (x, z) = o' (x, V).

In this paper, we use the symbol o to refer to all our cocycles and when necessary,
distinguish between the cocycles for different actions with subscripts (i.e. ot is the cocycle
associated with the G-extension of T).

2.1.3.  Factor maps and G-isomorphisms

Let (X, X, u, T) and (Y, Y, v, S) be two measure-preserving 74 -actions with respective
G-extensions T? and S?. We say S° is a G-factor of T if there is a measurable and
measure-preserving map (defined on an invariant set of full measure, mapping onto an
invariant set of full measure) ®: X x G — Y x G satisfying S° o ® = ® o T?, which is
measurable with respect to the base factors, i.e. for all measurable B € Y, ®~!(B x G) =
A x Gas. for some A € X. Equivalently, this means

P(x, g) = (d(x), a(x)g),

where ¢ is a factor map from (X, X', u, T)to (Y, Y, v, S) and @: X — G is measurable. If a
G-factor map & exists, which is almost surely 1 — 1, we say T° and S? are G-isomorphic
and we call ® a G-isomorphism.

To say that two G-extensions are G-isomorphic means that the base transformations are
isomorphic and the corresponding cocycles os and ot on the orbit relations of the base
transformations are cohomologous. The « in the previous paragraph is called the transfer
function relating the cocycles. In particular, if T is G-isomorphic to S° by the map &
described above, then the cocycle o's must satisfy

as(¢(x), V) = a(Tyx)or(x, Ve(x) ™.

Motivated by this fact, if T is a G-extension of a Z¢ action and o: X — G is any measurable
function, we define the skewing of o by « to be the cocycle,

o%(x,v) = a(Tyx)o (x, v)a(x) !,

and remark that T° is G-isomorphic to T°" by the map (x, g)~> (x, a(x)g).
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2.2. Partial iterates and 7./ -speedups

We define a filled cone C to be any open, connected subset of RY whose boundary consists
of d distinct hyperplanes passing through the origin. A cone is the intersection of a filled
cone with (Z¢ — {0}). In particular, note that the zero vector does not belong to any cone.
Given a cone C and any vector v € Z4,set C, = CN(C + ).

Definition 2.1: Givena Z“-action (X, X, i, T)andaset Dom(R) € X ofpositive measure,
a partial iterate of T is a 1 — 1, measurable and measure-preserving function R: Dom(R)
— X such that R(x) = Ti)(x) for some measurable function k : Dom(R) — Z¢. The
function k is called the iterate function (of R). If k takes values only in some cone C, we
call R a C-partial iterate. A C-partial iterate R with Dom(R) = X a.s. is called a C-iterate
of T.

Remark: In what follows, we will frequently say that a partial iterate R ‘takes A to B’,
where 4 and B are measurable subsets of X. What we mean by this phrase is that R is a
partial iterate, whose domain Dom(R) is equal to 4 almost surely, and whose codomain is
equal to B almost surely.

Definition 2.2: Given two Z%-actions (X, X, u, T) and (X, X, u, T), and given a cone C,

we say T is a C- -speedup (or just speedup) of T if there are C-iterates T, Ty, ...,Tqof
T such that T; o T = T o T; for all i, j and such that for almost every x € X and every
V=(U1,...,Ud)€Zd,

Ty(x) = 11; OTZ o- oTZd(x).

We use the word ‘speedup’ here because this definition generalizes to Z?-actions the
notion of ‘speedup’ defined in [4]. In particular, when d = 1, there are only two cones, namely
C.={1,2,3,...} and C_ ={..., =3, —2, —1}. The main theorem of [4] is exactly our
Theorem 1.1 with d = 1, C = C,.. That said, our usage of the word ‘speedup’ in the
context of Z?-actions is a bit of a misnomer, in that our speedups need not have any direct
interpretation as systems, which send ‘points forward in time more quickly than the original

system’.
Equivalently, T is a C-speedup of T if there is a measurable map V = (v, .. s Va)
X — C4, such that the iterates Ty,,..., Ty, commute and the generators of T are

Ty,, ..., Ty,. Vis called the speedup function of T.

2.3. Speedup blocks, Rohklin towers and castles
2.3.1. Speedup blocks

We begin with some notation: given a non-negative real number v;, deﬁne [vi]=10,v;)NZ.
Given a vectorv = (vy, ..., vg), where v; > 0 for all j, define [v] = x _1[v;j]. Thus [v]isa
rectangle with side lengths v;. We denote the cardinality of [v] by |v| = v1 vy ... 4. Given
vandw e RY, wesay v > w ifv, > wj forall j, and we say v > wif v; > w; for all j. Given
integer vectors v < w, set [v, w] = x ([v,-, w;) N Z). Let {eq, ..., e;} be the standard
basis of R? (just as well, Z%). Let 0 = ( L0)eZlandletl =(1,1,1,...,1) e Z¢.
Given any set S € Z¢, set b;(S) = {v € S V+ e; €S}

Definition 2.3: Given a measure space (X, X, 1) and m € Z¢ with m > 0, a rectangular
collection of size m is a collection { Ay }yem) of subsets Ay € X, where the sets are pairwise
disjoint and all have the same measure.
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We remark that if at least one component of m is zero, then we obtain the empty
collection of no sets; this is a rectangular collection.

Definition 2.4: Let (X, X, n, T)bea Z¢-action and let {Av}verm) be a rectangular collec-
tion. A collection T = (T, ..., T4) of maps is called a partial speedup of T if

(1) each T j is a partial iterate of T taking Ay to Ay, for all v € b;([m]);
(2) the Tj commute, i.e. for any v € b;([m]) () bx([m]),

Tj OTk(x) = Tk OTJ'(X)
on Ay.

In this setting, the rectangular collection {Ay}ve[m] is Called a speedup block for T. If
C is some cone such that for each j, the iterate function of T'; takes values only in C, we
say T is a C-partial speedup.

2.3.2.  Rohklin towers

Definition 2.5: Letm > 0. A Rohklin tower 7 fora Z9-action (X, X, u, T)isarectangular
collection {Ay}ycm) of measurable sets, such that 7;(Ay) = Ay, forall v € b;([m]). Each
set Ay is called a level of the tower, m is called the height of the tower, Ay is called the base
of the tower and the common value w(A4y) is called the width of the tower.

Speedup blocks are closely related to Rohklin towers; given a speedup T of T, any
Rohklin tower for T is a speedup block for the restriction of T to the tower.

We see that for any Rohklin tower of height m, Ay = Ty(Ay) forall v € [m]. A column
of a Rohklin tower is another tower of the form {Ty(By)}yeim) Where By is a measurable
subset of 49. We denote by || the union of the levels of the tower, and let the interior of
the tower be

inttr)y=J A
1

ve[l,m—1

The error set of a Rohklin tower 7 is E(t) = X — Uyc[m) Av-
The classical Rohklin lemma for Z¢-actions [12] can be stated as follows.

Lemma 2.6 (Rohklin Tower Lemma): Let (Y, ), v, S) be an aperiodic Z?-action. Then
for every € > 0 and every integer vector m > 0, there is a Rohklin tower t for S of height
m, such that v(E(7)) = €.

2.3.3. Castles

Given a Z4-action (Y, ), v, S), a castle C is a finite collection 71, . .. , T, of Rohklin towers
for S, where |7;| () |t;| = @ for all i #j. Denote by |C| the union of all the levels of all the
towers comprising the castle, and let the interior of the castle, denoted int(C), be the union
of the interiors of the towers comprising C. The error set of C is E(C) = X —|C|. By a
level of C, we mean a level of any of the towers comprising C, and we define a column
of C to be a column of any of the towers comprising C. The set of levels of the castle C is
denoted L(C), and the o -algebra generated by the levels of C is denoted L(C).
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Given a tower T of size m and a finite, measurable partition Q = {Q1, ..., Q,} of the
base of t, we obtain a castle 7o whose bases are the atoms of Q.
Given a finite measurable partition Q@ = {Qy, ..., Q,} of |t| (just as well, of Y), we

define the partition Q. of the base of t by setting the atoms of this partition to be maximal
sets B;, such that for every v € [m], Sy(B;) is contained entirely within one atom of Q. We
call the partition Q. the partition into Q-names and the resulting castle 7(g,) the castle of
Q-columns in 7.

Given a castle C and a finite measurable partition Q of |C| (or of Y), by repeating the
construction of the previous paragraph on each tower comprising C, we obtain a castle Cg,
which we call the castle of Q-columns in C.

2.3.4. Cutting and stacking constructions

Following the work in [1], we make the following definition.

Definition 2.7: Given two castles C; and C, for (Y, ), v, S), we say C, is obtained from
C, via a cutting and stacking construction i

(1) 1G] € int(Cy);

(2) there is a finite partition Q of the bases of C;, such that each level of the castle
(C1)g is a level of Cy; and

(3) for each tower of (C;)o, there is a tower of C, that contains it.

Observe that criterion (1) above implies that if {Ay}ye[m is a tower in C; and if Aw is a
base of a tower of (C)g of size h, then we have w + h < m.

Lemma 2.8 (Castle Lemma): Let G be a locally compact, second countable group and let
S? be an ergodic G-extension of the Z¢-action (Y, Y, v, S). Let {Uk}p2, be a neighbourhood
base for G at eg. Then there is a sequence {Cy}72 | of castles for S satisfying:

(1) for each k, all towers in the castle C;, have the same height Ny,

(2) for each k, Cyy, is obtained from Cy via a cutting and stacking construction,

6 v (UE, C) = 1

@) U2 L(C) =Y, and

(5) for each tower t in Cy, and for each v € [Ny], there is a group element g € G such
that for all y in the base of T, o (y, V) € Ug.

Proof: The proofis divided into two phases: first, following the work in [1] for Z-actions,
we construct a sequence of towers via cutting and stacking constructions. Second, we
modify these towers in a way similar to [4] to yield a sequence of castles satisfying the
conclusions of the lemma.

Phase 1: Construction of the towers {t;}. Let {;}?2, be a decreasing sequence of
positive numbers such that Zfil €; < 1/2,and choose a sequence {N;}2, of vectors in 74,
where N; = (NVy(1), ..., Ni(d)), such that

IN;| 4’ '
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For each i, define the boundary of [N;] to be the set of indices v € [N;] such that v - e; ¢
[N;] for somej € {1, ..., d}. Next, we define the collar of [N;] to be the following set of
indices in [N;]:

{(ve[N;]J: v N;i_(k)e; ¢ [N;]forsomek =1,...,d}.

In other words, the collar of [N;] is the set of indices which are close to its boundary, where
‘close’ is defined by the size of [N;_;]. Note that the portion of [N;] contained in its collar
is bounded by the left-hand expression in inequality (2.2) above.

Next, take a sequence of Rohklin towers ‘L’il of size N;, whose error sets have measure
1€i; let B! be the base of each 7;'. Define the boundary of each tower to be {Sy(B}) : v is
in the boundary of [N;]}.

To satisfy criteria (2) of the lemma, we successively alter the towers by an inductive
process. The idea is to remove points from the ith tower, which are not in the interior of
the (i + 1)th tower, and then to justify that the resulting tower has measure only slightly
smaller than the original. Now for the details: our first step is to

(1) remove y from Bl1 if for any v € [N;], Sy(y) is in the boundary of r21 (notice that
the measure of this set is bounded by the measure of the set of points in 7, in the
collar of [N], which by Equation (2.2) is less than %), and

(2) then remove from B] any point y such that for any v € [N], Syy € E(z,)) (having
already removed such points in the collar of [N;], the only points in tf NE (121) are
those for which Syy € E (121) for every v € [N,]; this set of points is bounded in
measure by v(E(z))) = 2).

Let B? be set of the points remaining in B} after these two steps. Let 77 = {Sy B }ye[n,]
(this tower is our first modification of rll). Note that

€ €
v(tf) = v(t) - (—2 + —2) > u(t}) — e,
4 2
and v(E(rlz)) < M(E(tll)) + 6.
For our second step, we similarly remove the following points from B, :

(1) those associated with points in the tower 121, which intersect the collar of 131;
(2) those associated with points in 121, which intersect the error set E (131).

We define B; analogously and let 77 = {SyB3}v¢[n,)- Similarly to our first step, we will
have v(rzz) > v(rzl) — €3, and v(E(rzz)) < v(Ezl) + €3.

This in turn means we must modify 77, removing those points which intersect E(z3)
(which is larger than E(z,)). Much like how we previously removed points in 7| that
intersected E(t, ), we see that the points we must remove at this step have measure at most
v(E(t})) — v(E(t))) < €. Thus we create 77, our second modification of the first tower,
and we note v(7;’) > v(t)) — € — €.

We continue in this manner. At the ith step, we modify 7' by removing points from
B!, then let t7 = {SyB?}veqn,] and note v(t?) > v(t}') — €4+1. The corresponding error set
E(t?) has measure which is less than v(E(t})) + €;+1. We then modify all the previous
towers to compensate for the increased error set; this results in the removal of a portion of
those towers which has measure at most €, ;.
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At the end of the ith step, we will have defined {r,i”*h} forh e {1, ..., i}, with

v(f;ﬁz*h) > V(T;:) — €pyl — T €ig].

Defining 7; = ﬂ?‘;l rl.j , we end up with a sequence {t;} of towers with lim; _, ,,v(z;) = 1.
Let B; be the base of tower ;.

Phase 2: Altering the towers and building the castles. We again successively alter the
towers by an inductive process. To start, fix a sequence of finite partitions {P,} which
generate ) and a sequence {0 }72, of positive numbers such that ) "rarx < 1. As G is locally

compact, we can choose compact K| C G, so that if

Bi= [ (veBi:a(y.v) ek
ve[N(]

then v(B{) > (1 — a1)v(B)). Let 7| be the portion of 7, over By, i.e. T{ = {SyB]}veN,]-
We partition K| into sets {K ;};_, such that for each i, there exists a g1 ; € G with K; ; C
Ui gi,i. Letki: G— G be given by

81,i lfg (S Kl,i
Kk1(g) = ,
eg otherwise.

We next partition B| according to both the values of {k1(c'(y, V))}vemn, ] and {P1(Tvy)}veN, -
Calling this partition Q;, we let C; = (11)g, .
Now, choose compact K, C G, so that if

By= () {yeB:o(y.v) €Ky},
VE[N;]

then v(B}) > (1 — az)v(B,). Let 75 be the portion of 7, over Bj. We can partition K, into
sets {K»,;};2; such that for each i, there exists a g, ; € G with K, ; C U; g, ;. Let k2: G —
G be given by

&, ifgeks;

K2(8) = : .
ec otherwise.

Define R to be the partition of Y into the levels of Cj. Now partition B} according to

the values of {k2(a (¥, V) lvepny]s {P2(Tvy)ven, and {R1(Tyy)}ven,)- Calling this partition

Q,, we set C) = (12)q,. In particular, the towers comprising C} each have a fixed pattern of

locations of the C| towers and fixed (P, Vv k) — Ny-names.

Note that to maintain conclusion (2) of the lemma, we must remove points from C; that
intersect with the new error portion of C;. But the set of such points has measure less than
o).

We continue in the same way, constructing C; and altering the proceeding C;’s at each
step. The resulting castles will be denoted C;. By construction, conclusions (1), (2) and
(5) of the lemma hold. Since the partitions P; generate ), we have (4). Last, note that
v(Cy) > v(C) — Z?ikﬂ o;, and by our choice of o s, this yields conclusion (3). ]
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3. Quilting arguments

The goal of this section is to prove the following theorem, which is central to a recursive
argument used in the proof of Theorem 1.1. Colloquially, the theorem says that if we
consider a rectangular collection of size N and a collection of (disjoint) smaller speedup
blocks of size h which sit inside the rectangular collection, then we can define a partial
speedup which has the rectangular collection as a speedup block and which extends the
previously defined partial speedups.

Theorem 3.1: Fix N > 0, h > 0, and a cone C C Z*. Let T° be an ergodic G-extension of
the 74 -action (X, X, u, T) and let { Ay }ve[ny be a rectangular collection of subsets of X. Let
U be a neighbourhood of e, and suppose that for each v € [N], we are given a measurable
function gy: Ao — G (where go(x) is the constant function eg).

Suppose that there are vectors Ky, . . ., k, € [N — h] such that the sets Uve[h] Ay, 4y are
pairwise disjoint, and that each { Ak, v }ven) is a speedup block for a C-partial speedup T I
of T.

Then, there is a C-partial speedup T extending the Ti such that {Ay}ve[n is a speedup
block for T, and for all v in

N-U U k+wh

j=1 wel[h],w#0

we have op(x, Ty(x))(gy(x))~! € U for a.e. x € Ay.

We prove this theorem via a series of technical lemmas, which describe how increasingly
complicated configurations of sets and partial iterates can be ‘quilted’ together to form a
speedup block for a partial speedup of T.

3.1. [Initial arguments

The goal of this subsection is to prove Lemma 3.9, which essentially says that if we are
given a rectangular collection of sets and partial iterates defined on a ‘lower triangular’
subset of the rectangular collection, then we can ‘complete’ the rest of the rectangle, i.e.
we can define partial iterates on the remainder of the rectangular collection so that the
rectangular collection becomes a speedup block for a partial speedup of T.

We begin by showing that given two subsets of X, we can find an iterate of the action
T that sends a portion of one set to the other, and in such a way that the cocycle lies in a
predetermined subset of G.

Lemma 3.2: Fix a cone C and suppose T° is an ergodic G-extension of the Z-action
(X, X, u, T). Forall sets A, B C X of positive measure, for all v > 0, and for any non-empty
open set U C G, there is a set A” C A and a vector n € Cy such that

(1) ) >0;
(2) To(A") C B, and
(3) o(x,m)e U forallxe A

Proof: Given A, B and U, choose non-empty open subsets Vy and V; of G so that
e € Vy and V) VO_1 C U. Since C is a cone, there exists a Falner sequence {F,} for
the group Z¢ consisting of parallepipeds, each of whom are subsets of C,. Without loss of
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generality, assume this sequence is tempered (see Proposition 1.4 of [13]). Now, applying
the pointwise ergodic theorem of [13] to the indicator function of B x V7, we can conclude
that for almost every (x, g) € 4 x V), there exists (infinitely many) m € C, such that
(T?)m(x, g) € B x V).

Hence there is a gy € ¥y such that for almost every x € A4, there is m € C, such
that (T?)m(x, go) € B x Vi.Foreachm € Cy,let A, = {x € A : (T?)m(x, go) € B x Vi}.
Since A = |J,, Am almost surely, there exists n € Cy such that j1(4n) > 0; set 4" to be
this An. We have, for any x’ € 4, o(x’,n)gg € V| so o(x’, n) € Vlgg1 cV VO*1 CU as
desired. |

The next lemma says that if the two sets have the same measure, we can, by repeating
the above procedure, construct a partial iterate that takes one set to the other, with the
cocycle similarly well-behaved.

Lemma 3.3: Fix a cone C and suppose T° is an ergodic G-extension of the Z-action
(X, X, u, T). Given two subsets A, B C X of equal positive measure, then for all v € 7,
and for all non-empty open sets U C G, there is a partial iterate R of T such that

(1) R takes A to B;
(2) the iterate function K of R takes values only in Cy,; and
(3) for almost every x € 4, o(x, k(x)) € U.

Proof: Given 4, B, U, and v, fix some decreasing, positive sequence ¢; satisfying
> j€j < 0o. Define

a; = sup{u(A’) : A satisfies the conclusions of Lemma 3.2 for A, B, U, and v}.

Choose A4, to be a set satisfying the conclusions of Lemma 3.2 for 4, B, U and v, where
w(A4y) > a; — €;1; let n; be the corresponding vector coming from Lemma 3.2 such that
Tnl(Al) C B.

If (A1) = pu(A4), we are done (set R = Ty,). Otherwise, set 4' = 4 — 4;, B' =
B — Ty, (A1) and

a, = sup{u(A’) : A’ satisfies the conclusions of Lemma 3.2 for A', B!, U and v}.

Then choose 4, € A" such that 4, satisfies the conclusions of Lemma 3.2 for 4!, B', U and
v, where u(4;) > a, — €.

Continuing in this fashion, we obtain a pairwise disjoint sequence of sets 41, 4>, ...
and corresponding vectors ny, m, ... € Cy such that the sets Ty, (A;) are disjoint subsets
of B.

If at any point, ;L(Ule A ;) = n(A), we are done (define R so that its restriction to each
Aj is Tn_,-)-

Otherwise, for all p > 0, u ( = Aj> < (A). Suppose n(U3Z, A;) < u(A); then
by Lemma 3.2, thereisaset A’ € A — Uj’ozl A; and a vector n’ satisfying the conclusions
of Lemma 3.2. However, since u(4) < oo, Z;’;l w(Aj) < 00, so lim;_, ,ou(4;) = 0 and
also lim; _, oo(u(4;) + €;) = 0. Therefore, for some j we have

aj < w(Aj)+e€; < w(A'),
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which contradicts the choice of a;. Therefore, /L(U?ozl Aj) = u(A), and we can therefore
define R on UCI’O:, Aj by setting R(x) = Ty, (x) whenever x € 4;. g

If we think of the last lemma as creating a ‘patch’ between two sets, the next lemma
tells us how we can add one patch onto another: we start with a partial iterate between two
sets and construct another partial iterate that connects them to a third set.

Lemma 3.4: Fix a cone C and suppose T° is an ergodic G-extension of the Z-action
(X, X, u, T). Given three subsets A, B, C C X of equal positive measure and a partial
iterate R of T taking A to B, then for all v € 74, and for any non-empty open set U C G,
there is a partial iterate R’ of T such that

(1) R takes Bto C;
(2) the iterate function K of R’ takes values only in Cy; and
(3) for almost every x € A, or(x, R' o R(x)) € U.

Proof: Given U, choose open subsets V1, V5, ...and Wi, W,, ... of G such that W;V; C U
for all j and | J ; V; = G. Partition 4 into measurable sets 4;, A, ... where

j—1
A= {xeA:O'T(XvR(x))EVf_U‘/i ’

i=1

and for each j, let B; = R(4;). The sets B; form a measurable partition of B. Partition C
into measurable sets Cy, C,, ... so that u(C;) = u(B;) = u(4;) for all j. Use Lemma 3.3 to
construct maps R : B; — C; such that the iterate function of R’; takes values only in Cy
and o1(z, R(z)) € W; for almost every z € B;. Then define R’ so that it coincides with R’
on each B;; we have for a.e. x € 4;, o1(x, R o R(x)) € W;V; C U as desired .

So far we have found partial iterates, i.e. one-dimensional actions with particular proper-
ties. Now we move to the d-dimensional scenario: first, let O denote the d-dimensional cube
{0, 1}9. Foreachj € {0, ..., d}, set Q;j={ve Q:v+---+vy = j} Note that O, con-
sists of exactly one point, which we think of as the ‘last’ corner of the cube. The next lemma
says that if we have partial iterates defined on the parts of the cube which do not involve
0Oy, then we can ‘finish the cube’, i.e. create a d-dimensional action, which is a C-partial
speedup extending the iterates already defined, whose speedup block is in the shape of Q.

Lemma 3.5: Fix a cone C and suppose T is an ergodic G-extension of the Z-action
(X, X, i, T) and let U be an open subset of G. Suppose further that {4y }y e ¢ is a rectan-
gular collection of size (2,2, ..., 2), and

(1) for every 'y € b;j(Q) with y +e; # 1, there is a C-partial iterate I; taking Ay to
Ay_,_ej; and

(2) the partial iterates described in (1) commute, i.e. if'y € b;(Q) () bi(Q) is such that
y+ej+e #1 thenljoly=1I;01l as. onAy.

Then there exists a C-partial speedup T = (T 1, ..., Ty) of T such that
(1) T,- = I; wherever the iterate I; is defined;

(i) {Ay}ye o is a speedup block for T; and
(1)) or(x, T Ty---T4(x)) € U for a.e. x € A.
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Proof: Note that for x € Q,_, exactly one component of x is zero, so we can enumerate
the elements of O, _ | by setting g; to be the element of O, _ | with kth component 0. For
eachje {1,...,d}, set

Rj211OIzO“-Ij_IOIj_HOIj+20~-~OIdZA0—>Ag/..

Thus R;(x) has the form Ty, 1) (x).

Let P be the partition of A into maximal sets on which ry, ..., ry are constant; let the
atoms of P be denoted Py, P,, ... . Partition A; into sets Dy, Dy, ... where u(P;) = u(D;)
for all 5.

Consider an arbitrary partition element P;. Note that for each j, r;(x) is constant on P;,
thus we can denote it by r;. Let v be such that

CG,CCNECH@—r))N...N(CH+(rg —r1)).

Use Lemma 3.4 (with sets P;, Ri(P;) and D;; partial iterate R; restricted to P;; the
vector v specified above, and the set U from the hypothesis) to construct a partial iterate
R| : Ri(P;) — D; whose iterate function k; takes values in Cy (and thus in C) and where
or(x, Rj o Ri(x)) € U forae. x € P;.

For j > 1, we define partial iterates R} as follows: for z € R;(P;), find x € P; with Rj(x) =
z.Thensetk;(z) = —r; + r; + k{(R(x))and define R}(Z) = T, ()(2). Note that this yields
Ri(R;j(x)) = R{(Ri(x)) and k;(z) € C.

Repeat the above construction for each P;. Then define

Tj _ {R} on Ag, .
I; elsewhere on b;(Q)

Then Tj is a C-partial iterate and aT(x,Tlfz---Td(x)) equals, for instance,
or(x, Ri(Ri(x)) e U. O

The next lemma says that a given C-partial speedup defined on a certain type of
subset of Q, it can be extended to all of Q. These certain subsets of Q are defined as
follows.

Definition 3.6: Let N > 0. We say a subset B C [N] is lower triangular if for all j = 1,
...,d,(B—e;)[[N]CB.

Lemma 3.7: Fix a cone C and suppose T° is an ergodic G-extension of the 74-action
(X, X, u, T). Suppose {Ay}y e ¢ is a rectangular collection of size (2, 2, ..., 2) and F is a
lower triangular subset of Q. Suppose further that

(1) foreveryy € Q — F, we are given an open subset U, C G;

(2) for every set Ay with v € bj(F), there is a C-partial iterate I; of T taking Ay to
Avie;r and

(3) the partial iterates defined in (2) commute, i.e. when v € b;(Q)(\bi(Q) has v +
ej+e € F, thenljoly =10l as. onA,.

Then there exists a C-partial speedup T = (T, ..., T4) of T such that
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(i) Tj = 1; wherever the iterate I; is defined;
(i) {Ay}ye o is a speedup block for T; and
(iii) foreveryy € Q — F, or(x, Ty(x)) € Uy for almost every x € Ay.

Proof: The proof is done inductively on the dimension of ‘subcubes’ of O containing 0.
We begin by setting T j = I, where the C-partial iterate /; is defined.

Recallthat Oy ={ve Q:vi+---+vg =1} ={eq, ..., eq}. Ifthereexistse; € Q1 —
F, use Lemma 3.3 (with sets 49 and A,;, v =0, and U = U,,) to yield a C-partial iterate
T : Ag — Ae withop(x, T i) € U,

Next, complete all the faces of the cube containing the origin (a face can be thought
of as a two-dimensional ‘subcube’ of Q). More specifically, if there existsy € O, — F, so
y = € +¢;, use Lemma 3.5 (with the Q in that statement equal to the two-dimensional cube
{0, ¢;, ej,y} and U = Uy) to construct C-partial iterates T; A — Ay and T DA = Ay
satisfying T'; o T = T o T; on Ag and op(x, T y(x)) € Uy.

Repeat this process for the three-dimensional subcubes containing the origin, then the
four-dimensional subcubes, etc. More specifically, given that we have ‘completed’ the
(k — 1)-dimensional subcubes containing the origin, we complete the k-dimensional
subcubes containing the origin as follows: if there exists y € Oy — F of the form
y=¢€; + -+ ¢;,, where the e; are distinct elements from {ey, ...e;}, use Lemma 3.5
(with the Q in that statement being the k-dimensional cube in the dimensions #; through i
and U = Uy) to construct the remaining C-partial iterates T,-/ on this cube, which commute
and for which or(x, Ty(x)) € Uy.

After completing the d-dimensional subcube, we obtain a C-partial speedup T satisfying
the conclusions of the lemma. O

The next lemma (Lemma 3.9) is the key result of this subsection. It essentially says that
given a picture like the one below, where the partial iterates indicated by the solid arrows
are already defined, we can construct the partial iterates indicated by the dashed arrows so
that the diagram commutes and the cocycles associated with these iterates take values in
prescribed open subsets of G.

I I I I
Az = Ang = Agsy = Agg) = Aug)
A A A A A

IQ IQ 12 12 I2
I I I, Iy
A(o,z) - A(1,2) > A(z,z) > A(s,z) > A(4,2)
A A A
IQT IQT 12 I2 I2
I I I I
Aoy —=Aqy) = Ay = Agyy = A
T T A A A
Is Is Is 1o I
I I I I
Ao ——=An0) —= Ao —= Az > Auo)

The sets connected by the solid arrows above constitute an example of a ‘lower triangular
speedup block’. More generally,

Definition 3.8: Let (X, X, u, T) be an ergodic 7% -action. Let B be a lower triangular
subset of [N]. We say Ag = {Ay}vep is a lower triangular speedup block (Itsb) if the sets
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Ay are disjoint, measurable, of the same positive measure, and

(1) foreveryj =1, ..., d, given any v € b;(3) there exists a partial iterate /; of T
taking Ay to Ay, ; and

(2) foranyj, ke {l,...,d} withj # k, given any v € b;(B) (" bx(B), I; o [i(x) = I o
Ii(x) for every x € 4y.

We call the maps 1, I, . .., I;, the iterates of the block Ag.
Given a cone C C Z¢, we say the ltsb is a C-Itsb if the iterate functions of ;, ..., I,
take values only in C.

Lemma 3.9 (Completing Lemma): Fix a cone C C Z¢ and N > 0, and suppose T is an
ergodic G-extension of the Z4-action (X, X, i, T). Let { Ay}ven) be a rectangular collection
and suppose B C [N] is such that Agp = {Av}ves is a C-lower triangular speedup block

with iterates I, . .., 1. Suppose that for every v € [N] — B, we are given an open subset
Uy € G. If0 € [N] — B, we assume e € Up. _
Then there is a C-partial speedup T = (T, ..., Ty) of T such that

() T j = I wherever the iterate 1; is defined;,
(2) {Av}ven) is a (rectangular) speedup block for T; and
(3) foreveryv € [N] — B, or(x, Ty(x)) € Uy for a.e. x € Ap.

Proof: If B = [N] then the lower triangular speedup block is already the desired (rectan-
gular) speedup block and we are done. If B = #J, use Lemma 3.3 to construct a C-partial
iterate I : A9 — A, satisfying or(x, I;(x)) € U,, for almost every x € 4. Rename B to
be {0, e;} and continue as below.

Forre {1,...,d},set

0" = {(x1,x2,..,%,0,0,...,00 € Z : x; € {0, 1} for j = 1,...,r).

Thus O is an r-dimensional cube sitting in Z¢. Given a d-dimensional rectangular col-
lection {Ay}yeng, W € [N], and 1 < r < d, set Qg) to be the r-dimensional rectangular
collection {Ay w}vegn of size (2,2, ...,2). We also set 1¢) equal to the vector in Q(’) with
xi=1foralll <j<r.

We will prove this theorem by repeated application of Lemma 3.7 applied to larger
and larger dimensional cubes. For the example shown in the picture above, we would first
extend the C-partial iterates to the one-dimensional cube, that is {(3, 0), (4, 0)} = &1,) with
w = (3, 0). We would next extend the C-partial iterates to the two-dimensional cube that
is {(1,0), (1, 1), (2,0), (2, )} = Q% with w = (1, 0) and continue with the rest of the
two-dimensional cubes that make up the first row of the array. We would then extend to
the second row, starting with the two-dimensional cube Q(vf) with w = (1, 1) and moving,
cube by cube, to the right until that row is complete. Next, we extend the C-partial iterates to
the one-dimensional cube {(0, 2), (0, 3)} = &) with w = (0, 2). Finally, we would extend
to Q(v%) with w = (0, 2) and continue along that row until the C-partial iterates are defined
on the entire rectangular collection, yielding the result.

To write out the general case, let » be the smallest natural number such that (N} —
I,N;—1,.,N,—1,0,0,...,0) ¢ B.Let g, = max{y : (Ny — 1, N, —1,..,N,_; — 1,
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v,0,...,0) € B} and define g,_1, g2, . . . , g recursively by setting
gi=max{y :(Ny—1,No—1,.. N1 —1L,y,gix+1,...,8+1,0,...,0) € B}.

If no such y exists, set g; = 0. For the example shown above, 7 = 1 and g; = 3.

Setg = (g1, 82,..-,80,...,0) € [N]. Note that g € Band g + 1) ¢ B.

Now use Lemma 3.7 to extend the C-partial iterates /;, ... , I, to the rectangular
collection {Ay}, ol Let B =B U Q(gr) , and note that B’ is lower triangular and strictly
contains 3. The C-partial iterates are now defined on more of the rectangular collection
{Ay}verng than before, and the portion they are defined on satisfies the hypotheses of this
lemma.

Rename 5’ as 13 and repeat the above steps. As the size of 13 has increased and yet our
rectangle [N] has finite size, this process will eventually end; this will occur when » = d
and B = [N], yielding the result.

Corollary 3.10: Fix a cone C C Z¢ and suppose T° is an ergodic G-extension of the 7.%-
action (X, X, u, T). Let {Ay}verm) be any rectangular collection. Then, for any collection
{Uy}verm) of open subsets of G with e € Uy, there is a C-partial speedup T of the original
action T such that {Ay}yem) is a speedup block for T and o1(x, Ty(x)) € Uy for every
v € [m], for p-a.e. x € Ayp.

Proof: Apply the previous result to the block B = . 0

3.2. L-collections

Definition 3.11: Letk, h € (Z,)?. An L-set is a subset L(k, h) of Z¢ of the form
Lo h) = [k, Kk+h+1]—[k+1+1Kk+h+1].

Given an L-set L(k, h) and j € {1, ..., d}, the jth side of L(k, h) is the set of vectors
v € L(k, h)satisfying v; = k;. The outside of L(k, h)is the set Out (L) of vectorsv € L(k, h)
satisfying v; = k; for some j; the inside of L(k, h) is the set /n(L) of vectors in L(k, h) not
on the outside.

Note that the vector k lies on all d sides of L(k, h).

Definition 3.12: Let (X, X, i, T) be an ergodic Z?-action. An L-collection is a collection
of pairwise disjoint measurable subsets {Ay}ver,n Of the same positive measure, where
the indexing set L(Kk, h) is an L-set, together with partial iterates f1, 5, . . ., f; of T satisfying
fi(Ay) = Ayqe, if v and v + e; are both in the outside of L(k, h), or both in the inside of
L(k, h).

We define C — L-collections in the obvious way: they are L-collections where the partial
iterates f1, f2, ... , fa of T have iterate functions which take values only in cone C.

As an example, the two-dimensional L-collection with k = (1, 3) and h = (4, 3) is the
following collection of sets and partial iterates indicated below by the solid arrows (this



Downloaded by [Ferris State University], [David McClendon] at 12:22 24 February 2014

16 A.S.A. Johnson and D.M. McClendon

picture explains why we use the terminology ‘L-collection’).
g1
Ay > A

f2 f2T

Agrs) " Ays)

2 ng

g1 fl f] f'l
Ay T Ay —= A Aa,a) As,a)
A A A A
f2 g2 g2 g2 g2
f1 f f1 f1
4(1,3) — A(2,3) — A(3,3) 14(4.3) A(5,3)

The next lemma says that given an L-collection, we can ‘quilt’ the outside to the inside
via partial iterates. For instance, in the previous example, we can construct the iterates
indicated by the dashed arrows in the above picture.

Lemma 3.13: Fix a cone C C Z4, an open set U C G, and N > 0 . Let T° be an ergodic
G-extension of the 7Z4-action (X, X, u, T). Suppose that

(1) {Av}vern is a rectangular collection;

(2) L(k,h)is an L-set with L(k, h) C [N],

(3) {Av}verwn) is a C — L-collection with partial iterates f;, .. ., fa; and

(4) foreveryv € Out(L), there is a partial iterate I, taking Ag to Ay, and these iterates
satisfy fs o Iy = Iyye, a.s. on Ag whenever {v, v + e} € Out(L).

Then there are C-partial iterates gy, . .., g5 of T such that

(1) for each v which is in the jth side of L(Kk, h) but not in any other side, g; takes Ay
fo Av+ej ;
(if) the maps f; and g commute, i.e. if v.e Out(L) and v+ e; € Out(L) butv+ ¢ €
In(L), then f; o g = g o fj a.s. on Ay,
(iii) for a.e. x € Ay, the base of the L-collection, and for any permutation p of {1, ...,
d}, we have gg o fy— ;0 - 0f1(X) = g © fp@—1) © -+ © fo)(X); and
(iv) fora.e.x € Ap, or(x, g1 © Ixy1-¢,(x)) € U.

Proof: The proof is divided into three parts. First, we partition the sets Ax and Axiq
so that various iterate functions are constant on the atoms. We then work inductively on
these atoms, first to find an appropriate set Cy, C Z¢ and then to use this set as we apply
Lemma 3.4 to find one of our partial iterates, namely g;. This will be one ‘stitch’ between
the outside and the inside of the C — L-collection, and the final step of our proof is to use
this stitch to define the other partial iterates that will ‘quilt’ the C — L-collection together.
The details of the proof are as follows.

For any v = (vy, ..., vg) € L(k, h), some (possibly none or all) of the partial iterates
N, ..., fq are defined on 4y. Let Py be a finite or countable partition of Ay so that on each
atom of Py, all the iterate functions fy, f,, ..., f; : Ay — C of the partial iterates defined
on Ay are constant. Then for v € Out(L), ;"™ o f; ™ o...0 f7 )P s the
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pullback of this partition onto Ay, the base of the L-collection. Set

Pout = \/ fli(vlikl) ©-:-0 fdi(vdikd)(,])v)'

ve Out(L)

Similarly, for v € In(L), ff("“(k‘ﬂ)) oo fy W ®+Dp s the pullback of this partition
onto Ag41. Set

—(vy—(k1+1 —(vg—(ka+1
Pin = \/ fl 1=tk + ))o...ofd (va—(ka+ ))(Pv)

veln(L)

Then P, and P;, are partitions on Ak and Ay, 1, respectively. Denote the atoms of Py by
By, By, ... and arbitrarily partition Ak into sets By, By, ... such that u(B}) = w(B;) for
allj.

Consider the partition Pi|p;: list the positive-measure elements of this partition of
B| C Agq1as Cy, C), ... . Partition B, arbitrarily into sets Cy, Cs, . .. with u(C;) = M(C})
for all j. Note that for each j, we have

e for any v € Out(L), the iterate function of ff”*k‘ 0---0 fd’)"*k" is constant on C;: set
a; , to be this constant;

—(+1 —(ka+1)
oD Lo g%t D s constant on

e for any v € In(L), the iterate function of f;
C}:setbjy to be this constant.

Now fix j. Let w € Z¢ be a vector such that
Cw CCN(CHajy—ajati-e) = bjte))

for every v and s such that v € Out(L) and v+ e5 € In(L). Let D; = fo0 f3o---0
fa(C;j) € Axy1—e,- Now use Lemma 3.4 with sets C;, D; and C}, partial iterate f; o -
o fa and vector w from above; this defines the partial iterate g; : D; — C’; whose iterate
function g, takes values only in C,, (thus in C) and for which or(x, g1 © Ixt1-¢,(x)) € U
for almost every x € 4.

What remains is for us to define the other g;’s and the rest of g;. Let v and s be such that
v € Out(L) and v + e; € In(L). We need to define g; on 1”""1 0---0 f;"_k”(Cj), which
we do by moving a point in this domain first back to C; C 4k, then moving it to the set D;,
where we can use the already defined g; to move it to C’;, and finally moving it to Ay.,. In

other words, for z € flvlfk‘ 0---0 f;"_k"(Cj), set

2@ =(f"0 0 f ) ogio(frorofo(f oo £ (),

whereu=v+e;, —(k+1).
The iterate function associated with g; is

8 = Dbjvre) T 81 2 (kt1-e) — )y

Thus g, € C exactly when g, € C+a;y — a;j kr1-¢,) — bj (v+e,), Which follows since
g1 € Cy.



Downloaded by [Ferris State University], [David McClendon] at 12:22 24 February 2014

18 A.S.A. Johnson and D.M. McClendon

Having now defined the g; on the images of C;, repeat the argument for each j to define
the iterates on all the appropriate images of B;. Then repeat this argument for B, Bs,. .. ;
this produces partial iterates {g,}?_,, which satisfy the conclusions of the lemma. O

s=1°

3.3. Completing the proof of Theorem 3.1

The next result tells us that if we are given a rectangular collection where commuting partial
iterates have been defined on some lower triangular set, and if we are given a rectangular
speedup block within the rectangular collection which is disjoint from the lower triangular
set, then we can extend the partial iterates to a larger lower triangular block, encompassing
both the original lower triangular set and the given speedup block. By repeating the argument
in this lemma, we obtain a construction which establishes Theorem 3.1 in the case where
the functions gy are constant. Then by approximating the gy by step functions, we obtain a
proof of Theorem 3.1.

Observe first that given a two-dimensional lower triangular subset (or ltsb) of
[(N1, N;)], there exists a non-increasing function,

Ji:{0,1,2,...,N, — 1} - {-1,0,1,2,..., N, — 1},
such that
(x,y)eB& (x >0and 0 < y < Ji(x)).
Note that if J;(x) = —1, then (x, y) ¢ B for any y.
Similarly, given a d-dimensional lower triangular subset (or Itsb) of [N] =
[(Ny, ..., Ng)], there exists a sequence of functions Jj, ..., J;_ | called the height func-

tions of B such that

(1) foreachre{1,...,d—1},J, maps [(N, ..., N,)] into the finite set {—1,0, ...,

Nr+1 - 1}a

(2) eachJ, is non-increasing along any one coordinate if the other coordinates are kept
fixed; and

(3) veB <& (v=0andforeachre {2,...,d}, v, <Jo—1(v1, ..., Vi 1)).

As an example, if J1(0) = Ji(1) = 2, J1(2) = J1(3) = 0 and J,(4) = —1, the (two-
dimensional) Itsb with height function J; is the collection of sets shown below with iterates
I; and I, (here N can be any integer vector greater than or equal to (5, 3)).

I
A2 —= Aa2)

i

I
Ay — A

IZT IzT
I I I

Af0,0) — = Ap,0) — = Ao — Ao

Lemma 3.14 (Iterative Filling Lemma): Fix a cone C C Z¢. FixN, k, h € Z? where N >
k+h h> 0 andk > 0. Let T° be an ergodic G-extension of the Z¢-action (X, X, ., T)
and {Ay}vern) be a rectangular collection in X.
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Suppose that B C [N] is such that

o Ap = {Avlven is a C-ltsb with partial iterates I, . . ., 1;, and
o the last height function J,_1 of B satisfies Jy_1(ky, ..., kq—1) < k.

Suppose also that

o thesets {Ay}ve[k k+n) form aspeedup block for a C-partial speedupT = (T, ..., Ty)
of T, and

e we are given, for every v € [N] — B, an open subset U, C G. If 0 € [N] — B, we
assume eg € Up.

Then, if we define foreachje{l, ..., d— 1}, .7] [Ny, NI = {—1,0,..,Nj3 — 1}
by

max{J;(xy, ..., x;), kjpx1 +hjp1 =1} if(x,...,x5) <
(ki +hi, .. kj+hj)

Ti(x1, .. x)) = .
i1 i) Ji(xr, ..., xj) otherwise

and let B be the lower triangular subsetyith heightfunctions 71 R L,l, the sets {Av}yeg
Jorm a C-ltsb Ag with partial iterates 1, ..., la, which simultaneously extend the partial
iterates associated with the block Ag and the partial speedup T, i.e.

(i) foreveryv e bj(B), 7] = Ij on 4y, and
(ii) foreveryve [k, k+h—e;], I; =T onA,.

Furthermore, given any v = (vy, ..., v4) € (g —-B-[k, k+ h]) ULk}, we have
UT(x, Tfl 0---0 I’:})"(x)) e Uy

for a.e. x € Ay.

Proof: First, use Lemma 3.9 to find a partial speedup R extending the iterates /i, ...,
I; of Ap such that {Ay}yeny is a speedup block for R, where for each v e [N] — B,
or(x, Ry(x)) € Uy for a.e. x € Ay.

Consider the L-set L(k — 1, h). Restricting the action R to the sets Ay where v € Out(L),
and restricting the action T to the sets Ay where v € In(L) turns {4y}veL into an L-
collection. By Lemma 3.13 there are partial iterates g, ... , g mapping sets associated
with vectors in Out(L) to sets associated with respective vectors in In(L), with op(x, g; o
Ryt1—¢ (%)) € Uy fora.e. x € Ap.

Now, if we define, for eachj € {1, ..., d}, maps Th, ..., I; so that

. I:j coincides with g; on Ay whenever v € Out(L) and v + e; € In(L);

e I; coincides with T'; on 4y whenever v € [k, k 4+ h — ¢;]; and

e /; coincides with R; on all other v € b;(B);

then the iterates I~1 A I~d satisfy the conclusions of the lemma. O
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Lemma 3.15: Fix N> 0, h > 0 and a cone C C 7¢. Let T° be an ergodic G-extension
of the 7% -action (X, X, u, T) and let {Ay}yeny be a rectangular collection in X.

Suppose that there are vectors Ki, Ky, ..., k. € [N—h] such that the sets C; =
Uve[h] Ay, +v are pairwise disjoint, and that each C; is a speedup block for a C-partial
speedup T; of T. Suppose also that for all v € [N], we are given an open set U, C G where
eG € U(]

Then there is a C-partial speedup T extending the T such that {Ay}ven is a speedup
block for T and for all v in ([N] — U/ L C UKy, ..., Kg), we have or(x, Ty(x)) € Uy
fora.e. x € Ay.

Proof: We will begin by using the last lemma with B = ¢ and one of the speedup blocks,
say C}, to yield a lower triangular speedup block with iterates that extend T;. We will then
repeat this using the last lemma again with this new lower triangular speedup block and
another speedup block, say C;.

So that we can continue this process, we need to order the C; in such a way that when
the lower triangular speedup block is increased to include the next C;, the unincorporated
Cj’s are left entirely disjoint from the new, larger, lower triangular speedup block. This leads
us to define

\hl Ih\ |h|

h
i g < w4 g
. r
(U], ey Ud) < (U)l, ey 'l,Ud) iff ‘hl |h] ‘hl |h] s
L g Ve = W e m W
(01,-. s Ud— 1)<(w1»---,wd 1)
where vi < w; means v; < w;. We renumber k;, ky, . . ., Kk, as necessary so that k; < k; |

forl <i<r.

Now we can begin as described above. Apply the Iterative Filling Lemma (Lemma
3.14) with B the empty set and k = k;. We obtain a C-ltsb A, with iterates T, which
extend T on speedup block C; and such that for every v € (B; — [k, k; + h]) U {k;},
or(x, Tyx) € Uy for a.e. x € 4.

Apply the Iterative Filling Lemma again, with B =5, and k =k, to obtain a
C-ltsb Ap, whose iterates extend both T on By and T, on speedup block C,. For each
v e (B, — [ki, ki +h] — [k, ko + h]) U {k;, ko }, op(x, Tyx) € U, for a.e. x € Ay.

We can continue in this fashion, applying the Iterative Filling Lemma repeatedly to
obtain larger and larger lower triangular speedup blocks. Eventually we obtain a C-ltsb Ap,
containing all the C;, where the iterates of Ap, coincide with the components of T; on
each C; and for every v in (B, — J_,[k;, k; +h]) Utk .. .. k. }, ox(x, Ty(x)) € Uy for
almost every x € Ao. Apply the Completmg Lemma (Lemma 3.9) to Ap, to complete the
construction of T. O

We now complete the proof of Theorem 3.1.

Proof of Theorem 3.1: Choose a neighbourhood V of e such that VV-! C U. Partition
Ao into measurable sets By, B, ... such that for each x € B; and each v in

-G |uiki.... k),

there is a group element g; y such that gy(x) € V g; .
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For each v € ([N] — U;’:l C;)U{ki, ..., k.}, partition Ay into disjoint sets By, ; such
that ((By,i) = w(B;) for each i. '
Next, define the rectangular collection {Dg)}VE[N] by setting

[ ] D(l) Bla
Ds;l)_Bv,WhenVG( U] IC)U{klv""kr};and
° Di’) S (Tj)vfk,'(Bkj,l) ifve [kf’ k/ + h]'

Apply Lemma 3.15 with the same cone C, the rectangular collection { Dy )}VG[N speedup
blocks {(T j)V(Bk i)lvem), and Uy = Vg y to produce a C-partial speedup T extendlng
the T; such that {D }VE[N is a speedup block for T and given almost every x € B;, we
have or(x, (T )V(x)) e Vg, for everyv € ([N] — U Cj) U {ky, ..., kq}.

But for such a v, we have or(x, (T )v(x))(gv(x)) le (Vgiv)(Vgiy)'=vv-licu

as desired. Setting T so that it coincides with T on the rectangular collection {D }ve
produces the speedup with the desired properties. D

4. Proof of Theorem 1.1

We now turn to proving our central result. The idea of the argument is this: we use
Lemma 2.8 to find an increasing sequence of castles for (Y, ), v, S); for each of
these castles we construct a rectangular collection in X. Using Theorem 3.1, we realize
these rectangular collections as speedup blocks for C-partial speedups T', T2, ... of T,
where each speedup extends the last and is defined on more of the space X. The correspond-
ing G-extensions of these speedups will increase to a speedup T’ of T?, which satisfies the
conclusions of Theorem 1.1.

Proof of Theorem 1.1: Recall that we have T° and S°, G-extensions of the respective
7% -actions (X, X, u, T)and (Y, Y, v, S) with T? ergodic and S aperiodic. As G is locally
compact, we can find a complete, right-invariant metric p compatible with the topology
on G (there need not be a two-sided invariant metric compatible with the topology, see
[14]). Choose € > 0 such that B, (eg), the closed ball of p-radius € centered at the identity,
is compact and contained in U. Let €; be a decreasing sequence of positive real numbers
satisfying Y ;7 e < §

Step 1 (preliminaries): For each k, choose a compact neighbourhood Uj, of the identity
such that Uy U~ I'c B (eg). Using Lemma 2.8, choose a sequence {C,(S},f‘;l of castles for
S with respect to these Uy. For each £, let {r,i j1; denote the towers comprising the castle
CZ, let Ny be the common height of these towers, and let A? ;v be the level at height v of
tower rks ;- Observe that from Lemma 2.8 we obtain, for each £, j and v, a group element

gk.jv € G such thatforall y € Ak,(v

os(y,V) € Ug gi,jv

(in particular, g ;0 can be taken to be eg for every k and j). Thus Uy g ;v contains all
values of the cocycle associated with movement from the base of r,f ; to height v in the
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tower. Next, define for each & the set I?k = j Uve[Nk] Uy gk, jv and let
Ky = Be(eg) Kk (Ko) ™" Be(ec);

observe that K} is compact for all k. If y € |CZ| () S—w(IC]), then y € AP ; | for some j and
v and ‘

os(y, W) = os(S_yy, v+ w)os(S_yy, V)’1 € I?k(l?k)’l C K.

Thus K}, contains all values of the cocycle oy associated with the kth castle Cks. As we will
later see, the use of the balls B.(eg) will ensure K contains all values of the cocycle oy
associated with the kth partially defined speedup of T.

By the uniform continuity of the inverse function and of group multiplication on the
compact set Bc(eg) x K; X Bc(eg), we can choose for each k a constant §; > 0 such that
if by, hy, h3, hy € Be(eg) are such that p(hy, hy) < &k, p(h3, hy) < 84, and g € K, then

1 1
phighs, haghs) <+ and p(highs', hoghy') < -

Finally, we fix an increasing sequence {P;}72, of finite partitions of X, which
generate .

Step 2 (base case): Here we construct an initial partial speedup (T")*" of T, which is
partially G-isomorphic to S°.

Consider the castle C consisting of towers t

Ty, let AT | be a subset of X with ju(AT ;) = v(A} ;) such that {A]; }ven, forms a

rectangular collection, denoted 7", with |7 | N |z[;| = @ when j # [ . For each j, because

s - s
pj» each of size [N;]. For each A7 ; | €

M(AlT,j,o) = v(Af,j’o) , we can find an isomorphism ¢, ; : AlT,j.o — A?,j,l)' We will consider
the collection {T;l:j };, denoted C, to be a copy in X of CIS.

Use Corollary 3.10 for eaghj (with m = Ny and Uy = B, (eg)os(¢1,j(x), v)) to con-
struct a C-partial speedup T'/ of T such that

(D) 'L’Ej is a speedup block for T"/, and
(2) forevery v e [Ni], for p-a.e. x € A]

or(x, (T (x)(0s(¢1,(x), V)" € By, (ec)- 4.1

Given x € Af jyandwe 74 such that v +w € [N;], define the cocycle associated with
the speedup T"/ to be

o1,j(x, w) = or(x, (Tl'j)w(x))~

We can then define T! so that T‘l, coincides with Ti’j wherever the latter map is defined;
CIT is therefore a speedup block for T'. We similarly define o so that o (x, v) = o, j(x,v)
where the latter is defined.
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What remains is to define the partial G-isomorphism between (T!)°' and S°. We first
extend, for each j, the isomorphism ¢ ; to the entire tower |‘L'E j | so that for u-a.e. x € A{ 70
and each v € [N;],

¢1,j 0 Ty (x) = Sy 0 ¢y j(x).

T

We next define & ; @ |t';| — G by setting for x € AT, |,

o j(x) = as(q&l,j (Tl,ix) v) ol,j(Tux, V)fl.

Similar in spirit to what we did before, define ¢, : |CIT| — |CLS| and o : |C1T| — @, so that

for each j they coincide with ¢, ; and &) ;, respectively, on 7' . Setar; (x) = e for x ¢ |CT|.
We then have that the map, '

Pi(x, g) = (d1(x), a1 (x)g)

is a G-isomorphism between (TI)Ul and S?, where these maps are thus far defined, i.e. for

any x € AT, and any w € Z¢ such that v+ w € [N;], we have

ar (Ty(x)) o1(x, W) (@1(x)) ™" = os(1(x), W).
Note that by the right invariance of p and Equation (4.1), we have for all x € CT,
pai(x), eg) < €1.
We complete the base case by setting m; = 1.
Step 3 (inductive step):Here we extend the partial speedup (T¥)* to another partial
speedup (TN which is defined on more of X and is also partially G-isomorphic

to S°.
Assume that we have defined

(1) numbers 1 =m; <my < ... < my, where foreveryi € {2, ..., k}, we have

i 2¢, < 6;;

n=m;

(2) C-partial speedups T', T2, ..., T" of T, defined on respective speedup blocks
Ct.Cy, ..., Cl of respective heights N, . . ., N, such that

T T T
ICICIC S CIC,

and each T'*! extends T';
(3) isomorphisms ¢1, ..., ¢k, where each ¢; : |C| — |C}), | satisfies

¢i o Th(x) = Sw 0 ¢i(x),

forall x € |CT| N T_,(ICFD);
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(4) corresponding cocycles o1, ..., o} of the above partial speedups satisfying, for
each i,

o; (x, W) (os(¢i(x). W)™ € B, (ec), (4.2)

forae x € U;Al, jand all w € [N,,]; and
(5) transfer functions o1, ..., ax: X — G such that
e forallx € |CF| M T_,(IC)),

o (Ti(x)) 0i(x, W) ((x)) ™" = os(i (x), W); (4.3)
e forevery x € Xand foreveryie {1,...,k— 1},
patiy1(x), ai(x)) < 2€,,; and 4.4)

o p(u(x), eg) < € for every x € X.
Choose my | > my so that

(1) Yoo, 2€n < Si41;and
(2) ¢r(Py) is approximated within distance # (in the usual partition metric) by the
levels of C3

M1 ”

note that we want it to be a copy in X of Cj .
s

Mg, J,V

contained in |C, |, we define A7, ., = ¢ (Afu% j’v>. Additional disjoint subsets of

To find our next speedup block C\, |,

Recall that |CS | € |CS  |and CS  consists of the towers t5 .. For each level A
mp Mp41 Mi+1 Mi+1,]

X — ¢, ! (|C§lk |) are arbitrarily chosen for the remaining levels Af +1,j.y sothat w(AT ) =

v(A,SnHl _jv) foralljand v. Thus for each /, {AT +1.j.v}velN,, 1 forms a rectangular collection
which we denote by 7", | - and |z, ;[N |7}, | = @ whenj#/ By Lemma2.8, Ay . is
disjoint from C} and thus ¢y is not defined on Af,, ;g1 weletdpr1 ;1 AL, ;0 = AN o
be an arbitrary isomorphism.

We then use Theorem 3.1 to construct our next C-partial speedup. For the neighbourhood
of eg, we use the closed ball B, (eg) where £ is chosen so that &1 < €,,,, and (by
the uniform continuity of group multiplication restricted to the compact set Kz | X Ki+1)
ifa,d, b € Ky satisfy p(a, a’) < 41, then p(ba, ba’) < €,,+1. Now fix j and let

Ri={ve[Nu,1: AL, S|C}

Observe that | J,. R, A{ v is the disjoint union of r ( is a finite number, possibly zero)

speedup blocks Cy, ..., C,. for T¥. For/ = 1, ..., r, we denote by k; the initial vector of

the speedup block C;. We now use Theorem 3.1 (with N = N, h=N,.A, = A,TJF],j’V,

U = By, (eg) and gy(x) = os(¢r+1,;(x), v)) to construct a C-partial speedup T*+!-/ of T
such that

Mpy1 >
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) {AEHJ’V}VE[NWM] is a speedup block for T¥+1-/;
(2) TF1J extends T*; and
(3) forevery v e (U {k}) U (INm,,]1 — U, C), for p-ae. x € A/T+1,j,03

or (x, (T () (o (a1, (%), V))_l € By, (ec).

We now extend ¢+ 1, to the entire tower |71, | ;1 in the following way: for y € 1Ty il

T

. k+1.j
write y = Ty '/ (x) for some x € A

o and some v. Then define

Grt1,j (V) = Sv(Prt1,j(x)).

After repeating the above procedure for each j, we set CkTJr

7.1 ; and define T**! so that Ty coincides with T/ wherever the latter map is defined.
Similarly, define ¢yt : [C},,| — |C}, | so that it coincides with each ¢4 1, on |rkT+1’j|.

| to be the union of the towers

Also, let | be the cocycle for T<*! | i.e. set
or+1(x, w) = orp(x, T’V‘V+1x)

forany x € [CF | M TS (CE ).

All that remains is for us to define the transfer function «: X — G and show it
satisfies the stated properties. By our induction step, the transfer function ay: X — G
relates oy (x, v) and og(dr(x), v). As ¢4 1(x) does not necessarily equal ¢4(x) even when
both are defined, we cannot define oy 4 | to simply extend a. So we first define a function

o, which keeps track of the change from ¢(x) to ¢+ 1(x) by setting

o5 (x), —V) los(@i(x), —v) ifx € AT, |CT|
ap(x) =
eg ifx ¢ |CkT|

One can then check that for x € AZY i

(T x) ar(TE x) o, =v) ()™ @(x) ™ = 0s(ea (x), = V).

Since 6441 = o4 and TA*! = T* where all are defined, the above can be written as

(7%

Oy (x, =V) = os(¢rr1(x), —v) forx € AEJ,V. 4.5)

However, we need a transfer function which satisfies Equation (4.3) for all x € C, | and all
u such that T{T'x € CL, . In this more general case, the left side of Equation (4.5) may or
may not be equal to the right side. Thus we define a function @y : X — G to keep track of

this difference:

os(rs1(x). —W) Lo (x, —w) ifx € AT, ST
ap(x) =

eG ifx ¢ |CkT+1|
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It can be shown that

(T x) o5 (. W) @) ™" = o5(drsr(x). —W).
In other words, by setting

akr1(x) = p(x) o (x) (),

we obtain
kt1 -1 _
i1 (T x) org1 (2, =Wt 1 (0) ™' = o5(daq1 (), —W). (4.6)
Equation (4.6) has w, where x € A{,, ;. Now let u be such that T;"'x € C[,: then
Ty'x € A,y and we also know

Oyl (Tl(jv_le) Ok+1 (Tﬁ*lx, —(w+ “)) Oit1 (T]f,HJCY1 =

o5 (T571x). ~(ww). &7

By the cocycle equation,

os(Br+1(x), u) = os(rs1 (T x), W+ u) o5(Pri1 (x), —W)
= (o5 (re1 (TEx), =W + W) ™ o1 (x), —W).

Plugging in Equations (4.6) and (4.7), this reduces to
08(Pres1 (1), W) = gyt (Ty1x) Opsn (6, W @t (1)

which shows our o | satisfies condition (4.3).
For condition (4.4), rewrite p(ox 4 1(x), ox(x)) as

P(@k(x) Tp(x) ap(x), o (x)) = p(@r(x), T(x)™") < p(@k(x), eg) + pleg, Tx(x)™").

Consider first p(eg, @x(x)™") = p(@x(x), ec). For x € A} ; |, this equals

p(0s(Prr1(x), —v) os(Pi(x), —v), €G)
= p(0s(Pr41(TE x), v) os(de(TE ), V), eg).

Although ¢(x) is not necessarily equal to ¢4 (x), they are both on the same level in C,ik
and by Lemma 2.8, both os(¢h+1(T* ,x), v) and os(¢x (T x), v) lie in U, gy. Thus

o5 (dre1 (T 4x)., v) 05 (0 (T \x). v) ™' € Un, U,,! € B, ()
and we have

p(eGa ak(-x)il) < €my -

Note that if x ¢ CT, then @;(x) = e and the above holds trivially.
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For p(ax(x), eg), we have two cases: in the first, x € |CT 1] — |C,3| or x is in the base
of |CT| and in the second x is in some AT N Ak’l’v with v # 0. In the first case,
or(x) = ax(x) = e and

k+1,j,w

Ak (x) = (05(Prr1(x), —W)) o1 (x, —W)

= o (1 (T ), W)or (T x, w) ™!,

where x € AT We know by Theorem 3.1 that

k+1,j,w*
-1

ot (T x, W) os(drq1 (T x), W)™ € By, (ec).

s0, therefore, p(oy41 (T E x, W) og(drs 1 (TH x), w1, e6) < Ciyr. But

p(0rr1 (T x, Wos (g1 (TH x), W)™, eg)

= P(eG, os (¢k+1 (Tk_tle), W)0k+1 (Tk_tle, W)_l),

and we end up with p(ax(x), €G) < Sit1 < €my,, -
In the second case, p(dx(x), eq) = p(os(Prs1(x), —W) ', o,f‘f’fk(x —w)~!) which
equals p(os(¢k+1(Tk+1x) W), 0441 x,w)). Using the cocycle equation, we relate

the position of x and ¢y 1(x) in thelr (k + 1)-tower to their location in the k-tower and the
k-tower’s location in the (k + 1)-tower, i.e.

27272 (Tk+1

os(Br41 (T %), W) = o5(rr1 (T x), v) o(Bres 1 (T ), w — v)

and
Ii/:qlk (Tk-Hx W) — O_]?Jkrtiu (Tk+1X ) ot Ao (Tk-H V).
Note that the first terms of the right-hand sides are equal by (4.5) and

Tk+1 o7 (Tk+1

p(os(@r+1 (T, X)), W — V), 0,15 X, W —V) < {pq

by the argument used in the first case. We thus have that p(a(x), ec) has the form p(ba, ba’)
with p(a, @') < {x+1 The result then follows from the definition of {4 once we know all
the terms are elements of K. ;. We first note that as(qka(T,w X),W—V) € K 1 C Kpq1
by definition. By rewriting

o5 (01 (T4%). ¥) = o5(g (T4 x). W) [os (11 (T ). w = v)]

we see that
os(Pr1 (T4 %), v) € Kt (Ki) ™ € Ky

Finally, since o} (T*};'x, w — v) is within ¢ 1 of os(rr1 (T x), w —v) € Kii1, we
have

ol (T x W = v) € By, (e)Kis1 C Be(eg)Kis1 C Kisi,

as wanted.
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We can then say that our transfer function satisfies condition (4.4) by noting

0 (ctp1(x), 0k (X)) < €yyy + Emy < 2€p,.

For the last criterion on «y, note

P (o 1(x), eg) < p (otkq1(x), ax(x)) + - - - + p (a1 (x), eg)
< 2€m, +2€pm, , + -+ 26y, + €

< €.

This completes the inductive step.
Step 4 (define the speedup T): After repeating the procedure in Step 3 indefinitely, we
obtain a sequence of castles C in X for C-partial speedups T* of T, where

(1) the levels of C,{T approximate the partition P;_; to within zik;

(2) each C is a speedup block for T¥;

(3) each T*+! extends T*;

(4) for each castle C[, there is an isomorphism ¢ : |CkT| — |C§1k| intertwining T* and
S; and

(5) for each castle C,(T, there is a function oy: X — G so that
o the map ®;: (x, 2) — (P(x), ax(x)g) is a G-isomorphism between (T*)°* and S°,
o p(og(x), agt1(x)) < 2¢y,, and
o p(ap(x), eg) < €.

We can then define the C-speedup to be T = limy_, o, T¥. We define its cocycle & by
setting &(x, v) = oy(x, v) where k is large enough so that x and T,(x) lie in CkT. Since p
is a complete metric, we see that the sequence {o;} converges uniformly to a function
o : X — G which satisfies p(a(x), eg) < € for all x € X. Note that by our construction,
each ¢ | agrees (setwise, but not necessarily pointwise) with ¢; on the levels of CkT. Since
these levels increase to the full o-algebra X, the maps ¢; determine an isomorphism ¢
between T and S which, for each £, agrees setwise with ¢ on the levels of CkT .

Finally, we explain why the map ®: X x G — Y x G defined by ®(x, g) =
(¢(x), @(x)g) is a G-isomorphism between T’ and S°. Fix v € Z4 and note that for a.e. x,
we can find K such that for all k£ > K, Ty(x) = T¥(x). It is sufficient to show that

p((?a(xv V)’ US(¢(X)’ V))

is arbitrarily small.
By the triangle inequality we see

PG (x, V), 08((x), V) < p(@%(x, V), a5(pr(x), V) + p(a5(dr(x), V), Ts(b(x), V))-

Consider the first term. Recall that S is isomorphic to T{* on the appropriate domain, so
we know

os($r(x), V) = 0" (x, V) = a(Tyx) ok (x, V) e ()~

= O{k(TV.X) E(.X, V) O(k(-x)il B
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and thus

p(T%(x, V), os(Pr(x), V))

= p@Tyx) o (x, VEX) ", o (Tur) 5. V) o (6) ). (+-8)

But we know that for all z € X,
Pp(ai(2), @(2)) < (D), 11(2)) + a1 (2), a2 + -+ < Y 26, < &
i=k

Thus Equation (4.8) has the form p(hg h3, hag hy) where p(hy, hy) < 8; and p(h3, hs) < 8.
Once we have that o (x, v) € Ky, the choice of §; made in Step 1 gives us that Equation (4.8)
is less than %

To show that o(x, v) € Ky, let w be such that x € AE, j.w- Using the cocycle condition

and that o (x, v) = ox(x, v) here, we have

or(x,v) = ak(T]iwx, v+ w) Jk(T’iwx, w)_l.
—1
We then use that os = o, can be written U: ¥ = oy to write oy (x, v) as

e (Thx) " os(Pe(TH 1), v + Wy (TE  x) [o(x) ™ s (e (T ), W) (T 017!
= o (TEx) os (@ (TE yx), v -+ W)(os(A(T ,x), W)~ e (x),

which is in B.(e) Ki K; ' Bc(eg) = K, as wanted.

Now we consider the second term, p(os(¢(x), v), os(Pr(x), v)). We know ¢(x) and
dr(x) lie on the same level of Cslk; call the height of that level w. Let z = S_,(¢(x)) and
2k = S_w(@r(x)). Then

p(os(@(x), V), os(Pr(x), v))
= p(os(z, v+ W) as(z, W) ', os(ze, v + W) os(zi, W) 1)

= p(os(z, v+ W) eg os(z, W) ', os(zi, v+ W) e as(zi, W) ).

Recall the castles for S were chosen so that for each tower and each level v at the kth
step, there is a vector gy such that og(z, v) € U gy for all z in the base of that tower. Thus,
we have that os(z, v + w) and os(zx, v + W) both belong to Uy, gy+w 1.€.

os(z, v+ W) os(zx, v+ W) € Uy, Uy, € B., (e6).
By our choice of m; made at the beginning of Step 3, we have p(os(z, v+ W), p(os(zx, V+
W) ) < 8 and similarly p(os(z, W), os(zk, W)) < 8¢. Again we use our choice of §; to

conclude p(as(p(x), V), os(de(x), V) < .
Putting these two terms together yields

2

5 1 1
p(Ea(-x’ V), GS(¢(x)v V)) < % + z = %
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Since k is arbitrary, we get os(¢(x), v) = %(x, v) for a.e. x and all v and thus 87 = T, as
desired.

Theorem 1.1 asserts that the transfer function can be restricted to take values in any
predetermined neighbourhood of the identity element of G. If G is a discrete group, then
such a neighbourhood can be chosen to consist of only the identity element itself, and we
immediately get the following stronger result.

Corollary 4.1: Fix a finite or countable group G, and let (X, X, u, T) and (Y, Y, v, S) be
Z2-actions with S aperiodic. Set T° and S° to be G-extensions of T and S, respectively.
Let C C 74 be any cone. Suppose T is ergodic.

Then there is a speedup T° of T° for which the speedup function is measurable with

respect to X and takes values only in C, such that T is G-isomorphic to S°, via a
G-isomorphism whose transfer function o satisfies o(x) = eg a.e.
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