Speedups of \mathbb{Z}^d -odometers

David M. McClendon

Ferris State University Big Rapids, MI, USA

joint with Aimee S.A. Johnson (Swarthmore)

A \mathbb{Z}^d – Cantor minimal system (\mathbb{Z}^d -C.m.s.) is a pair (X, T) where X is a Cantor space and $\mathbf{T} = {\mathbf{T}^{\mathbf{v}} : \mathbf{v} \in \mathbb{Z}^d}$ is a minimal action of \mathbb{Z}^d on X by homeomorphisms.

In this situation, we can write $\mathbf{T} = (T_1, ..., T_d)$ where T_j is shorthand for the action of standard basis vector \mathbf{e}_j .

If d = 2 and $\mathbf{T} = (T_1, T_2)$, I might call T_1 the horizontal direction and T_2 the vertical direction of the action.

A cone **C** is the intersection of $\mathbb{Z}^d - \{\mathbf{0}\}$ with any open, connected subset of \mathbb{R}^d bounded by *d* distinct hyperplanes passing through the origin.

Let (X, \mathbf{T}) be a \mathbb{Z}^{d_1} -C.m.s. and let $\mathbf{C} \subset \mathbb{Z}^{d_1}$ be a cone. A **C**-cocycle is a function $\mathbf{p} : X \times \mathbb{Z}^{d_2} \to \mathbb{Z}^{d_1}$ such that for all $x \in X$,

9 p(x, 0) = 0;

Output: Interpretended in the cocycle equation

$$\mathbf{p}(x,\mathbf{v}+\mathbf{w})=\mathbf{p}(x,\mathbf{v})+\mathbf{p}(\mathbf{T}^{\mathbf{p}(x,\mathbf{v})}(x),\mathbf{w})$$

is satisfied for all $\mathbf{v}, \mathbf{w} \in \mathbb{Z}^{d_2}$; and

3 $\mathbf{p}(x, \mathbf{e}_j) \in \mathbf{C}$ for all $j \in \{1, ..., d_2\}$.

Let (X, \mathbf{T}) be a \mathbb{Z}^{d_1} -C.m.s. and let $\mathbf{C} \subset \mathbb{Z}^{d_1}$ be a cone. A **C**-speedup of (X, \mathbf{T}) is a \mathbb{Z}^{d_2} -C.s. (X, \mathbf{S}) where

$$\mathbf{S}^{\mathbf{v}}(x) = \mathbf{T}^{\mathbf{p}(x,\mathbf{v})}(x)$$

for some **C**-cocycle **p**.

A picture to explain (d = 2)

Here, $\mathbf{S} = (S_1, S_2)$ is a \mathbf{C} -speedup of $\mathbf{T} = (T_1, T_2)$. In particular, for the indicated point *x*, we have

 $\mathbf{p}(x,(1,0)) = (3,1), \quad \mathbf{p}(x,(1,1)) = (5,3), \quad \text{etc.}$

When d = 1, there are two cones:

$$C_+ = \{1, 2, 3, ...\}$$
 and $C_- = \{-1, -2, -3, ...\}.$

A C_+ -speedup looks like this:

Here "p(x)" = p(x, 1) = 3, p(x, 2) = 5, etc.

Question

Given a \mathbb{Z}^d -C.m.s. (X, \mathbf{T}) , how "similar" does a **C**-speedup (X, \mathbf{S}) have to be to (X, \mathbf{T}) ?

Restated

Given (X, \mathbf{T}) and (Y, \mathbf{S}) , is there a **C**-speedup of (X, \mathbf{T}) which is the "same" as (Y, \mathbf{S}) ?

Let (X, \mathbf{T}) be a \mathbb{Z}^{d_1} -C.m.s. and let (Y, \mathbf{S}) be a \mathbb{Z}^{d_2} -C.m.s.

Definition

 (X, \mathbf{T}) and (Y, \mathbf{S}) are **conjugate** if $d_1 = d_2$ and there is a homeomorphism $\Phi : X \to Y$ such that

$$\mathbf{S}^{\mathbf{v}}(\phi(x)) = \Phi(\mathbf{T}^{\mathbf{v}}(x))$$

for all $x \in X$ and all $\mathbf{v} \in \mathbb{Z}^{d_1}$.

Concept: same action, but different labels on the phase space.

Let (X, \mathbf{T}) be a \mathbb{Z}^{d_1} -C.m.s. and let (Y, \mathbf{S}) be a \mathbb{Z}^{d_2} -C.m.s.

Definition

 (X, \mathbf{T}) and (Y, \mathbf{S}) are **isomorphic** if $d_1 = d_2$, there is a homeomorphism $\Phi : X \to Y$ and a group isomorphism $\vartheta : \mathbb{Z}^{d_1} \to \mathbb{Z}^{d_1}$ such that

$$\mathsf{S}^{\mathsf{v}}(\Phi(x)) = \Phi(\mathsf{T}^{\vartheta(\mathsf{v})}(x))$$

for all $x \in X$ and all $\mathbf{v} \in \mathbb{Z}^{d_1}$.

Concept: same action, but different labels on the phase space and different labels on the group elements.

Let (X, \mathbf{T}) be a \mathbb{Z}^{d_1} -C.m.s. and let (Y, \mathbf{S}) be a \mathbb{Z}^{d_2} -C.m.s.

Definition

 (X, \mathbf{T}) and (Y, \mathbf{S}) are **orbit equivalent** if there is a homeomorphism $\Phi : X \to Y$ such that for every $x \in X$,

$$\Phi\left(\bigcup_{\mathbf{v}\in\mathbb{Z}^{d_1}}\mathbf{T}^{\mathbf{v}}(x)\right)=\bigcup_{\mathbf{v}\in\mathbb{Z}^{d_2}}\mathbf{S}^{\mathbf{v}}\left(\Phi(x)\right).$$

Concept: same orbit relation.

Neveu (1969): characterized functions p(x, 1) which can generate a speedup cocycle for a measure-preserving \mathbb{Z} -action

Arnoux-Ornstein-Weiss (1985): given any two ergodic Lebesgue measure-preserving \mathbb{Z} -actions (X, μ, T) and (Y, ν, S) , there is a **C**₊-speedup of one which is (measurably) conjugate to the other (ancestor: Dye's Theorem)

Babichev-Burton-Fieldsteel (2013): relative versions of Arnoux-Ornstein-Weiss (ancestor: Rudolph's relative orbit equivalence theory)

Johnson-M (2014, 2018): versions of AOW and BBF for measure-preserving \mathbb{Z}^d -actions (ancestor: Connes-Feldman-Weiss's classification of hyperfinite equivalence relations) Ash (2014): gave necessary and sufficient conditions on \mathbb{Z} -C.m.s. (X, T) and (Y, S) so that there is a C_+ -speedup of (X, T) conjugate to (Y, S) (ancestor: Giordano-Putnam-Skau's classification of \mathbb{Z} -C.m.s. up to orbit equivalence)

- Johnson-M: generalized (most of) Ash's work to \mathbb{Z}^d -C.m.s. (ancestor: Giordano-Matui-Putnam-Skau)
- Alvin-Ash-Ormes (2018): studied the structure of <u>bounded</u> speedups of ℤ-C.m.s., with particular emphasis on odometer actions and substitutions.

A speedup given by **C**-cocycle **p** is called **bounded** if $\{\mathbf{p}(x, \mathbf{e}_j) : x \in X\}$ is bounded for each $j \in \{1, ..., d\}$.

Note: A speedup is bounded if and only if $\mathbf{p}: X \times \mathbb{Z}^{d_2} \to \mathbb{Z}^{d_1}$ is continuous.

In the rest of this talk

We will discuss bounded speedups of \mathbb{Z}^d -odometers (with the aim of generalizing AAO).

 \mathbb{Z}^d -odometers were introduced by Cortez in 2004. They are defined as follows:

The phase space

Let

$$\mathbb{Z}^d \geq G_1 \geq G_2 \geq G_3 \geq G_4 \geq \cdots$$

be a decreasing sequence of subgroups of \mathbb{Z}^d , each of which have finite index in \mathbb{Z}^d , such that $\bigcap_{j=1}^{\infty} G_j = \{\mathbf{0}\}$. Let X be the inverse limit

$$X = \lim_{\longleftarrow} (\mathbb{Z}^d/G_j).$$

 \mathbb{Z}^d -odometers were introduced by Cortez in 2004. They are defined as follows:

The phase space

Each element **x** of X is formally an infinite sequence of cosets, i.e. something like

$$\mathbf{x} = (\mathbf{x}_1 + G_1, \mathbf{x}_2 + G_2, \mathbf{x}_3 + G_3, ...)$$

where the \mathbf{x}_j are "commensurate", i.e. since $G_j \geq G_{j+1}$, there is a natural map

$$\pi_j:\mathbb{Z}^d/G_{j+1}\to\mathbb{Z}^d/G_j;$$

for such a sequence to be in X we require that, for all j,

$$\pi_j(\mathbf{x}_{j+1}+G_{j+1})=\mathbf{x}_j+G_j.$$

 \mathbb{Z}^d -odometers were introduced by Cortez in 2004. They are defined as follows:

The action

X is a Cantor space, and also a topological group with addition defined coordinate-wise, where the addition in the j^{th} coordinate is the usual (vector) addition in the quotient group \mathbb{Z}^d/G_i .

Given any $\mathbf{v} \in \mathbb{Z}^d$, we can "convert" \mathbf{v} into an element of X by setting

$$\tau(\mathbf{v}) = (\mathbf{v} + G_1, \mathbf{v} + G_2, \mathbf{v} + G_3, ...)$$

Define the action **T** of \mathbb{Z}^d on X by $\mathbf{T}^{\mathbf{v}}(\mathbf{x}) = \mathbf{x} + \tau(\mathbf{v})$. Any \mathbb{Z}^d -C.m.s. conjugate to such an (X, \mathbf{T}) is called a \mathbb{Z}^d -odometer.

As an example, the dyadic odometer comes from the sequence of groups $G_j = 2^j \mathbb{Z}$, i.e.

$$2\mathbb{Z} \ge 4\mathbb{Z} \ge 8\mathbb{Z} \ge 16\mathbb{Z} \ge \cdots \ge 2^j\mathbb{Z} \ge \cdots$$

For $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, ...) \in X$, the coset \mathbf{x}_j labels the level to which \mathbf{x} belongs at the j^{th} stage when one does the traditional cutting and stacking construction:

▲□ ▶ ▲ □ ▶ ▲ □ ▶

æ

If d > 1, \mathbb{Z}^d -odometers can be more complicated: as an example, consider the \mathbb{Z}^2 -odometer given by

$${\it G}_j = \left(egin{array}{cc} 2 & 1 \ 0 & 2 \end{array}
ight)^j \mathbb{Z}^2$$

After the first iteration of "cutting and stacking", we obtain this picture of how the action acts on the x_1 coordinate:

If d > 1, \mathbb{Z}^d -odometers can be more complicated: as an example, consider the \mathbb{Z}^2 -odometer given by

$$G_j = \left(egin{array}{cc} 2 & 1 \ 0 & 2 \end{array}
ight)^j \mathbb{Z}^2$$

After the first iteration of "cutting and stacking", we obtain this picture of how the action acts on the \mathbf{x}_1 coordinate:

Here, there is "skewing" when T_2 sends cosets in the top row back to the bottom, since $(0,2) \equiv (1,0) \mod G_1$.

Let (X, T) be a \mathbb{Z} -odometer, and suppose (X, S) is a bounded C_+ -speedup of (X, T). If S is minimal, then (X, S) is a \mathbb{Z} -odometer.

Let (X, T) be a \mathbb{Z} -odometer, and suppose (X, S) is a bounded C_+ -speedup of (X, T). If S is minimal, then (X, S) is a \mathbb{Z} -odometer.

An identical result holds in higher dimensions:

Theorem (Johnson-M)

Let $\mathbf{C} \subseteq \mathbb{Z}^{d_1}$ be any cone. Let (X, \mathbf{T}) be a \mathbb{Z}^{d_1} -odometer, and suppose (X, \mathbf{S}) is a bounded \mathbf{C} -speedup of (X, \mathbf{T}) . If \mathbf{S} is minimal, then \mathbf{S} is a \mathbb{Z}^{d_2} -odometer.

Let (X, T) be a \mathbb{Z} -odometer, and suppose (X, S) is a bounded C_+ -speedup of (X, T). If S is minimal, then (X, S) is a \mathbb{Z} -odometer which is topologically conjugate to (X, T).

Let (X, T) be a \mathbb{Z} -odometer, and suppose (X, S) is a bounded C_+ -speedup of (X, T). If S is minimal, then (X, S) is a \mathbb{Z} -odometer which is topologically conjugate to (X, T).

This is too much to hope for in \mathbb{Z}^d when $d \geq 2$.

For instance, $\mathbf{S} = (T_2, T_1)$ is a speedup of $\mathbf{T} = (T_1, T_2)$ via the cocycle $\mathbf{p}(x, (v_1, v_2)) = (v_2, v_1)$, but such an \mathbf{S} and \mathbf{T} are, in general, not conjugate.

But these **S** and **T** are isomorphic. Must a minimal bounded speedup of \mathbb{Z}^d -odometer (X, \mathbf{T}) be isomorphic to (X, \mathbf{T}) ?

Let (X, T) be a \mathbb{Z} -odometer, and suppose (X, S) is a bounded C_+ -speedup of (X, T). If S is minimal, then (X, S) is a \mathbb{Z} -odometer which is topologically conjugate to (X, T).

Theorem (Johnson-M)

Let $\mathbf{C} \subseteq \mathbb{Z}^2$ be any cone containing (1,0), (0,1) and (1,1). Then, there exist \mathbb{Z}^2 -odometers (X, \mathbf{T}) and (X, \mathbf{S}) such that (X, \mathbf{S}) is a bounded \mathbf{C} -speedup of (X, \mathbf{T}) , but (X, \mathbf{S}) and (X, \mathbf{T}) are not isomorphic.

Example of a bounded, non-isomorphic speedup

Let (X, \mathbf{T}) be the \mathbb{Z}^2 -odometer associated to the sequence of groups $3^j \mathbb{Z} \times 2^j \mathbb{Z}$ (i.e. the product-type $\times 3, \times 2$ -odometer).

To define the speedup cocycle **p**:

• set $\mathbf{p}(\mathbf{x},(1,0)) = (1,0)$ for all $\mathbf{x} \in X$;

set

$$\mathbf{p}(\mathbf{x},(0,1)) = \begin{cases} (0,1) & \text{if } \mathbf{x}_1 \equiv (0,0), (1,0) \text{ or } (2,0) \\ \mod (3\mathbb{Z} \times 2\mathbb{Z}) \\ (1,1) & \text{if } \mathbf{x}_1 \equiv (0,1), (1,1) \text{ or } (2,1) \\ \mod (3\mathbb{Z} \times 2\mathbb{Z}) \end{cases};$$

• extend **p** to a function on $X \times \mathbb{Z}^2$ using the cocycle equation. Let (X, \mathbf{S}) be the **C**-speedup of (X, \mathbf{T}) given by **p**.

Example of a bounded, non-isomorphic speedup

The speedup **S** has skewing that wasn't present in **T**:

Example of a bounded, non-isomorphic speedup

The speedup **S** has skewing that wasn't present in **T**:

To show (X, \mathbf{T}) and (X, \mathbf{S}) are not isomorphic, we use an alternate presentation of \mathbb{Z}^d -odometers found by Giordano, Putnam and Skau.

Using Pontryagin duality, they found that a \mathbb{Z}^d -odometer (X, \mathbf{T}) can be specified by a single subgroup $H(X, \mathbf{T})$ of \mathbb{Q}^d .

This group is related to the group cohomology of the action; in fact $H(X, \mathbf{T}) \cong H^1(X, \mathbf{T})$, where $H^1(X, \mathbf{T})$ is the first cohomology group of \mathbb{Z}^d with coefficients in the module $C(X, \mathbb{Z})$.

To show (X, \mathbf{T}) and (X, \mathbf{S}) are not isomorphic, we use an alternate presentation of \mathbb{Z}^d -odometers found by Giordano, Putnam and Skau.

Using Pontryagin duality, they found that a \mathbb{Z}^d -odometer (X, \mathbf{T}) can be specified by a single subgroup $H(X, \mathbf{T})$ of \mathbb{Q}^d .

Furthermore, for a \mathbb{Z} -odometer (X, T), H(X, T) is isomorphic to the dimension group D(X, T) associated to the odometer.

In our example, we can compute

$$\begin{split} & \mathcal{H}(X,\mathbf{T}) = \mathbb{Z}\left[\frac{1}{3}\right] \times \mathbb{Z}\left[\frac{1}{2}\right] \\ & \mathcal{H}(X,\mathbf{S}) = \left\{(x,y) \in \mathbb{Z}^2 : x \in \mathbb{Z}\left[\frac{1}{3}\right], y - \frac{1}{2}x \in \mathbb{Z}\left[\frac{1}{2}\right]\right\}. \end{split}$$

These groups are isomorphic (which reflects the fact that (X, \mathbf{T}) and (X, \mathbf{S}) are continuously orbit equivalent).

But they aren't isomorphic in a good enough way...

In our example, we can compute

$$\begin{split} & \mathcal{H}(X,\mathbf{T}) = \mathbb{Z}\left[\frac{1}{3}\right] \times \mathbb{Z}\left[\frac{1}{2}\right] \\ & \mathcal{H}(X,\mathbf{S}) = \left\{(x,y) \in \mathbb{Z}^2 : x \in \mathbb{Z}\left[\frac{1}{3}\right], y - \frac{1}{2}x \in \mathbb{Z}\left[\frac{1}{2}\right]\right\}. \end{split}$$

If the odometers (X, \mathbf{T}) and (X, \mathbf{S}) were isomorphic, then by a theorem of Giordano, Putnam and Skau there would exist a matrix $A \in GL_2(\mathbb{Z})$ such that $A H(X, \mathbf{T}) = H(X, \mathbf{S})$.

But no such A exists (elementary linear algebra argument).

While the (X, \mathbf{S}) and (X, \mathbf{T}) in the preceding example are not isomorphic, they are orbit equivalent. This holds in general:

Theorem (Johnson-M)

Let $\mathbf{C} \subseteq \mathbb{Z}^d$ be any cone. If (X, \mathbf{S}) is a bounded \mathbf{C} -speedup of \mathbb{Z}^d -odometer (X, \mathbf{T}) , then (X, \mathbf{S}) and (X, \mathbf{T}) are orbit equivalent.

When d = 1, this implies AAO, because orbit equivalent \mathbb{Z} -odometers are automatically conjugate (follows from Boyle-Tomiyama).