# "Equivalence" of finite and group extensions of ergodic $\mathbb{Z}^d$ -actions

David M. McClendon

Ferris State University Big Rapids, MI, USA

joint with Aimee S.A. Johnson (Swarthmore)

#### Definition

A measure-preserving (m.p.)  $\mathbb{Z}^d$ -action is a quadruple  $(X, \mathcal{X}, \mu, \mathbf{T})$  where  $(X, \mathcal{X}, \mu)$  is a Lebesgue probability space and  $\mathbf{T}$  is an action of  $\mathbb{Z}^d$  on X by maps that preserve  $\mu$ .

We denote the action of  $\mathbf{v} \in \mathbb{Z}^d$  by  $\mathbf{T}_{\mathbf{v}}$ .

Such an action is generated by the *d* commuting m.p. transformations  $\mathbf{T}_{\mathbf{e}_1}, ..., \mathbf{T}_{\mathbf{e}_d}$  (where  $\{\mathbf{e}_1, ..., \mathbf{e}_d\}$  is the standard basis of  $\mathbb{R}^d$ ).

d = 1 corresponds to a system generated by a single measure-preserving transformation  $(X, \mathcal{X}, \mu, T)$ .

#### Definition

Let  $(X, \mathcal{X}, \mu, \mathbf{T})$  be a m.p. system and let G be any second countable, locally compact group. A *cocycle* for **T** is a measurable function  $\sigma : X \times \mathbb{Z}^d \to G$  satisfying the following *cocycle equation*:

$$\sigma(\mathbf{T}_{\mathbf{v}}x,\mathbf{w})\sigma(x,\mathbf{v}) = \sigma(x,\mathbf{v}+\mathbf{w})$$

for a.e.  $x \in X$ , all  $\mathbf{v}, \mathbf{w} \in \mathbb{Z}^d$ .

(Throughout this talk, G is a second countable, locally compact group.)

**Note:** When d = 1, a cocycle is determined by a measurable function  $\sigma : X \to G$  (which we also call a cocycle), as follows:

Given cocycle  $\sigma$  as on the previous slide, define  $\sigma: X \to G$  by

$$\sigma(x) = \sigma(x, 1).$$

Given  $\sigma: X \to G$ , define cocycle as on the previous slide by

$$\sigma(x,\nu) = \sigma(T^{\nu-1}x)\sigma(T^{\nu-2}x)\cdots\sigma(Tx)\sigma(x).$$

#### Definition

Given  $(X, \mathcal{X}, \mu, \mathbf{T})$ , a *G*-extension (a.k.a. group extension) of **T** is a m.p. system  $(X \times G, \mathcal{X} \times \mathcal{G}, \mu \times Haar, \mathbf{T}^{\sigma})$  defined by

$$\mathbf{T}^{\sigma}_{\mathbf{v}}(x,g) = (\mathbf{T}_{\mathbf{v}}x,\sigma(x,\mathbf{v})g)$$

for all  $\mathbf{v} \in \mathbb{Z}^d$ , where  $\sigma : X \times \mathbb{Z}^d \to G$  is a cocycle. **T** is called the *base* or *base factor* of the *G*-extension.

Every cocycle gives rise to a G-extension of **T**, and every G-extension comes from a cocycle.

#### Example: skew product

Let  $T: S^1 \to S^1$  be an irrational rotation by  $\alpha$ ; let  $G = S^1$  and let  $\sigma(x) = x$ . This defines a *G*-extension  $T^{\sigma}: \mathbb{T}^2 \to \mathbb{T}^2$  by  $T^{\sigma}(x, y) = (x + \alpha, y + x)$ .



# Finite extensions

**Notation:**  $S_n$  is the symmetric group on n letters, which we will think of as acting on the finite set  $[n] = \{1, 2, 3, ..., n\}$ .  $\delta_n$  is uniform measure on the finite set [n] (i.e.  $\delta_n(x) = \frac{1}{n}$  for all x).

#### Definition

Let  $(X, \mathcal{X}, \mu, \mathbf{T})$  be a m.p. system. A *n*-point extension of  $\mathbf{T}$ , a.k.a. finite extension, is a m.p. system  $(X \times [n], \mathcal{X} \times 2^{[n]}, \mu \times \delta_n, \widetilde{\mathbf{T}}^{\sigma})$  defined by

$$\mathbf{T}_{\mathbf{v}}^{\sigma}(x,i) = (T_{\mathbf{v}}x,\sigma(x,\mathbf{v})i)$$

where  $\sigma$  is a cocycle taking values in  $S_n$ .

As with group extensions, we call **T** the *base factor* of  $\tilde{\mathbf{T}}^{\sigma}$ .

Every finite extension  $\widetilde{\mathbf{T}}^{\sigma}$  of  $\mathbf{T}$  comes from a cocycle  $\sigma$  taking values in  $S_n$ .

$$\widetilde{\mathbf{T}}^{\sigma}_{\mathbf{v}}(x,i) = (\mathbf{T}_{\mathbf{v}}x, \sigma(x,\mathbf{v})i) \qquad (i \in [n])$$

Using  $\sigma$  to define an  $S_n$ -extension of **T**, we obtain a group extension of **T** called the *full extension* of  $\widetilde{\mathbf{T}}^{\sigma}$ .

$$\widetilde{\mathsf{T}}^{\sigma}_{\mathsf{v}}(x,g) = (\mathsf{T}_{\mathsf{v}}x, \sigma(x,\mathsf{v})g) \qquad (g \in S_n)$$

Let  $(X, \mathcal{X}, \mu, T)$  be the full 3-shift (with alphabet A, B, C). Define  $\sigma: X \to S_3$  by

$$\tau(x) = \begin{cases} id & \text{if } x(0) = A \\ (123) & \text{if } x(0) = B \\ (132) & \text{if } x(0) = C \end{cases}$$

$$x = ...ABC...$$

$$x = \frac{T(x) - T^{2}(x)}{x(0) = A - x(0) = B - x(0) = C} X$$

< ≣ > <

Let  $(X, \mathcal{X}, \mu, T)$  be the full 3-shift (with alphabet A, B, C). Define  $\sigma: X \to S_3$  by

$$\tau(x) = \begin{cases} id & \text{if } x(0) = A\\ (123) & \text{if } x(0) = B\\ (132) & \text{if } x(0) = C \end{cases}$$



Let  $(X, \mathcal{X}, \mu, T)$  be the full 3-shift (with alphabet A, B, C). Define  $\sigma : X \to S_3$  by

$$\tau(x) = \begin{cases}
 id & \text{if } x(0) = A \\
 (123) & \text{if } x(0) = B \\
 (132) & \text{if } x(0) = C
 \end{cases}$$



Let  $(X, \mathcal{X}, \mu, T)$  be the full 3-shift (with alphabet A, B, C). Define  $\sigma: X \to S_3$  by

$$\tau(x) = \begin{cases}
 id & \text{if } x(0) = A \\
 (123) & \text{if } x(0) = B \\
 (132) & \text{if } x(0) = C
 \end{cases}$$



#### Definition

Two *G*-extensions  $\mathbf{T}^{\sigma}$  and  $\mathbf{S}^{\sigma}$  (same *G* but not necessarily same  $\sigma$ ) are *relatively isomorphic* if they are isomorphic via some map  $\Phi$  which is measurable with respect to the base factors (i.e. given any measurable  $A \subseteq Y$ ,  $\Phi^{-1}(A \times G) = B \times G$  for some measurable  $B \subseteq X$ ).

Every relative isomorphism  $\Phi$  between two  $G\mbox{-extensions}$  has the form

$$\Phi(x,g) = (\phi(x), \alpha(x)g)$$

where  $\phi$  is an isomorphism of the base factors **T** and **S**, and  $\alpha$ :  $X \rightarrow G$  is measurable.  $\alpha$  is called the *transfer function* of the relative isomorphism.

(Defined similarly for finite extensions)

# Definition (d = 1)

Given m.p.t.s  $(X, \mathcal{X}, \mu, T)$  and  $(X, \mathcal{X}, \mu, \overline{T})$ , we say  $\overline{T}$  is a *speedup* of T if there exists a measurable function  $v : X \to \{1, 2, 3, ...\}$  such that  $\overline{T}(x) = T^{v(x)}(x)$  a.s.



**Remark:** by definition, speedups are  $(\mu$ -a.s.) defined on the entire space, preserve  $\mu$  and are 1 - 1.

# Definition (d = 1)

Let  $T^{\sigma}$  be a *G*-extension of *T*. A *relative speedup* of  $T^{\sigma}$  is a speedup of  $T^{\sigma}$  where the speedup function *v* is measurable with respect to the base factor.

# Definition (d = 1)

Let  $\overline{T}^{\sigma}$  be a finite extension of T. A *relative speedup* of  $\overline{T}^{\sigma}$  is a speedup of  $\widetilde{T}^{\sigma}$  where the speedup function v is measurable with respect to the base factor.

# Definition (d = 1)

If there is a speedup of  $(X, \mathcal{X}, \mu, T)$  which is isomorphic to  $(Y, \mathcal{Y}, \nu, S)$ , we say "you can speed up T to look like S" and write  $T \rightsquigarrow S$ .

## Definition (d = 1)

If  $T^{\sigma}$  and  $S^{\sigma}$  are *G*-extensions, we write  $T^{\sigma} \underset{rel}{\rightsquigarrow} S^{\sigma}$  if there is a relative speedup of  $T^{\sigma}$  which is relatively isomorphic to  $S^{\sigma}$ . (Similar definition for *n*-point extensions  $\widetilde{T}^{\sigma}$  and  $\widetilde{S}^{\sigma}$ .)

A B > A B >

# History (speedup "equivalence" with d = 1)

## Theorem (Arnoux, Ornstein & Weiss 1984)

If T is ergodic, and S is aperiodic, then  $T \rightsquigarrow S$ .

### Theorem (Babichev, Burton & Fieldsteel 2013)

If  $T^{\sigma}$  (a *G*-extension) is ergodic and *S* (the base of some other *G*-extension) is aperiodic, then  $T^{\sigma} \underset{rel}{\rightsquigarrow} S^{\sigma}$ .

### Theorem (Babichev, Burton & Fieldsteel 2013)

(Paraphrasing) If  $\widetilde{T}^{\sigma}$  and  $\widetilde{S}^{\sigma}$  are ergodic *n*-point extensions, then  $\widetilde{T}^{\sigma} \underset{rel}{\longrightarrow} \widetilde{S}^{\sigma}$  if and only if  $\widetilde{T}^{\sigma}$  has the " $G_{T}$ -interchange property" and  $\widetilde{S}^{\sigma}$  has the " $G_{S}$ -interchange property", where  $G_{S} \subseteq G_{T}$  (more on this later).

# Speedups in $d \ge 2$

**Key concept:** When d = 1, to speed up a system means to go *forward* more quickly. What does it mean to "speed up" a system when  $d \ge 2$ ?

( ) < ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) <

# Speedups in $d \ge 2$

**Key concept:** When d = 1, to speed up a system means to go *forward* more quickly. What does it mean to "speed up" a system when  $d \ge 2$ ?

#### Definition

A cone **C** is the intersection of  $\mathbb{Z}^d - \{\mathbf{0}\}$  with any open, connected subset of  $\mathbb{R}^d$  bounded by *d* distinct hyperplanes passing through the origin.

Cones correspond to a choice of "forward" direction(s).

< ≣ > <

# Speedups in $d \ge 2$

**Key concept:** When d = 1, to speed up a system means to go *forward* more quickly. What does it mean to "speed up" a system when  $d \ge 2$ ?

#### Definition

Let  $\mathbf{C} \subseteq \mathbb{Z}^d$  be a cone. A  $\mathbf{C}$ -speedup of  $\mathbb{Z}^d$ -system  $\mathbf{T}$  is another  $\mathbb{Z}^d$ -system  $\overline{\mathbf{T}}$  (defined on the same space as  $\mathbf{T}$ ) such that

$$\overline{\mathsf{T}}_{\mathbf{e}_j}(x) = \mathsf{T}_{\mathbf{v}_j(x)}(x)$$

for some measurable function  $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_d) : X \to (\mathbf{C}^d)^d$ .

**Remark:** The **v** must be defined so that each  $\overline{T}_{e_i}$  and  $\overline{T}_{e_j}$  commute (so one cannot simply speed up the  $T_{e_j}$  independently to obtain a speedup of **T**).

(E)

# A picture to explain (d = 2)



Here,  $\overline{\mathbf{T}}$  is a **C**-speedup of **T**. In particular, for the indicated point x, we have  $\mathbf{v}(x) = ((3,1), (1,2))$ .

# Speedup equivalence of group extensions of $\mathbb{Z}^d$ -actions

#### Definition

Let  $\mathbf{C} \subseteq \mathbb{Z}^d$  be any cone, and let  $\mathbf{T}^{\sigma}$  and  $\mathbf{S}^{\sigma}$  be *G*-extensions. We say  $\mathbf{T}^{\sigma} \underset{rel}{\overset{\mathbf{C}}{\longrightarrow}} \mathbf{S}^{\sigma}$  if there is a relative **C**-speedup of  $\mathbf{T}^{\sigma}$  which is relatively isomorphic to  $\mathbf{S}^{\sigma}$ .

#### Theorem 1 (Johnson-M)

Let G be a locally compact, second countable group. Given any ergodic G-extension  $\mathbf{T}^{\sigma}$  of a  $\mathbb{Z}^{d}$ -action  $\mathbf{T}$  and any G-extension  $\mathbf{S}^{\sigma}$  of an aperiodic  $\mathbb{Z}^{d}$ -action  $\mathbf{S}$ , and given any cone  $\mathbf{C} \subseteq \mathbb{Z}^{d}$ ,  $\mathbf{T}^{\sigma} \underset{rel}{\overset{\mathbf{C}}{\longrightarrow}} \mathbf{S}^{\sigma}$ .

## Sketch of proof of Theorem 1:

- Approximate S by a sequence of partially-defined actions defined on larger and larger unions of Rohklin towers for S, each union of towers being obtained from the previous one via cutting-and-stacking.
- Choose sets in the phase space of T to mimic the sets found in these Rohklin towers.
- Show that the sets from Step 2 can be realized as the phase space of a partially defined speedup of T, with the speedup at each stage extending the one defined at the previous stage, and that these constructions can be done in a way that respects the cocycles defining T<sup>σ</sup> and S<sup>σ</sup>.

#### Definition

Let  $\mathbf{C} \subseteq \mathbb{Z}^d$  be any cone, and let  $\widetilde{\mathbf{T}}^{\sigma}$  and  $\widetilde{\mathbf{S}}^{\sigma}$  be *n*-point extensions. We say  $\widetilde{\mathbf{T}}^{\sigma} \underset{rel}{\overset{\mathbf{C}}{\longrightarrow}} \widetilde{\mathbf{S}}^{\sigma}$  if there is a relative **C**-speedup of  $\widetilde{\mathbf{T}}^{\sigma}$  which is relatively isomorphic to  $\widetilde{\mathbf{S}}^{\sigma}$ .

#### Question

Under what circumstances does 
$$\widetilde{\mathbf{T}}^{\sigma} \underset{rel}{\overset{\mathbf{C}}{\longrightarrow}} \widetilde{\mathbf{S}}^{\sigma}$$
?

**Idea:** Given  $\widetilde{\mathbf{T}}^{\sigma}$  and  $\widetilde{\mathbf{S}}^{\sigma}$ , let  $\mathbf{T}^{\sigma}$  and  $\mathbf{S}^{\sigma}$  be the respective full extensions.

Then

$$\widetilde{\mathsf{T}}^{\sigma} \underset{\mathit{rel}}{\overset{\mathsf{C}}{\hookrightarrow}} \widetilde{\mathsf{S}}^{\sigma} \Leftrightarrow \mathsf{T}^{\sigma} \underset{\mathit{rel}}{\overset{\mathsf{C}}{\hookrightarrow}} \mathsf{S}^{\sigma}$$

(by using the same speedup function  $\mathbf{v}$ ).

So if  $\mathbf{T}^{\sigma}$  is ergodic, this is always possible by Theorem 1.

## What happens if $\mathbf{T}^{\sigma}$ is not ergodic?

It depends on the structure of the ergodic components of  $T^{\sigma}$  and  $S^{\sigma}$ . The reason is that you can make a system "less ergodic" when you speed it up, but not "more ergodic".

**Idea:** Given  $\widetilde{\mathbf{T}}^{\sigma}$  and  $\widetilde{\mathbf{S}}^{\sigma}$ , let  $\mathbf{T}^{\sigma}$  and  $\mathbf{S}^{\sigma}$  be the respective full extensions.

Then

$$\widetilde{\mathsf{T}}^{\sigma} \underset{\mathit{rel}}{\overset{\mathsf{C}}{\longrightarrow}} \widetilde{\mathsf{S}}^{\sigma} \Leftrightarrow \mathsf{T}^{\sigma} \underset{\mathit{rel}}{\overset{\mathsf{C}}{\longrightarrow}} \mathsf{S}^{\sigma}$$

(by using the same speedup function  $\mathbf{v}$ ).

So if  $\mathbf{T}^{\sigma}$  is ergodic, this is always possible by Theorem 1.

What happens if  $\mathbf{T}^{\sigma}$  is not ergodic?

It depends on the structure of the ergodic components of  $T^{\sigma}$  and  $S^{\sigma}$ . The reason is that you can make a system "less ergodic" when you speed it up, but not "more ergodic".

T is the full 3-shift; 
$$\sigma(x) = \begin{cases} id & \text{if } x(0) = A \\ (123) & \text{if } x(0) = B \\ (132) & \text{if } x(0) = C \end{cases}$$

**Recall** that this 3-point extension was ergodic, but its full extension was not.



# **Bad news:** In general, the full extension may not have such a simple ergodic decomposition.

**Good news:** Any full extension is relatively isomorphic to another  $S_n$ -extension which has  $X \times G$  as one of its ergodic components, where G is some subgroup of  $S_n$ .

The set of possible Gs that can be obtained in this fashion form a conjugacy class of subgroups of  $S_n$ , and this class completely characterizes "speedupability".

**Bad news:** In general, the full extension may not have such a simple ergodic decomposition.

**Good news:** Any full extension is relatively isomorphic to another  $S_n$ -extension which has  $X \times G$  as one of its ergodic components, where G is some subgroup of  $S_n$ .

The set of possible Gs that can be obtained in this fashion form a conjugacy class of subgroups of  $S_n$ , and this class completely characterizes "speedupability".

# Lemma (d = 1 Gerber 1987; d > 1 Johnson-M)

Let **T** be an ergodic  $\mathbb{Z}^d$ -action and let  $\widetilde{\mathbf{T}}^{\sigma}$  be an *n*-point extension of **T**. Then there is a conjugacy class  $gp(\widetilde{\mathbf{T}}^{\sigma})$  of subgroups of  $S_n$  such that TFAE:

• 
$$G \in gp(\widetilde{\mathbf{T}}^{\sigma});$$

T̃<sup>σ</sup> is rel. isomorphic to some other *n*-point extension T̃<sup>σ'</sup> of T such that X × G is an ergodic component of the full extension of T̃<sup>σ'</sup>.

 $gp(\widetilde{\mathbf{T}}^{\sigma})$  is called the *interchange class* of  $\widetilde{\mathbf{T}}^{\sigma}$ .

(There is a third equivalent condition akin to what Gerber called the "G-interchange property".)

Theorem 2 (d = 1 Babichev, Burton & Fieldsteel 2013; d > 1 Johnson-M)

Let  $\widetilde{\mathbf{T}}^{\sigma}$  and  $\widetilde{\mathbf{S}}^{\sigma}$  be *n*-point extensions of ergodic  $\mathbb{Z}^{d}$ -actions **T** and **S**, respectively. Then TFAE:

Idea of proof (of  $3 \Rightarrow 1$ ): Suppose  $G_{\mathbf{T}} \in gp(\widetilde{\mathbf{T}}^{\sigma})$ ;  $G_{\mathbf{S}} \in gp(\widetilde{\mathbf{S}}^{\sigma})$ ;  $G_{\mathbf{S}} \subseteq G_{\mathbf{T}}$ .

WLOG the full extension of  $\widetilde{\mathbf{T}}^{\sigma}$  has ergodic component  $X \times G_{\mathbf{T}}$ .

Construct a relative speedup on this ergodic component so that  $X \times G_S$  is an ergodic component of the speedup (easy when d = 1: take first return map to  $X \times G_S$ ; not so easy when d > 1).

Use Theorem 1 to speed up this speedup (restricted to its ergodic component  $X \times G_S$ ) to obtain a isomorphic copy of the restriction of the full extension of  $\tilde{\mathbf{S}}^{\sigma}$  to  $Y \times G_S$ . Mimic this construction (performed on the full extensions) on the finite extensions to prove the result.

4 B 6 4 B 6

#### Definition

Let  $(X, \mathcal{X}, \mu, \mathbf{T})$  and  $(Y, \mathcal{Y}, \nu, \mathbf{S})$  be two m.p. systems. An *orbit* equivalence is a measurable (invertible) function  $\phi : X \to Y$  which preserves the measures (i.e.  $\mu(\phi^{-1}(A)) = \nu(A)$  for any measurable  $A \subseteq Y$ ) and preserves orbits (i.e.  $x_2$  and  $x_1$  lie on the same **T**-orbit if and only if  $\phi(x_1)$  and  $\phi(x_2)$  lie on the same **S**-orbit).

#### Definition

A relative orbit equivalence between two G-extensions (or two n-point extensions) is an orbit equivalence which is measurable with respect to the base factors.

### Theorem (Dye 1959)

If d = 1, then any two ergodic actions of  $\mathbb{Z}$  are orbit equivalent.

### Theorem (Connes, Feldman & Weiss 1981)

If  $\Gamma$  is an amenable group (this includes  $\Gamma = \mathbb{Z}^d$ ), then any ergodic action of  $\Gamma$  is orbit equivalent to an ergodic action of  $\mathbb{Z}$ .

#### Theorem (Fieldsteel 1981)

If G is compact and metrizable, then any two ergodic G-extensions (d = 1) are relatively orbit equivalent.

4 B 6 4 B 6

#### Theorem (Gerber 1987)

Let  $\widetilde{T}^{\sigma}$  and  $\widetilde{S}^{\sigma}$  be *n*-point extensions of ergodic transformations T and S, respectively. Then  $\widetilde{T}^{\sigma}$  and  $\widetilde{S}^{\sigma}$  are relatively orbit equivalent if and only if  $gp(\widetilde{T}^{\sigma}) = gp(\widetilde{S}^{\sigma})$ .

#### Theorem (Johnson-M)

Let  $\widetilde{\mathbf{T}}^{\sigma}$  be an *n*-point extension of ergodic  $\mathbb{Z}^{d_1}$ -action  $\mathbf{T}$  and let  $\widetilde{\mathbf{S}}^{\sigma}$  be an *n*-point extension of ergodic  $\mathbb{Z}^{d_2}$ -action  $\mathbf{S}$ . Then  $\widetilde{\mathbf{T}}^{\sigma}$  and  $\widetilde{\mathbf{S}}^{\sigma}$  are relatively orbit equivalent if and only if  $gp(\widetilde{\mathbf{T}}^{\sigma}) = gp(\widetilde{\mathbf{S}}^{\sigma})$ .

#### Theorem (Gerber 1987)

Let  $\widetilde{T}^{\sigma}$  and  $\widetilde{S}^{\sigma}$  be *n*-point extensions of ergodic transformations T and S, respectively. Then  $\widetilde{T}^{\sigma}$  and  $\widetilde{S}^{\sigma}$  are relatively orbit equivalent if and only if  $gp(\widetilde{T}^{\sigma}) = gp(\widetilde{S}^{\sigma})$ .

#### Theorem (Johnson-M)

Let  $\widetilde{\mathbf{T}}^{\sigma}$  be an *n*-point extension of ergodic  $\mathbb{Z}^{d_1}$ -action  $\mathbf{T}$  and let  $\widetilde{\mathbf{S}}^{\sigma}$  be an *n*-point extension of ergodic  $\mathbb{Z}^{d_2}$ -action  $\mathbf{S}$ . Then  $\widetilde{\mathbf{T}}^{\sigma}$  and  $\widetilde{\mathbf{S}}^{\sigma}$  are relatively orbit equivalent if and only if  $gp(\widetilde{\mathbf{T}}^{\sigma}) = gp(\widetilde{\mathbf{S}}^{\sigma})$ .

The key ingredient of the proof of the ( $\Leftarrow$ ) direction of this theorem is the following relative version of Connes-Feldman-Weiss:

#### Theorem (Johnson-M)

Let  $\widetilde{\mathbf{T}}^{\sigma}$  be an *n*-point extension of ergodic  $\mathbb{Z}^d$ -action **T**. Then, for any ergodic  $\mathbb{Z}$ -action  $\widehat{T}$ , there is an *n*-point extension  $\widetilde{\widetilde{T}}^{\sigma}$  such that:

 $\textcircled{\ }\widetilde{\mathbf{T}}^{\sigma} \text{ and } \widetilde{\widehat{T}}^{\sigma} \text{ are relatively orbit equivalent, and }$ 

$$gp\left(\widetilde{\mathbf{T}}^{\sigma}\right) = gp\left(\widetilde{\widetilde{T}}^{\sigma}\right).$$