
The Raindrop Function:
Looks Can Be Deceiving…

The Raindrop Function

𝑓 𝑥 =  

1

𝑞
if 𝑥 =

𝑝

𝑞
in lowest terms with 𝑝, 𝑞 ∈ ℤ, 𝑞 > 0

0 if 𝑥 is irrational

We discuss the distinctions between notions (such as

continuity, differentiability, and integrability) described

intuitively in calculus, and the rigorous definitions of these

ideas coming from higher-level mathematics. As an example,

we investigate properties of an unusual function called the

raindrop function.

Continuity

Integrability

Differentiability
Can the function be drawn without picking up your 

pencil?

Is the function smooth?

Can you find the area under the curve?

More Precisely:
Given 𝑐, we say that 𝑓 is continuous at 𝑐 if for any 𝜖 > 0 we can find

a 𝛿 > 0 such that if you move at most 𝛿 away from 𝑐 in any direction,

the outputs stay within 𝜖 of 𝑓(𝑐).

𝑨𝒓𝒆𝒂 𝒐𝒇 𝒂 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 =
𝟏

𝟐
𝒃𝒂𝒔𝒆 ∗ 𝒉𝒆𝒊𝒈𝒉𝒕 ⇒  

𝟏

𝟒

𝒇 𝒙 𝒅𝒙 =
𝟏

𝟐
𝟑 ∗ 𝟐 = 𝟑

𝒉𝒆𝒊𝒈𝒉𝒕 = 𝟐

𝒃𝒂𝒔𝒆 = 𝟑

Are these graphs continuous?

Yes No

Are these graphs differentiable?

Yes No

More precisely:
Given 𝑐, we say that 𝑓 is differentiable at 𝑐 if there is a line 𝜑 such

that for any 𝜖 > 0 we can find a 𝛿 > 0 such that if you move at most 𝛿
away from 𝑐 to 𝑥 in either direction, 𝜑 𝑥 − 𝑓 𝑥 < 𝜖|𝑥 − 𝑐|.

What About the Raindrop Function?

We can easily see that at the rational numbers values of the raindrop function 

are far apart and do not fulfill the criteria to be called continuous.  How-

ever, at the irrationals we have only values of zero and we are able to 

find rational numbers between the irrationals that are close 

enough to zero in order to be continuous.  Therefore, the 

raindrop function is not continuous at the rational 

numbers, but continuous at the irrationals.

Because no purple region stays entirely

within the region between the green lines,

we are able to say that the function is not

continuous at 𝑥 = −2.

Let 𝜖 =
1

2
. No matter what line of positive

slope we pick, the purple arrow representing

the distance between 𝑓 𝑥 and 𝜑(𝑥) is

longer than the height of the region between

the blue lines at 𝑥. A similar problem exists

for lines of zero or negative slope, so we are

able to say that the function is not

differentiable at 𝑥 = 2.

More Precisely:
We use what are called Riemann sums in order to

determine integrability We create a partition horizontally

with varying widths and make rectangles by choosing the height

of each rectangle equal to the value of the function at a point in the 

interval.  If we can make an upper sum (the area of the tallest rectangles 

possible) and a lower sum (the area of the shortest rectangles possible) arbitrarily 

close, the function is called Riemann integrable.

With the raindrop function all lower sums are zero since there is an irrational number in any 

interval and the output of any irrational is zero. We can obtain an arbitrarily small upper sum by 

creating rectangles of extremely tiny widths around points where the function’s value is large and 

larger widths around points where the value is close to zero so that the area of each of 

these rectangles is essentially zero. This means that the raindrop function 

is integrable and the integral is zero.

What About the Raindrop Function?

Since we can see that the raindrop function is not continuous at the rational

numbers, we do not need to investigate its differentiability at these values

because continuity is essential in order to be differentiable. At the

irrational numbers we can use 𝜑 𝑥 = 0 to check for differ-

entiability (because the values of the irrationals remain

at zero). While the values of outputs of the raindrop

function at the rational numbers come very

close to zero as we saw with continuity,

they do not come within a

fraction of any line 𝜑 𝑥 .
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