Speedups of \mathbb{Z}^{d}-odometers

David M. McClendon

Ferris State University
Big Rapids, MI, USA

joint with Aimee S.A. Johnson (Swarthmore)

Definition

$\mathrm{A} \mathbb{Z}^{d}-$ Cantor minimal system ($\left.\mathbb{Z}^{d}-\mathbf{C} . m . s.\right)$ is a pair (X, \mathbf{T}) where X is a Cantor space and $\mathbf{T}=\left\{\mathbf{T}^{\mathbf{v}}: \mathbf{v} \in \mathbb{Z}^{d}\right\}$ is a minimal action of \mathbb{Z}^{d} on X by homeomorphisms.

In this situation, we can write $\mathbf{T}=\left(T_{1}, \ldots, T_{d}\right)$ where T_{j} is shorthand for the action of standard basis vector \mathbf{e}_{j}.
If $d=2$ and $\mathbf{T}=\left(T_{1}, T_{2}\right)$, I might call T_{1} the horizontal direction and T_{2} the vertical direction of the action.

Speedups of \mathbb{Z}^{d}-actions

Definition

A cone \mathbf{C} is the intersection of $\mathbb{Z}^{d}-\{\mathbf{0}\}$ with any open, connected subset of \mathbb{R}^{d} bounded by d distinct hyperplanes passing through the origin.

Example in \mathbb{Z}^{2} :

Speedups of \mathbb{Z}^{d}-actions

Definition

Let (X, \mathbf{T}) be a $\mathbb{Z}^{d_{1}}$-C.m.s. and let $\mathbf{C} \subset \mathbb{Z}^{d_{1}}$ be a cone. A
\mathbf{C}-cocycle is a function $\mathbf{p}: X \times \mathbb{Z}^{d_{2}} \rightarrow \mathbb{Z}^{d_{1}}$ such that for all $x \in X$,
(1) $\mathbf{p}(x, \mathbf{0})=\mathbf{0}$;
(2) The cocycle equation

$$
\mathbf{p}(x, \mathbf{v}+\mathbf{w})=\mathbf{p}(x, \mathbf{v})+\mathbf{p}\left(\mathbf{T}^{\mathbf{p}(x, \mathbf{v})}(x), \mathbf{w}\right)
$$

is satisfied for all $\mathbf{v}, \mathbf{w} \in \mathbb{Z}^{d_{2}}$; and
(3) $\mathbf{p}\left(x, \mathbf{e}_{j}\right) \in \mathbf{C}$ for all $j \in\left\{1, \ldots, d_{2}\right\}$.

Speedups of \mathbb{Z}^{d}-actions

Definition

Let (X, \mathbf{T}) be a $\mathbb{Z}^{d_{1}}$-C.m.s. and let $\mathbf{C} \subset \mathbb{Z}^{d_{1}}$ be a cone. A \mathbf{C}-speedup of (X, \mathbf{T}) is a $\mathbb{Z}^{d_{2}}-$ C.s. (X, \mathbf{S}) where

$$
\mathbf{S}^{\mathbf{v}}(x)=\mathbf{T}^{\mathbf{p}(x, \mathbf{v})}(x)
$$

for some C-cocycle \mathbf{p}.

A picture to explain $(d=2)$

Here, $\mathbf{S}=\left(S_{1}, S_{2}\right)$ is a $\mathbf{C}-$ speedup of $\mathbf{T}=\left(T_{1}, T_{2}\right)$.
In particular, for the indicated point x, we have

$$
\mathbf{p}(x,(1,0))=(3,1), \quad \mathbf{p}(x,(1,1))=(5,3), \quad \text { etc. }
$$

Why is this called a "speedup"?

When $d=1$, there are two cones:

$$
\mathbf{C}_{+}=\{1,2,3, \ldots\} \text { and } \mathbf{C}_{-}=\{-1,-2,-3, \ldots\}
$$

A \mathbf{C}_{+}-speedup looks like this:

Here " $p(x)$ " $=p(x, 1)=3, p(x, 2)=5$, etc.

The big picture

Question

Given a $\mathbb{Z}^{\text {d}}$-C.m.s. (X, \mathbf{T}), how "similar" does a \mathbf{C}-speedup (X, \mathbf{S}) have to be to (X, \mathbf{T}) ?

Restated

Given (X, \mathbf{T}) and (Y, \mathbf{S}), is there a \mathbf{C}-speedup of (X, \mathbf{T}) which is the "same" as (Y, \mathbf{S}) ?

Notions of "sameness"

Let (X, \mathbf{T}) be a $\mathbb{Z}^{d_{1}}$ C.m.s. and let (Y, \mathbf{S}) be a $\mathbb{Z}^{d_{2}}$-C.m.s.

Definition

(X, \mathbf{T}) and (Y, \mathbf{S}) are conjugate if $d_{1}=d_{2}$ and there is a homeomorphism $\Phi: X \rightarrow Y$ such that

$$
\mathbf{S}^{\mathbf{v}}(\phi(x))=\Phi\left(\mathbf{T}^{\mathbf{v}}(x)\right)
$$

for all $x \in X$ and all $\mathbf{v} \in \mathbb{Z}^{d_{1}}$.
Concept: same action, but different labels on the phase space.

Notions of "sameness"

Let (X, \mathbf{T}) be a $\mathbb{Z}^{d_{1}}$-C.m.s. and let (Y, \mathbf{S}) be a $\mathbb{Z}^{d_{2}}$-C.m.s.

Definition

(X, \mathbf{T}) and (Y, \mathbf{S}) are isomorphic if $d_{1}=d_{2}$, there is a homeomorphism $\Phi: X \rightarrow Y$ and a group isomorphism $\vartheta: \mathbb{Z}^{d_{1}} \rightarrow \mathbb{Z}^{d_{1}}$ such that

$$
\mathbf{S}^{\mathbf{v}}(\Phi(x))=\Phi\left(\mathbf{T}^{\vartheta(\mathbf{v})}(x)\right)
$$

for all $x \in X$ and all $\mathbf{v} \in \mathbb{Z}^{d_{1}}$.
Concept: same action, but different labels on the phase space and different labels on the group elements.

Notions of "sameness"

Let (X, \mathbf{T}) be a $\mathbb{Z}^{d_{1}}$-C.m.s. and let (Y, \mathbf{S}) be a $\mathbb{Z}^{d_{2}}$-C.m.s.

Definition

(X, \mathbf{T}) and (Y, \mathbf{S}) are orbit equivalent if there is a homeomorphism $\Phi: X \rightarrow Y$ such that for every $x \in X$,

$$
\Phi\left(\bigcup_{\mathbf{v} \in \mathbb{Z}^{d_{1}}} T^{\mathbf{v}}(x)\right)=\bigcup_{\mathbf{v} \in \mathbb{Z}^{d_{2}}} \mathbf{S}^{\mathbf{v}}(\Phi(x)) .
$$

Concept: same orbit relation.

History of speedups: ergodic theory

Neveu (1969): characterized functions $p(x, 1)$ which can generate a speedup cocycle for a measure-preserving \mathbb{Z}-action
Arnoux-Ornstein-Weiss (1985): given any two ergodic Lebesgue measure-preserving \mathbb{Z}-actions (X, μ, T) and (Y, ν, S), there is a \mathbf{C}_{+}-speedup of one which is (measurably) conjugate to the other (ancestor: Dye's Theorem)
Babichev-Burton-Fieldsteel (2013): relative versions of Arnoux-Ornstein-Weiss (ancestor: Rudolph's relative orbit equivalence theory)
Johnson-M (2014, 2018): versions of AOW and BBF for measure-preserving \mathbb{Z}^{d}-actions (ancestor: Connes-Feldman-Weiss's classification of hyperfinite equivalence relations)

History of speedups: topological dynamics

Ash (2014): gave necessary and sufficient conditions on \mathbb{Z}-C.m.s. (X, T) and (Y, S) so that there is a \mathbf{C}_{+}-speedup of (X, T) conjugate to (Y, S) (ancestor: Giordano-Putnam-Skau's classification of \mathbb{Z}-C.m.s. up to orbit equivalence)
Johnson-M: generalized (most of) Ash's work to \mathbb{Z}^{d}-C.m.s. (ancestor: Giordano-Matui-Putnam-Skau)
Alvin-Ash-Ormes (2018): studied the structure of bounded speedups of \mathbb{Z}-C.m.s., with particular emphasis on odometer actions and substitutions.

Bounded speedups

Definition

A speedup given by \mathbf{C}-cocycle \mathbf{p} is called bounded if $\left\{\mathbf{p}\left(x, \mathbf{e}_{j}\right): x \in X\right\}$ is bounded for each $j \in\{1, \ldots, d\}$.

Note: A speedup is bounded if and only if $\mathbf{p}: X \times \mathbb{Z}^{d_{2}} \rightarrow \mathbb{Z}^{d_{1}}$ is continuous.

In the rest of this talk

We will discuss bounded speedups of \mathbb{Z}^{d}-odometers (with the aim of generalizing AAO).

\mathbb{Z}^{d}-odometers

\mathbb{Z}^{d}-odometers were introduced by Cortez in 2004 . They are defined as follows:

The phase space

Let

$$
\mathbb{Z}^{d} \geq G_{1} \geq G_{2} \geq G_{3} \geq G_{4} \geq \cdots
$$

be a decreasing sequence of subgroups of \mathbb{Z}^{d}, each of which have finite index in \mathbb{Z}^{d}, such that $\bigcap_{j=1}^{\infty} G_{j}=\{\mathbf{0}\}$. Let X be the inverse limit

$$
X=\lim _{\longleftarrow}\left(\mathbb{Z}^{d} / G_{j}\right)
$$

\mathbb{Z}^{d}-odometers

\mathbb{Z}^{d}-odometers were introduced by Cortez in 2004 . They are defined as follows:

The phase space

Each element \mathbf{x} of X is formally an infinite sequence of cosets, i.e. something like

$$
\mathbf{x}=\left(\mathbf{x}_{1}+G_{1}, \mathbf{x}_{2}+G_{2}, \mathbf{x}_{3}+G_{3}, \ldots\right)
$$

where the \mathbf{x}_{j} are "commensurate", i.e. since $G_{j} \geq G_{j+1}$, there is a natural map

$$
\pi_{j}: \mathbb{Z}^{d} / G_{j+1} \rightarrow \mathbb{Z}^{d} / G_{j}
$$

for such a sequence to be in X we require that, for all j,

$$
\pi_{j}\left(\mathbf{x}_{j+1}+G_{j+1}\right)=\mathbf{x}_{j}+G_{j}
$$

\mathbb{Z}^{d}-odometers

\mathbb{Z}^{d}-odometers were introduced by Cortez in 2004 . They are defined as follows:

The action

X is a Cantor space, and also a topological group with addition defined coordinate-wise, where the addition in the $j^{t h}$ coordinate is the usual (vector) addition in the quotient group \mathbb{Z}^{d} / G_{j}.

Given any $\mathbf{v} \in \mathbb{Z}^{d}$, we can "convert" \mathbf{v} into an element of X by setting

$$
\tau(\mathbf{v})=\left(\mathbf{v}+G_{1}, \mathbf{v}+G_{2}, \mathbf{v}+G_{3}, \ldots\right)
$$

Define the action \mathbf{T} of \mathbb{Z}^{d} on X by $\mathbf{T}^{\mathbf{v}}(\mathbf{x})=\mathbf{x}+\tau(\mathbf{v})$. Any \mathbb{Z}^{d}-C.m.s. conjugate to such an (X, \mathbf{T}) is called a \mathbb{Z}^{d}-odometer.

\mathbb{Z}^{d}-odometers

As an example, the dyadic odometer comes from the sequence of groups $G_{j}=2^{j} \mathbb{Z}$, i.e.

$$
2 \mathbb{Z} \geq 4 \mathbb{Z} \geq 8 \mathbb{Z} \geq 16 \mathbb{Z} \geq \cdots \geq 2^{j} \mathbb{Z} \geq \cdots
$$

For $\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \ldots\right) \in X$, the coset \mathbf{x}_{j} labels the level to which \mathbf{x} belongs at the $j^{\text {th }}$ stage when one does the traditional cutting and stacking construction:

$$
\begin{aligned}
& \begin{array}{rc}
\mathbf{x}= & \left(\mathbf{x}_{1},\right. \\
& \frac{1+2 \mathbb{Z}}{T^{\uparrow}}
\end{array} \\
& 0+2 \mathbb{Z} \\
& \begin{array}{c}
\begin{array}{c}
\hline 3+4 \mathbb{Z} \\
T \uparrow \\
\hline 2+4 \mathbb{Z} \\
T_{T} \uparrow \\
\hline 1+4 \mathbb{Z} \\
T_{T} \uparrow
\end{array} \\
\hline
\end{array} \\
& \frac{7+8 \mathbb{Z}}{T_{\uparrow}} \\
& 0+4 \mathbb{Z} \\
& 0+8 \mathbb{Z}
\end{aligned}
$$

If $d>1, \mathbb{Z}^{d}$-odometers can be more complicated: as an example, consider the \mathbb{Z}^{2}-odometer given by

$$
G_{j}=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right)^{j} \mathbb{Z}^{2}
$$

After the first iteration of "cutting and stacking", we obtain this picture of how the action acts on the \mathbf{x}_{1} coordinate:

$$
\begin{array}{cc}
\frac{(0,1)+G_{1}}{T_{2} \uparrow} \xrightarrow{T_{1}} \underset{T_{2} \uparrow}{(1,1)+G_{1}} \\
(0,0)+G_{1} & \xrightarrow{T_{1}}(1,0)+G_{1}
\end{array}
$$

If $d>1, \mathbb{Z}^{d}$-odometers can be more complicated: as an example, consider the \mathbb{Z}^{2}-odometer given by

$$
G_{j}=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right)^{j} \mathbb{Z}^{2}
$$

After the first iteration of "cutting and stacking", we obtain this picture of how the action acts on the \mathbf{x}_{1} coordinate:

$$
\begin{gathered}
\frac{(0,1)+G_{1}}{T_{2} \uparrow} \xrightarrow{T_{1}} \frac{(1,1)+G_{1}}{T_{2} \uparrow} \\
(0,0)+G_{1} \\
\end{gathered}
$$

Here, there is "skewing" when T_{2} sends cosets in the top row back to the bottom, since $(0,2) \equiv(1,0) \bmod G_{1}$.

Bounded speedups of \mathbb{Z}^{d}-odometers

Theorem (Alvin-Ash-Ormes 2018)
Let (X, T) be a \mathbb{Z}-odometer, and suppose (X, S) is a bounded C_{+}-speedup of (X, T). If S is minimal, then (X, S) is a Z-odometer.

Bounded speedups of \mathbb{Z}^{d}-odometers

Theorem (Alvin-Ash-Ormes 2018)

Let (X, T) be a \mathbb{Z}-odometer, and suppose (X, S) is a bounded C_{+}-speedup of (X, T). If S is minimal, then (X, S) is a Z-odometer.

An identical result holds in higher dimensions:

Theorem (Johnson-M)

Let $\mathbf{C} \subseteq \mathbb{Z}^{d_{1}}$ be any cone. Let (X, \mathbf{T}) be a $\mathbb{Z}^{d_{1}}$-odometer, and suppose (X, \mathbf{S}) is a bounded \mathbf{C}-speedup of (X, \mathbf{T}). If \mathbf{S} is minimal, then \mathbf{S} is a $\mathbb{Z}^{d_{2}}$-odometer.

Bounded speedups of \mathbb{Z}^{d}-odometers

Theorem (Alvin-Ash-Ormes 2018)

Let (X, T) be a \mathbb{Z}-odometer, and suppose (X, S) is a bounded C_{+}-speedup of (X, T). If S is minimal, then (X, S) is a \mathbb{Z}-odometer which is topologically conjugate to (X, T).

Bounded speedups of \mathbb{Z}^{d}-odometers

Theorem (Alvin-Ash-Ormes 2018)

Let (X, T) be a \mathbb{Z}-odometer, and suppose (X, S) is a bounded \mathbf{C}_{+}-speedup of (X, T). If S is minimal, then (X, S) is a \mathbb{Z}-odometer which is topologically conjugate to (X, T).

This is too much to hope for in \mathbb{Z}^{d} when $d \geq 2$.
For instance, $\mathbf{S}=\left(T_{2}, T_{1}\right)$ is a speedup of $\mathbf{T}=\left(T_{1}, T_{2}\right)$ via the cocycle $\mathbf{p}\left(x,\left(v_{1}, v_{2}\right)\right)=\left(v_{2}, v_{1}\right)$, but such an \mathbf{S} and \mathbf{T} are, in general, not conjugate.

But these \mathbf{S} and \mathbf{T} are isomorphic. Must a minimal bounded speedup of \mathbb{Z}^{d}-odometer (X, \mathbf{T}) be isomorphic to (X, \mathbf{T}) ?

Bounded speedups of \mathbb{Z}^{d}-odometers

Theorem (Alvin-Ash-Ormes 2018)

Let (X, T) be a \mathbb{Z}-odometer, and suppose (X, S) is a bounded \mathbf{C}_{+}-speedup of (X, T). If S is minimal, then (X, S) is a \mathbb{Z}-odometer which is topologically conjugate to (X, T).

Theorem (Johnson-M)

Let $\mathbf{C} \subseteq \mathbb{Z}^{2}$ be any cone containing $(1,0),(0,1)$ and $(1,1)$. Then, there exist \mathbb{Z}^{2}-odometers (X, \mathbf{T}) and (X, \mathbf{S}) such that (X, \mathbf{S}) is a bounded \mathbf{C}-speedup of (X, \mathbf{T}), but (X, \mathbf{S}) and (X, \mathbf{T}) are not isomorphic.

Example of a bounded, non-isomorphic speedup

Let (X, \mathbf{T}) be the \mathbb{Z}^{2}-odometer associated to the sequence of groups $3^{j} \mathbb{Z} \times 2^{j} \mathbb{Z}$ (i.e. the product-type $\times 3, \times 2$-odometer).
To define the speedup cocycle \mathbf{p} :

- set $\mathbf{p}(\mathbf{x},(1,0))=(1,0)$ for all $\mathbf{x} \in X$;
- set

$$
\mathbf{p}(\mathbf{x},(0,1))=\left\{\begin{array}{cc}
(0,1) & \begin{array}{c}
\text { if } \mathbf{x}_{1} \equiv(0,0),(1,0) \text { or }(2,0) \\
\\
\\
\\
(1,1) \\
\text { if } \mathbf{x}_{1} \equiv(3 \mathbb{Z} \times 2 \mathbb{Z}) \\
\bmod (3 \mathbb{Z} \times 2 \mathbb{Z})
\end{array}
\end{array}\right.
$$

- extend \mathbf{p} to a function on $X \times \mathbb{Z}^{2}$ using the cocycle equation. Let (X, \mathbf{S}) be the \mathbf{C}-speedup of (X, \mathbf{T}) given by \mathbf{p}.

Example of a bounded, non-isomorphic speedup

The speedup \mathbf{S} has skewing that wasn't present in \mathbf{T} :

$\left.(0,1)+G_{1}\right)$	$\xrightarrow{T_{1}}(1,1)+G_{1}$	$\xrightarrow{T_{1}}(2,1)+G_{1}$
$T_{2}{ }^{\uparrow}$	$\overline{T_{2} \uparrow}$	$\overline{T_{2} \uparrow}$
$(0,0)+G_{1}$	$\xrightarrow{T_{1}}(1,0)+G_{1}$	$\xrightarrow{T_{1}}(2,0)+G_{1}$
$T_{2}{ }^{\uparrow}$	$T_{2}{ }^{\wedge}$	$T_{2}{ }^{\text {1 }}$
$\left.(0,1)+G_{1}\right)$	$\xrightarrow{T_{1}}(1,1)+G_{1}$	$\xrightarrow{T_{1}}(2,1)+G_{1}$
$T_{2}{ }^{\uparrow}$	$T_{2} \uparrow$	$T_{2} \uparrow$
$(0,0)+G_{1}$	$\xrightarrow{T_{1}}(1,0)+G_{1}$	$\xrightarrow{T_{1}}(2,0)+G_{1}$

Example of a bounded, non-isomorphic speedup

The speedup \mathbf{S} has skewing that wasn't present in \mathbf{T} :

Example of a bounded, non-isomorphic speedup

To show (X, \mathbf{T}) and (X, \mathbf{S}) are not isomorphic, we use an alternate presentation of \mathbb{Z}^{d}-odometers found by Giordano, Putnam and Skau.

Using Pontryagin duality, they found that a \mathbb{Z}^{d}-odometer (X, \mathbf{T}) can be specified by a single subgroup $H(X, \mathbf{T})$ of \mathbb{Q}^{d}.

This group is related to the group cohomology of the action; in fact $H(X, \mathbf{T}) \cong H^{1}(X, \mathbf{T})$, where $H^{1}(X, \mathbf{T})$ is the first cohomology group of \mathbb{Z}^{d} with coefficients in the module $C(X, \mathbb{Z})$.

Example of a bounded, non-isomorphic speedup

To show (X, \mathbf{T}) and (X, \mathbf{S}) are not isomorphic, we use an alternate presentation of \mathbb{Z}^{d}-odometers found by Giordano, Putnam and Skau.

Using Pontryagin duality, they found that a \mathbb{Z}^{d}-odometer (X, \mathbf{T}) can be specified by a single subgroup $H(X, \mathbf{T})$ of \mathbb{Q}^{d}.

Furthermore, for a \mathbb{Z}-odometer $(X, T), H(X, T)$ is isomorphic to the dimension group $D(X, T)$ associated to the odometer.

Example of a bounded, non-isomorphic speedup

In our example, we can compute

$$
\begin{aligned}
& H(X, \mathbf{T})=\mathbb{Z}\left[\frac{1}{3}\right] \times \mathbb{Z}\left[\frac{1}{2}\right] \\
& H(X, \mathbf{S})=\left\{(x, y) \in \mathbb{Z}^{2}: x \in \mathbb{Z}\left[\frac{1}{3}\right], y-\frac{1}{2} x \in \mathbb{Z}\left[\frac{1}{2}\right]\right\} .
\end{aligned}
$$

These groups are isomorphic (which reflects the fact that (X, \mathbf{T}) and (X, \mathbf{S}) are continuously orbit equivalent).

But they aren't isomorphic in a good enough way...

Example of a bounded, non-isomorphic speedup

In our example, we can compute

$$
\begin{aligned}
& H(X, \mathbf{T})=\mathbb{Z}\left[\frac{1}{3}\right] \times \mathbb{Z}\left[\frac{1}{2}\right] \\
& H(X, \mathbf{S})=\left\{(x, y) \in \mathbb{Z}^{2}: x \in \mathbb{Z}\left[\frac{1}{3}\right], y-\frac{1}{2} x \in \mathbb{Z}\left[\frac{1}{2}\right]\right\} .
\end{aligned}
$$

If the odometers (X, \mathbf{T}) and (X, \mathbf{S}) were isomorphic, then by a theorem of Giordano, Putnam and Skau there would exist a matrix $A \in G L_{2}(\mathbb{Z})$ such that $A H(X, \mathbf{T})=H(X, \mathbf{S})$.

But no such A exists (elementary linear algebra argument).

Speedups and orbit equivalence

While the (X, \mathbf{S}) and (X, \mathbf{T}) in the preceding example are not isomorphic, they are orbit equivalent. This holds in general:

Theorem (Johnson-M)

Let $\mathbf{C} \subseteq \mathbb{Z}^{d}$ be any cone. If (X, \mathbf{S}) is a bounded \mathbf{C}-speedup of \mathbb{Z}^{d}-odometer (X, \mathbf{T}), then (X, \mathbf{S}) and (X, \mathbf{T}) are orbit equivalent.

When $d=1$, this implies AAO, because orbit equivalent \mathbb{Z}-odometers are automatically conjugate (follows from Boyle-Tomiyama).

