Adding 1 in a mirror universe

David McClendon

Ferris State University
Big Rapids, MI, USA

November 16, 2017

Adding 1 in the regular universe

First: the "regular universe" in this talk is the set of integers, which is denoted by \mathbb{Z}.

To understand addition in a mirror universe, we must first understand addition in the regular universe.

Rhetorical question

When we add 1 to an integer n, what do we really do?

Adding 1 in the regular universe

Example 1

$$
8452+1=8453
$$

Adding 1 in the regular universe

Example 1

$$
8452+1=8453
$$

Question

What exactly do we mean when we write 8452 ?

Adding 1 in the regular universe

Example 1

$$
8452+1=8453
$$

Question

What exactly do we mean when we write 8452 ?

Answer: place value notation
The number 8452 is shorthand for the following expression:

$$
8452=8 \cdot 1000+4 \cdot 100+5 \cdot 10+2 \cdot 1
$$

Adding 1 in the regular universe

Example 1

$$
8452+1=8453
$$

Question

What exactly do we mean when we write 8452 ?

Answer: place value notation
Rewritten:

$$
8452=8 \cdot 10^{3}+4 \cdot 10^{2}+5 \cdot 10^{1}+2 \cdot 10^{0}
$$

Adding 1 in the regular universe

Example 1

$$
8452+1=8453
$$

Question

What exactly do we mean when we write 8452 ?

Answer: place value notation
In the opposite order:

$$
8452=2 \cdot 10^{0}+5 \cdot 10^{1}+4 \cdot 10^{2}+8 \cdot 10^{3}
$$

Adding 1 in the regular universe

Example 1

$$
8452+1=8453
$$

Question

What exactly do we mean when we write 8452 ?

More generally

When we write an integer like $a_{n} a_{n-1} a_{n-2} \ldots a_{3} a_{2} a_{1} a_{0}$ where each a_{j} is a digit, we are really referring to the sum

$$
\sum_{j=0}^{n} a_{j} 10^{j}
$$

Adding 1 in the regular universe

Example 1

$$
8452+1=8453
$$

Question

What exactly do we mean when we write 8452 ?

More generally

When we write an integer like $a_{n} a_{n-1} a_{n-2} \ldots a_{3} a_{2} a_{1} a_{0}$ where each a_{j} is a digit, we are really referring to the sum

$$
\sum_{j=0}^{n} a_{j} 10^{j} . \leftarrow \begin{aligned}
& \text { Note: } \text { this is a } \\
& \underline{\text { finite sum }}
\end{aligned}
$$

Adding 1 in the regular universe

Example 1

$$
8452+1=8453
$$

Question

What exactly do we mean when we write 8452 ?

P.S.

For now, a digit is a symbol taken from the set

$$
\{0,1,2,3,4,5,6,7,8,9\} .
$$

Adding 1 in the regular universe

Example 1

$$
8452+1=8453
$$

Adding 1 in the regular universe

Example 1

$$
8452+1=8453
$$

Next Question

When we add 1 to 8452 , to which digit do we add the 1 ?

Adding 1 in the regular universe

Example 1

$$
8452+1=8453
$$

Next Question

When we add 1 to 8452 , to which digit do we add the 1 ?

Answer

We add in the ones place (i.e. the right-most place).

Adding 1 in the regular universe

Example 2

$$
2739+1=?
$$

As before, we add 1 in the ones place. But this time, because there's no single digit we have to represent " 10 " in the ones place, we put a 0 in the ones place, and carry to the left to obtain the answer 2740.

Adding 1 in the regular universe

Example 2

$$
2739+1=?
$$

As before, we add 1 in the ones place. But this time, because there's no single digit we have to represent " 10 " in the ones place, we put a 0 in the ones place, and carry to the left to obtain the answer 2740.

Example 3

$$
2079999+1=?
$$

Lots of carrying here, but we eventually get 2080000 .

Adding 1 in the regular universe

To summarize, here's how addition by 1 works in the normal universe \mathbb{Z} :

How to add 1 to any integer
(1) Add 1 in the ones place (as far to the right as possible).
(2) If the ones place is less than 10, you're done.
(3) If the ones place would be 10 , make the ones place 0 , carry to the left and add 1 in the tens place.
(9) Keep going until you don't have to carry any more.

Since the sum representing the integer is finite, it is a sure thing that you won't have to carry forever (so the procedure stops).

Binary notation

Question

In the previous procedure, what is special about 10?

Binary notation

Question

In the previous procedure, what is special about 10?

Answer
Nothing, except

Binary notation

Computers use binary (a.k.a. base 2) notation, which is like regular notation except that there are only two digits: 0 and 1. In binary notation, the number 2 plays the role that 10 normally does.

Decimal (a.k.a. base 10) notation:

$$
10011=10011_{10}=1 \cdot 10^{4}+0 \cdot 10^{3}+0 \cdot 10^{2}+1 \cdot 10^{1}+1 \cdot 10^{0}
$$

Binary notation:

$$
10011=10011_{2}=1 \cdot 2^{4}+0 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}
$$

Binary notation

Remark:

$$
10011_{2}=19_{10}
$$

because

$$
\begin{aligned}
10011_{2} & =1 \cdot 2^{4}+0 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0} \\
& =16+0+0+2+1 \\
& =19
\end{aligned}
$$

Does this make sense?

If so, convert 1001010_{2} to base 10 .

Binary notation

Remark:

$$
10011_{2}=19_{10}
$$

because

$$
\begin{aligned}
10011_{2} & =1 \cdot 2^{4}+0 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0} \\
& =16+0+0+2+1 \\
& =19
\end{aligned}
$$

Does this make sense?

If so, convert 1001010_{2} to base 10 .

$$
\begin{aligned}
1001010_{2} & =1 \cdot 2^{6}+0+0+1 \cdot 2^{3}+0+1 \cdot 2^{1}+0 \\
& =64+8+2 \\
& =74
\end{aligned}
$$

Adding 1 in the regular universe (binary version)

Adding 1 in \mathbb{Z} when the numbers are written in base 2 is similar to adding when the numbers are written in base 10:

How to add 1 to any integer (base 2)
(1) Add 1 in the ones place (as far to the right as possible).
(2) If the ones place is less than 2 , you're done.
(3) If the ones place would be 2 , make the ones place 0 , carry to the left and add 1 in the tens place.
(9) Keep going until you don't have to carry any more.

Adding 1 in the regular universe (binary version)

Some examples

$$
\begin{aligned}
101100+1 & =101101 \\
10001+1 & =10010 \\
1000100111+1 & =1000101000
\end{aligned}
$$

Adding 1 in the regular universe

More generally

Let b be any natural number which is at least 2 .
To add 1 to an integer in base b, add 1 in the ones place; if the ones place is less than the base, you're done; otherwise, make the ones place 0 and carry to the left as necessary.

If you really wanted to be fancy, you could assign different bases to each place (i.e. make the ones place base 2 , the tens place base 5 , the hundreds place base 16, etc.), but addition still works the same way.

Adding 1 in the regular universe

For the next few minutes: assume everything is binary.

The mirror universe

Where do you put the mirror?

First, you need a decimal point (or is it "binary point" ?) to mark the end of the number.

11101101.
+1
$\overline{11101110}$.

Where do you put the mirror?

First, you need a decimal point (or is it "binary point"?) to mark the end of the number.

Now for the mirror:
11101101.
$\frac{+1}{11101110 .}$

Where do you put the mirror?

First, you need a decimal point (or is it "binary point" ?) to mark the end of the number.

Here's the mirror image:

The right-hand side of this figure is the "mirror universe". What happens when we add 1 over there?

Addition in the mirror universe

In this mirror universe:

(1) integers are represented by strings of digits written to the right of a decimal point (in this talk, nothing is allowed to the left of a decimal point in the mirror universe... otherwise it wouldn't be the mirror image of an integer);
(2) to add 1 , start by adding 1 in the tenths place (which as far to the left as you can start);
(3) if you have to carry, you carry to the right.

Does this make sense?

If so, compute $.1100101+1$ in the mirror universe.

Addition in the mirror universe

In this mirror universe:

(1) integers are represented by strings of digits written to the right of a decimal point (in this talk, nothing is allowed to the left of a decimal point in the mirror universe... otherwise it wouldn't be the mirror image of an integer);
(2) to add 1 , start by adding 1 in the tenths place (which as far to the left as you can start);
(3) if you have to carry, you carry to the right.

Does this make sense?

If so, compute $.1100101+1$ in the mirror universe.
Answer:

$$
.1100101+1=.0010101
$$

What are the objects in this mirror universe?

Consider this (base 2) object:

.1100101

Recall

In the regular universe (base 2),

$$
\begin{aligned}
1101 & =1 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0} \\
& =1 \cdot 2^{0}+0 \cdot 2^{1}+1 \cdot 2^{2}+1 \cdot 2^{3}
\end{aligned}
$$

and more generally

$$
a_{n} a_{n-1} a_{n-2} \cdots a_{2} a_{1} a_{0}=\sum_{j=0}^{n} a_{j} 2^{j}
$$

What are the objects in this mirror universe?

Consider this (base 2) object:

.1100101

Recall also

In base 10, numbers after a decimal point like .752 mean

$$
.7+.05+.002=7 \cdot 10^{-1}+5 \cdot 10^{-2}+2 \cdot 10^{-3}
$$

More generally,

$$
a_{1} a_{2} a_{3} \cdots a_{n}=\sum_{j=1}^{n} a_{j} 10^{-j}
$$

What are the objects in this mirror universe?

Consider this (base 2) object:

.1100101

So .1100101 could be interpreted as

$$
\begin{aligned}
& 1 \cdot 2^{-1}+1 \cdot 2^{-2}+0 \cdot 2^{-3}+0 \cdot 2^{-4}+1 \cdot 2^{-5}+0 \cdot 2^{-6}+1 \cdot 2^{-7} \\
& =\frac{1}{2}+\frac{1}{4}+\frac{0}{8}+\frac{0}{16}+\frac{1}{32}+\frac{0}{64}+\frac{1}{128} \\
& =\frac{101}{128} .
\end{aligned}
$$

What are the objects in this mirror universe?

Consider this (base 2) object:

.1100101

So .1100101 could be interpreted as

$$
\begin{aligned}
& 1 \cdot 2^{-1}+1 \cdot 2^{-2}+0 \cdot 2^{-3}+0 \cdot 2^{-4}+1 \cdot 2^{-5}+0 \cdot 2^{-6}+1 \cdot 2^{-7} \\
& =\frac{1}{2}+\frac{1}{4}+\frac{0}{8}+\frac{0}{16}+\frac{1}{32}+\frac{0}{64}+\frac{1}{128} \\
& =\frac{101}{128} .
\end{aligned}
$$

What are the objects in this mirror universe?

Consider this (base 2) object:

.1100101

So .1100101 could be interpreted as

$$
\begin{aligned}
& 1 \cdot 2^{-1}+1 \cdot 2^{-2}+0 \cdot 2^{-3}+0 \cdot 2^{-4}+1 \cdot 2^{-5}+0 \cdot 2^{-6}+1 \cdot 2^{-7} \\
& =\frac{1}{2}+\frac{1}{4}+\frac{0}{8}+\frac{0}{16}+\frac{1}{32}+\frac{0}{64}+\frac{1}{128} \\
& =\frac{101}{128} .
\end{aligned}
$$

This means $\frac{101}{128}$ is an integer in the mirror universe!

What are the objects in the mirror universe?

Does this make sense?
If so, tell me what number is represented by .111 in the mirror universe.

What are the objects in the mirror universe?

Does this make sense?
If so, tell me what number is represented by .111 in the mirror universe.

Answer:

$$
.111=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{7}{8} .
$$

Now, let's add 1

Example 1

$$
.001+1=?
$$

Now, let's add 1

Example 1

$$
.001+1=?
$$

According to our rules for adding 1 ,

$$
\begin{equation*}
.001+1=.101 . \tag{1}
\end{equation*}
$$

Now, let's add 1

Example 1

$.001+1=?$

According to our rules for adding 1 ,

$$
\begin{equation*}
.001+1=.101 \tag{1}
\end{equation*}
$$

Let's translate this into numbers:

$$
\begin{aligned}
& .001=\frac{0}{2}+\frac{0}{4}+\frac{1}{8}=\frac{1}{8} . \\
& .101=\frac{1}{2}+\frac{0}{4}+\frac{1}{8}=\frac{5}{8} .
\end{aligned}
$$

Now, let's add 1

Example 1

$$
.001+1=?
$$

According to our rules for adding 1 ,

$$
\begin{equation*}
.001+1=.101 \tag{1}
\end{equation*}
$$

So equation (1) above is just a fancy of stating the obvious (?) fact that

$$
\frac{1}{8}+1=\frac{5}{8} .
$$

Now, let's add 1

Example 1

$$
.001+1=?
$$

According to our rules for adding 1 ,

$$
\begin{equation*}
.001+1=.101 \tag{1}
\end{equation*}
$$

So equation (1) above is just a fancy of stating the obvious fact that

$$
\frac{1}{8}+1=\frac{5}{8}
$$

(in the mirror universe).

Now, let's add 1

Since $\frac{1}{8}+1=\frac{5}{8}$, it stands to reason that $1=\frac{1}{2}$, right?

Now, let's add 1

Since $\frac{1}{8}+1=\frac{5}{8}$, it stands to reason that $1=\frac{1}{2}$, right?

Example 2

$$
.1010+1=?
$$

Now, let's add 1

Since $\frac{1}{8}+1=\frac{5}{8}$, it stands to reason that $1=\frac{1}{2}$, right?

Example 2

$$
.1010+1=?
$$

$$
.1010+1=.0110
$$

which translates to

$$
\frac{5}{8}+1=\frac{3}{8} .
$$

Therefore, in the mirror universe,

$$
1=-\frac{2}{8}=-\frac{1}{4}
$$

Adding 1 in the mirror universe is not adding a constant

Recall from the preceding slides

- to "mirror" add 1 to $\frac{1}{8}$, we "regular" add $\frac{1}{2}$ because $\frac{1}{8}+1=\frac{5}{8}$.
- to "mirror" add 1 to $\frac{5}{8}$, we "regular" add $\frac{-1}{4}$ because $\frac{5}{8}+1=\frac{3}{8}$.

Adding 1 in the mirror universe is not adding a constant

Recall from the preceding slides

- to "mirror" add 1 to $\frac{1}{8}$, we "regular" add $\frac{1}{2}$ because $\frac{1}{8}+1=\frac{5}{8}$.
- to "mirror" add 1 to $\frac{5}{8}$, we "regular" add $\frac{-1}{4}$ because $\frac{5}{8}+1=\frac{3}{8}$.

Epiphany

Maybe mirror addition by 1 corresponds to regular addition by a variable quantity when we think of the "mirror integers" as fractions.

Adding 1 in the mirror universe is not adding a constant

Recall from the preceding slides

- to "mirror" add 1 to $\frac{1}{8}$, we "regular" add $\frac{1}{2}$ because $\frac{1}{8}+1=\frac{5}{8}$.
- to "mirror" add 1 to $\frac{5}{8}$, we "regular" add $\frac{-1}{4}$ because $\frac{5}{8}+1=\frac{3}{8}$.

Epiphany

Maybe mirror addition by 1 corresponds to regular addition by a variable quantity when we think of the "mirror integers" as fractions.

Question

What is that variable quantity?

An advantage of the mirror universe

Recall that a regular integer can only consist of finitely many digits to the left of the decimal point. For example,

$$
\text { ... } 101010101010101010
$$

is not an integer, because the corresponding infinite series

$$
\ldots+2^{11}+2^{9}+2^{7}+2^{5}+2^{3}+2^{1}=\sum_{j=0}^{\infty} 2^{2 j+1}
$$

diverges.

An advantage of the mirror universe

But, in the mirror universe, we can put infinitely many digits to the right of the decimal point.

```
Example
\(.0101010101010101 \ldots=\) ?
```


An advantage of the mirror universe

But, in the mirror universe, we can put infinitely many digits to the right of the decimal point.

Example
 $.0101010101010101 \ldots .=$?

Answer:

$$
\begin{aligned}
.0101010 \ldots & =\frac{1}{2^{2}}+\frac{1}{2^{4}}+\frac{1}{2^{6}}+\frac{1}{2^{8}}+\ldots \\
& =\sum_{j=1}^{\infty} \frac{1}{2^{2 j}} \\
& =\frac{1}{4} \sum_{j=0}^{\infty}\left(\frac{1}{4}\right)^{j}
\end{aligned}
$$

An advantage of the mirror universe

But, in the mirror universe, we can put infinitely many digits to the right of the decimal point without a problem.

Example

$.0101010101010101 \ldots=$?
Answer:

$$
\begin{aligned}
.0101010 \ldots & =\frac{1}{4} \sum_{j=0}^{\infty}\left(\frac{1}{4}\right)^{j} \\
& =\frac{1}{4}\left(\frac{1}{1-\frac{1}{4}}\right) \\
& =\frac{1}{3}
\end{aligned}
$$

An advantage of the mirror universe

In fact, any infinite sequence of binary digits

$$
. a_{1} a_{2} a_{3} a_{4} a_{5} \ldots
$$

corresponds to a convergent infinite series

$$
\sum_{j=1}^{\infty} a_{j} 2^{-j}=\sum_{j=1}^{\infty} \frac{a_{j}}{2^{j}} .
$$

This series converges by the Comparison Test (hooray for Calc 2!), because it is positive and is at most

$$
\sum_{j=1}^{\infty} \frac{1}{2^{j}}=\sum_{j=1}^{\infty}\left(\frac{1}{2}\right)^{j}=\frac{1}{2}\left(\frac{1}{1-\frac{1}{2}}\right)=1
$$

The punch line

The elements of the mirror universe are real numbers in the interval $[0,1]$.

Representing a real number in $[0,1]$ in the mirror universe

Question

Given a real number $x \in[0,1]$, what does x look like in the mirror universe?

Short answer

$$
x=. a_{1} a_{2} a_{3} a_{4} \ldots
$$

where each a_{j} is a 0 or 1.

Follow-up question
Given $x \in[0,1]$ as above, is a_{1} equal to 0 or 1 ?

Representing a real number in $[0,1]$ in the mirror universe

Follow-up question
Given $x \in[0,1]$ as above, is a_{1} equal to 0 or 1 ?

Representing a real number in $[0,1]$ in the mirror universe

Follow-up question

Given $x \in[0,1]$ as above, is a_{1} equal to 0 or 1 ?

Notice

If $a_{1}=0$, then $x \leq 0+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\ldots=\frac{1}{2}$.
If $a_{1}=1$, then $x \geq \frac{1}{2}+0+0+0+0+\ldots=\frac{1}{2}$.

Representing a real number in $[0,1]$ in the mirror universe

Follow-up question

Given $x \in[0,1]$ as above, is a_{1} equal to 0 or 1 ?

Notice

If $a_{1}=0$, then $x \leq 0+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\ldots=\frac{1}{2}$.
If $a_{1}=1$, then $x \geq \frac{1}{2}+0+0+0+0+\ldots=\frac{1}{2}$.

Conclusion

- if $x<\frac{1}{2}$, then we can set the first digit $a_{1}=0$.
- If $x \geq \frac{1}{2}$, then we can set the first digit $a_{1}=1$.

Representing a real number in $[0,1]$ in the mirror universe

A picture:
$0 \quad \frac{1}{2}$
.0xxxx .1xxxx

Representing a real number in $[0,1]$ in the mirror universe

A picture:

By the same logic, we can continue to find the subsequent digits:

0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	1
.00 xxx		.01 xxx	.10 xxx	.11 xxx

Representing a real number in $[0,1]$ in the mirror universe

A picture:

By the same logic, we can continue to find the subsequent digits:

Back to adding 1

Recall

Earlier, I said that to "mirror" add 1, you have to add a variable amount to a number in $[0,1]$.

Let's figure out what that variable amount is.

Case 1: $x<\frac{1}{2}$
In this case, $x=.0 a_{2} a_{3} a_{4} \ldots$ so

$$
x+1=.1 a_{2} a_{3} a_{4} \ldots
$$

The amount we have added is $.1-.0=\frac{1}{2}$.

Back to adding 1

Recall

Earlier, I said that to "mirror" add 1, you have to add a variable amount to a number in $[0,1]$.

Let's figure out what that variable amount is.

Case 2: $\frac{1}{2} \leq x<\frac{3}{4}$
In this case, $x=.10 a_{3} a_{4} a_{5} \ldots$ so

$$
x+1=.01 a_{3} a_{4} a_{5} \ldots
$$

The amount we have added is $.01-.10=-\frac{1}{4}$.

Back to adding 1

Recall

Earlier, I said that to "mirror" add 1, you have to add a variable amount to a number in $[0,1]$.

Let's figure out what that variable amount is.

Case 3: $\frac{3}{4} \leq x<\frac{7}{8}$
In this case, $x=.110 a_{4} a_{5} \ldots$ so

$$
x+1=.001 a_{4} a_{5} \ldots
$$

The amount we have added is $.001-.110=-\frac{5}{8}$.

Putting this all together

Given $x \in[0,1]$, define $T(x)$ to be what we get when we "mirror" add 1 to x. Then T has this piecewise-defined formula:

$$
T(x)=\left\{\begin{array}{cl}
x+\frac{1}{2} & \text { if } x \in\left[0, \frac{1}{2}\right) \\
x-\frac{1}{4} & \text { if } x \in\left[\frac{1}{2}, \frac{3}{4}\right) \\
x-\frac{5}{8} & \text { if } x \in\left[\frac{3}{4}, \frac{7}{8}\right) \\
x-\frac{13}{16} & \text { if } x \in\left[\frac{7}{8}, \frac{15}{16}\right) \\
\vdots & \vdots \\
x-\frac{2^{n+1}-3}{2^{n+1}} & \text { if } x \in\left[1-2^{-n}, 1-2^{-n-1}\right) \\
\vdots & \vdots \\
0 & \text { if } x=1
\end{array}\right.
$$

Rather than remember this formula, it's easier to show you a graph of T :

The graph of addition by 1 in the mirror universe

Given $x \in[0,1]$, define $T(x)=x^{\prime \prime}+1$ " where the addition is in the mirror universe. Then the graph of T is

The graph of addition by 1 in the mirror universe

Given $x \in[0,1]$, define $T(x)=x^{\prime \prime}+1$ " where the addition is in the mirror universe. Then the graph of T is

Who cares?

I study dynamical systems. In dynamical systems, you take a set X and a function $T: X \rightarrow X$ and you iterate T (that means you apply T repeatedly to each input).

Notation

Suppose $T: X \rightarrow X$. If x and y are elements of X, then the notation

$$
x \rightarrow y
$$

means that $T(x)=y$.

Example 1

$X=\mathbb{Z} ; T(x)=x+1$ (regular addition).

$$
0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \cdots \rightarrow n \rightarrow n+1 \rightarrow \cdots \rightarrow \infty .
$$

Who cares?

I study dynamical systems. In dynamical systems, you take a set X and a function $T: X \rightarrow X$ and you iterate T (that means you apply T repeatedly to each input).

Example 2

$X=[0,1] ; T(x)=$ mirror addition of 1 .

$$
\begin{aligned}
& \frac{1}{3} \rightarrow \frac{5}{6} \rightarrow \frac{5}{24} \rightarrow \frac{17}{24} \rightarrow \frac{11}{24} \rightarrow \frac{23}{24} \rightarrow \frac{5}{96} \rightarrow \frac{53}{96} \rightarrow \cdots \\
& .0101010101 \ldots \rightarrow .1101010101 \ldots \rightarrow .0011010101 \ldots \rightarrow
\end{aligned}
$$

Who cares?

I study dynamical systems. In dynamical systems, you take a set X and a function $T: X \rightarrow X$ and you iterate T (that means you apply T repeatedly to each input).

Example 2

$X=[0,1] ; T(x)=$ mirror addition of 1 . This dynamical system (X, T) is called the dyadic odometer.

Who cares?

I study dynamical systems. In dynamical systems, you take a set X and a function $T: X \rightarrow X$ and you iterate T (that means you apply T repeatedly to each input).

Example 2 with different input
$X=[0,1] ; T(x)=$ mirror addition of 1 .

$$
\begin{aligned}
& \pi-3 \approx .141592 \rightarrow .641593 \rightarrow .391593 \rightarrow .891593 \\
& \rightarrow .0790927 \rightarrow .5790927 \rightarrow .329093 \\
& \cdots \rightarrow \cdots .118155 \cdots \rightarrow \cdots .332999 \cdots \rightarrow \cdots .575186 \cdots
\end{aligned}
$$

The numbers look somewhat random, but they aren't.

Who cares?

I study dynamical systems. In dynamical systems, you take a set X and a function $T: X \rightarrow X$ and you iterate T (that means you apply T repeatedly to each input).

Example 3

Let $X=[0,1]$, where numbers are represented by strings like

$$
. a_{1} a_{2} a_{3} a_{4} \ldots
$$

where each place is kept in its own base (maybe the tenths place is base 5 , the hundredths place is base 13 , etc.).

Defining $T(x)=x+1$ by addition on the left with carry to the right, we get a dynamical system called an odometer.

Who cares?

I study dynamical systems. In dynamical systems, you take a set X and a function $T: X \rightarrow X$ and you iterate T (that means you apply T repeatedly to each input).

Example 3

As a specific example, suppose the tenths place is base 2 , the hundredths place is base 6 , the thousandths place is base 5 , and all the other places are base 3 . Then

$$
\begin{aligned}
.04411 \ldots & \rightarrow .14411 \ldots \rightarrow .05411 \ldots \rightarrow .15411 \rightarrow .00021 \ldots \rightarrow .10021 \ldots \\
& \rightarrow .01021 \ldots \rightarrow .11021 \ldots \rightarrow .02021 \ldots \rightarrow \ldots
\end{aligned}
$$

Who cares?

Odometers are fundamental examples in the study of dynamical systems, in part because every (interesting) dynamical system has an odometer hidden inside of it.

Theorems

Dye: Every free ergodic, measure-preserving dynamical system is orbit equivalent to the dyadic odometer.
Jewett-Krieger: Every free ergodic, measure-preserving dynamical system has a topological model which is, at worst, a slight generalization of an odometer.
Ellis-Gottschalk: Every minimal topological dynamical system contains a factor isomorphic to an odometer.
Coven-Yassawi: Every cellular automaton contains an embedded odometer.

More on cellular automata

The dyadic odometer is the simplest interesting (matter of opinion) example of something called a cellular automaton.

To visualize a cellular automaton, think of an infinite ticker tape with symbols (like 0 or 1) on it. Here's an example of a ticker tape:

$0100101110101110101000101001001 \ldots$

\square

A cellular automaton (c.a.) is a rule that could be used to create another ticker tape from another, with the property that:
if you first delete the left-most n symbols from the ticker tape, then do the c.a., you get the same thing as if you first do the c.a., then delete the left-most n symbols of what you get.

More on cellular automata

Consider what happens when we start with $x=0$ and apply the dyadic odometer over and over:

More on cellular automata

Continue this process to obtain the following picture (rescaled):

More on cellular automata

Continue this process to obtain the following picture (rescaled):

This generates a fractal!

More on cellular automata

Other areas where cellular automata are used
(1) Mathematics (fractals and chaos theory)
(2) Complexity science and simulation theory
(3) Musical composition
(4) Models of traffic flow in urban areas
(5) Cryptography (design of block ciphers)
(6) Analysis of card shuffling

My current research

Question
What is adding " 1 " like if your objects are vectors, rather than numbers?

My current research

Question

What is adding " 1 " like if your objects are vectors, rather than numbers?

In this setting, the objects under consideration are "mirror images" of vectors in \mathbb{Z}^{d} (if $d=2$, a vector is an ordered pair like (x, y) where x and y are integers).

We have to consider an action which is generated by two transformations (in $d=2$): one which "mirror" adds the vector $(1,0)$ and one which "mirror" adds the vector $(0,1)$.

My current research

Question

What is adding " 1 " like if your objects are vectors, rather than numbers?

It turns out that there are dynamical systems called \mathbb{Z}^{d}-odometers you can build by doing this (by choosing different bases in each place, and even more interesting things).

With my collaborator Aimee S.A. Johnson (Swarthmore), I'm working on classifying \mathbb{Z}^{d}-odometers up to various kinds of equivalence.

This will help us (someone interested in applications, not me) determine the mathematical similarities and differences between \mathbb{Z}^{d} odometer and/or c.a. models used in many settings, such as...

Examples applying \mathbb{Z}^{d} c.a. and/or \mathbb{Z}^{d}-odometers

Example 1: snowflake formation

Examples applying $\mathbb{Z}^{d} c$.a. and/or \mathbb{Z}^{d}-odometers

Example 2: fluid dynamics and turbulence

Examples applying \mathbb{Z}^{d} c.a. and/or \mathbb{Z}^{d}-odometers

Example 3: Ising model of ferromagnetism

Examples applying \mathbb{Z}^{d} c.a. and/or \mathbb{Z}^{d}-odometers

Example 4: patterns in seashells

Examples applying $\mathbb{Z}^{d} \mathrm{c}$. a. and/or \mathbb{Z}^{d}-odometers

Other examples
Chemistry: simulation of the Belousov-Zhabotinsky reaction
Neuroscience: simulation of neuron activity
Engineering: structural design of load-bearing beams

Astronomy: cosmological models for the universe

The End

