"Equivalence" of finite and group extensions of ergodic \mathbb{Z}^{d}-actions

David M. McClendon

Ferris State University Big Rapids, MI, USA
joint with Aimee S.A. Johnson (Swarthmore)

Measure-preserving actions of \mathbb{Z}^{d}

Definition

A measure-preserving (m.p.) \mathbb{Z}^{d}-action is a quadruple $(X, \mathcal{X}, \mu, \mathbf{T})$ where (X, \mathcal{X}, μ) is a Lebesgue probability space and \mathbf{T} is an action of \mathbb{Z}^{d} on X by maps that preserve μ.

We denote the action of $\mathbf{v} \in \mathbb{Z}^{d}$ by $\mathbf{T}_{\mathbf{v}}$.
Such an action is generated by the d commuting m.p. transformations $\mathbf{T}_{\mathbf{e}_{1}}, \ldots, \mathbf{T}_{\mathbf{e}_{d}}$ (where $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}\right\}$ is the standard basis of \mathbb{R}^{d}).
$d=1$ corresponds to a system generated by a single measure-preserving transformation (X, \mathcal{X}, μ, T).

Cocycles and group extensions

Definition

Let $(X, \mathcal{X}, \mu, \mathbf{T})$ be a m.p. system and let G be any second countable, locally compact group. A cocycle for \mathbf{T} is a measurable function $\sigma: X \times \mathbb{Z}^{d} \rightarrow G$ satisfying the following cocycle equation:

$$
\sigma\left(\mathbf{T}_{\mathbf{v}} x, \mathbf{w}\right) \sigma(x, \mathbf{v})=\sigma(x, \mathbf{v}+\mathbf{w})
$$

for a.e. $x \in X$, all $\mathbf{v}, \mathbf{w} \in \mathbb{Z}^{d}$.
(Throughout this talk, G is a second countable, locally compact group.)

Cocycles and group extensions

Note: When $d=1$, a cocycle is determined by a measurable function $\sigma: X \rightarrow G$ (which we also call a cocycle), as follows:

Given cocycle σ as on the previous slide, define $\sigma: X \rightarrow G$ by

$$
\sigma(x)=\sigma(x, 1)
$$

Given $\sigma: X \rightarrow G$, define cocycle as on the previous slide by

$$
\sigma(x, v)=\sigma\left(T^{v-1} x\right) \sigma\left(T^{v-2} x\right) \cdots \sigma(T x) \sigma(x)
$$

Cocycles and group extensions

Definition

Given ($X, \mathcal{X}, \mu, \mathbf{T}$), a G-extension (a.k.a. group extension) of \mathbf{T} is a m.p. system $\left(X \times G, \mathcal{X} \times \mathcal{G}, \mu \times\right.$ Haar, $\left.\mathbf{T}^{\sigma}\right)$ defined by

$$
\mathbf{T}_{\mathbf{v}}^{\sigma}(x, g)=\left(\mathbf{T}_{\mathbf{v}} x, \sigma(x, \mathbf{v}) g\right)
$$

for all $\mathbf{v} \in \mathbb{Z}^{d}$, where $\sigma: X \times \mathbb{Z}^{d} \rightarrow G$ is a cocycle. \mathbf{T} is called the base or base factor of the G-extension.

Every cocycle gives rise to a G-extension of \mathbf{T}, and every G-extension comes from a cocycle.

Cocycles and group extensions

Example: skew product

Let $T: S^{1} \rightarrow S^{1}$ be an irrational rotation by α; let $G=S^{1}$ and let $\sigma(x)=x$. This defines a G-extension $T^{\sigma}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ by $T^{\sigma}(x, y)=(x+\alpha, y+x)$.

Finite extensions

Notation: S_{n} is the symmetric group on n letters, which we will think of as acting on the finite set $[n]=\{1,2,3, \ldots, n\}$. δ_{n} is uniform measure on the finite set $[n]$ (i.e. $\delta_{n}(x)=\frac{1}{n}$ for all x).

Definition

Let $(X, \mathcal{X}, \mu, \mathbf{T})$ be a m.p. system. A n-point extension of \mathbf{T}, a.k.a. finite extension, is a m.p. system $\left(X \times[n], \mathcal{X} \times 2^{[n]}, \mu \times \delta_{n}, \widetilde{T}^{\sigma}\right)$ defined by

$$
\tilde{\mathbf{T}}_{\mathbf{v}}^{\sigma}(x, i)=\left(T_{\mathbf{v}} x, \sigma(x, \mathbf{v}) i\right)
$$

where σ is a cocycle taking values in S_{n}.
As with group extensions, we call \mathbf{T} the base factor of $\widetilde{\mathbf{T}}^{\sigma}$.

Finite extensions

Every finite extension $\widetilde{\mathbf{T}}^{\sigma}$ of \mathbf{T} comes from a cocycle σ taking values in S_{n}.

$$
\widetilde{\mathbf{T}}_{\mathbf{v}}^{\sigma}(x, i)=\left(\mathbf{T}_{\mathbf{v}} x, \sigma(x, \mathbf{v}) i\right) \quad(i \in[n])
$$

Using σ to define an S_{n}-extension of \mathbf{T}, we obtain a group extension of \mathbf{T} called the full extension of $\widetilde{\mathbf{T}}^{\sigma}$.

$$
\widetilde{\mathbf{T}}_{\mathbf{v}}^{\sigma}(x, g)=\left(\mathbf{T}_{\mathbf{v}} x, \sigma(x, \mathbf{v}) g\right) \quad\left(g \in S_{n}\right)
$$

Example

Let (X, \mathcal{X}, μ, T) be the full 3-shift (with alphabet A, B, C). Define $\sigma: X \rightarrow S_{3}$ by

$$
\sigma(x)=\left\{\begin{array}{cl}
\text { id } & \text { if } x(0)=A \\
(123) & \text { if } x(0)=B \\
(132) & \text { if } x(0)=C
\end{array}\right.
$$

$$
x=\ldots A B C \ldots
$$

Finite extensions

Example

Let (X, \mathcal{X}, μ, T) be the full 3-shift (with alphabet A, B, C). Define $\sigma: X \rightarrow S_{3}$ by

$$
\sigma(x)=\left\{\begin{array}{cl}
\text { id } & \text { if } x(0)=A \\
(123) & \text { if } x(0)=B \\
(132) & \text { if } x(0)=C
\end{array}\right.
$$

finite ext.

Finite extensions

Example

Let (X, \mathcal{X}, μ, T) be the full 3-shift (with alphabet A, B, C). Define $\sigma: X \rightarrow S_{3}$ by

$$
\sigma(x)=\left\{\begin{array}{cl}
\text { id } & \text { if } x(0)=A \\
(123) & \text { if } x(0)=B \\
(132) & \text { if } x(0)=C
\end{array}\right.
$$

full ext.

$X \times\{(23)\}$ $X \times\{(13)\}$ $X \times\{(12)\}$
\mathbf{T}^{σ}

Finite extensions

Example

Let (X, \mathcal{X}, μ, T) be the full 3-shift (with alphabet A, B, C). Define $\sigma: X \rightarrow S_{3}$ by

$$
\sigma(x)=\left\{\begin{array}{cl}
\text { id } & \text { if } x(0)=A \\
(123) & \text { if } x(0)=B \\
(132) & \text { if } x(0)=C
\end{array}\right.
$$

Relative isomorphism

Definition

Two G-extensions \mathbf{T}^{σ} and \mathbf{S}^{σ} (same G but not necessarily same σ) are relatively isomorphic if they are isomorphic via some map Φ which is measurable with respect to the base factors (i.e. given any measurable $A \subseteq Y, \Phi^{-1}(A \times G)=B \times G$ for some measurable $B \subseteq X$).

Every relative isomorphism Φ between two G-extensions has the form

$$
\Phi(x, g)=(\phi(x), \alpha(x) g)
$$

where ϕ is an isomorphism of the base factors \mathbf{T} and \mathbf{S}, and α : $X \rightarrow G$ is measurable. α is called the transfer function of the relative isomorphism.
(Defined similarly for finite extensions)

Speedup "equivalence"

Definition $(d=1)$

Given m.p.t.s (X, \mathcal{X}, μ, T) and $(X, \mathcal{X}, \mu, \bar{T})$, we say \bar{T} is a speedup of T if there exists a measurable function $v: X \rightarrow\{1,2,3, \ldots\}$ such that $\bar{T}(x)=T^{v(x)}(x)$ a.s.

Remark: by definition, speedups are (μ-a.s.) defined on the entire space, preserve μ and are $1-1$.

Speedup "equivalence"

Definition $(d=1)$

Let T^{σ} be a G-extension of T. A relative speedup of T^{σ} is a speedup of T^{σ} where the speedup function v is measurable with respect to the base factor.

Definition ($d=1$)

Let \widetilde{T}^{σ} be a finite extension of T. A relative speedup of \widetilde{T}^{σ} is a speedup of \widetilde{T}^{σ} where the speedup function v is measurable with respect to the base factor.

Speedup "equivalence"

Definition $(d=1)$

If there is a speedup of (X, \mathcal{X}, μ, T) which is isomorphic to (Y, \mathcal{Y}, ν, S), we say "you can speed up T to look like S " and write $T \rightsquigarrow S$.

Definition $(d=1)$

If T^{σ} and S^{σ} are G-extensions, we write $T^{\sigma} \underset{\text { rel }}{\rightsquigarrow} S^{\sigma}$ if there is a relative speedup of T^{σ} which is relatively isomorphic to S^{σ}. (Similar definition for n-point extensions \widetilde{T}^{σ} and \widetilde{S}^{σ}.)

History (speedup "equivalence" with $d=1$)

Theorem (Arnoux, Ornstein \& Weiss 1984)

If T is ergodic, and S is aperiodic, then $T \rightsquigarrow S$.

Theorem (Babichev, Burton \& Fieldsteel 2013)

If T^{σ} (a G-extension) is ergodic and S (the base of some other G-extension) is aperiodic, then $T^{\sigma} \underset{\text { rel }}{\longrightarrow} S^{\sigma}$.

Theorem (Babichev, Burton \& Fieldsteel 2013)

(Paraphrasing) If \widetilde{T}^{σ} and \widetilde{S}^{σ} are ergodic n-point extensions, then $\widetilde{T}{ }^{\sigma} \underset{\text { rel }}{\longrightarrow} \widetilde{S}^{\sigma}$ if and only if \widetilde{T}^{σ} has the " G_{T}-interchange property" and \widetilde{S}^{σ} has the " G_{S}-interchange property", where $G_{S} \subseteq G_{T}$ (more on this later).

Speedups in $d \geq 2$

Key concept: When $d=1$, to speed up a system means to go forward more quickly. What does it mean to "speed up" a system when $d \geq 2$?

Speedups in $d \geq 2$

Key concept: When $d=1$, to speed up a system means to go forward more quickly. What does it mean to "speed up" a system when $d \geq 2$?

Definition

A cone \mathbf{C} is the intersection of $\mathbb{Z}^{d}-\{\mathbf{0}\}$ with any open, connected subset of \mathbb{R}^{d} bounded by d distinct hyperplanes passing through the origin.

Cones correspond to a choice of "forward" direction(s).

Speedups in $d \geq 2$

Key concept: When $d=1$, to speed up a system means to go forward more quickly. What does it mean to "speed up" a system when $d \geq 2$?

Definition

Let $\mathbf{C} \subseteq \mathbb{Z}^{d}$ be a cone. A \mathbf{C}-speedup of \mathbb{Z}^{d}-system \mathbf{T} is another \mathbb{Z}^{d}-system $\overline{\mathbf{T}}$ (defined on the same space as \mathbf{T}) such that

$$
\overline{\mathbf{T}}_{\mathbf{e}_{j}}(x)=\mathbf{T}_{\mathbf{v}_{j}(x)}(x)
$$

for some measurable function $\mathbf{v}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d}\right): X \rightarrow\left(\mathbf{C}^{d}\right)^{d}$.
Remark: The \mathbf{v} must be defined so that each $\overline{\mathbf{T}}_{\mathbf{e}_{i}}$ and $\overline{\mathbf{T}}_{\mathbf{e}_{j}}$ commute (so one cannot simply speed up the $\mathbf{T}_{\mathbf{e}_{j}}$ independently to obtain a speedup of \mathbf{T}).

A picture to explain $(d=2)$

Here, $\overline{\mathbf{T}}$ is a \mathbf{C}-speedup of \mathbf{T}. In particular, for the indicated point x, we have $\mathbf{v}(x)=((3,1),(1,2))$.

Speedup equivalence of group extensions of \mathbb{Z}^{d}-actions

Definition

Let $\mathbf{C} \subseteq \mathbb{Z}^{d}$ be any cone, and let \mathbf{T}^{σ} and \mathbf{S}^{σ} be G-extensions. We say $\mathbf{T}^{\sigma} \underset{\text { rel }}{\mathbf{C}} \mathbf{S}^{\sigma}$ if there is a relative \mathbf{C}-speedup of \mathbf{T}^{σ} which is relatively isomorphic to \mathbf{S}^{σ}.

Theorem 1 (Johnson-M)

Let G be a locally compact, second countable group. Given any ergodic G-extension \mathbf{T}^{σ} of a \mathbb{Z}^{d}-action \mathbf{T} and any G-extension \mathbf{S}^{σ} of an aperiodic \mathbb{Z}^{d}-action \mathbf{S}, and given any cone $\mathbf{C} \subseteq \mathbb{Z}^{d}$, $\mathbf{T}^{\sigma} \underset{\text { rel }}{\stackrel{\text { C }}{\longrightarrow}} \mathbf{S}^{\sigma}$.

Sketch of proof of Theorem 1:

(1) Approximate \mathbf{S} by a sequence of partially-defined actions defined on larger and larger unions of Rohklin towers for \mathbf{S}, each union of towers being obtained from the previous one via cutting-and-stacking.
(2) Choose sets in the phase space of \mathbf{T} to mimic the sets found in these Rohklin towers.
(3) Show that the sets from Step 2 can be realized as the phase space of a partially defined speedup of \mathbf{T}, with the speedup at each stage extending the one defined at the previous stage, and that these constructions can be done in a way that respects the cocycles defining \mathbf{T}^{σ} and \mathbf{S}^{σ}.

Speedups of finite extensions

Definition

Let $\mathbf{C} \subseteq \mathbb{Z}^{d}$ be any cone, and let $\widetilde{\mathbf{T}}^{\sigma}$ and $\widetilde{\mathbf{S}}^{\sigma}$ be n-point extensions. We say $\widetilde{\mathbf{T}}^{\sigma} \underset{\text { rel }}{\mathbf{C}} \widetilde{\mathbf{S}}^{\sigma}$ if there is a relative \mathbf{C}-speedup of $\widetilde{\mathbf{T}}^{\sigma}$ which is relatively isomorphic to $\widetilde{\mathbf{S}}^{\sigma}$.

Question

Under what circumstances does $\widetilde{\mathbf{T}}^{\sigma} \underset{\text { rel }}{\mathbf{C}} \widetilde{\mathbf{S}}^{\sigma}$?

Speedups of finite extensions

Idea: Given $\widetilde{\mathbf{T}}^{\sigma}$ and $\widetilde{\mathbf{S}}^{\sigma}$, let \mathbf{T}^{σ} and \mathbf{S}^{σ} be the respective full extensions.

Then

$$
\widetilde{\mathbf{T}}^{\sigma} \underset{r e l}{\mathbf{C}} \widetilde{\mathbf{S}}^{\sigma} \Leftrightarrow \mathbf{T}^{\sigma} \underset{r e l}{\underset{\text { C }}{\leftrightarrows}} \mathbf{S}^{\sigma}
$$

(by using the same speedup function \mathbf{v}).
So if \mathbf{T}^{σ} is ergodic, this is always possible by Theorem 1.
What happens if \mathbf{T}^{σ} is not ergodic?
It depends on the structure of the ergodic components of T^{σ}
and \mathbf{S}^{σ}. The reason is that you can make a system "less ergodic"
when you speed it up, but not "more ergodic"

Speedups of finite extensions

Idea: Given $\widetilde{\mathbf{T}}^{\sigma}$ and $\widetilde{\mathbf{S}}^{\sigma}$, let \mathbf{T}^{σ} and \mathbf{S}^{σ} be the respective full extensions.

Then

$$
\widetilde{\mathbf{T}}^{\sigma} \underset{r e l}{\mathbf{C}} \widetilde{\mathbf{S}}^{\sigma} \Leftrightarrow \mathbf{T}^{\sigma} \underset{r e l}{\mathbf{C}} \mathbf{S}^{\sigma}
$$

(by using the same speedup function \mathbf{v}).
So if \mathbf{T}^{σ} is ergodic, this is always possible by Theorem 1 .
What happens if \mathbf{T}^{σ} is not ergodic?
It depends on the structure of the ergodic components of \mathbf{T}^{σ} and \mathbf{S}^{σ}. The reason is that you can make a system "less ergodic" when you speed it up, but not "more ergodic".

Speedups of finite extensions

Example (from before)

$$
T \text { is the full 3-shift; } \sigma(x)=\left\{\begin{array}{cl}
i d & \text { if } x(0)=A \\
(123) & \text { if } x(0)=B \\
(132) & \text { if } x(0)=C
\end{array}\right.
$$

Recall that this 3-point extension was ergodic, but its full extension was not.

Speedups of finite extensions

Bad news: In general, the full extension may not have such a simple ergodic decomposition.

Good news: Any full extension is relatively isomorphic to another S_{n}-extension which has $X \times G$ as one of its ergodic components, where G is some subgroup of S_{n}

The set of possible Gs that can be obtained in this fashion form a conjugacy class of subgroups of S_{n}, and this class completely characterizes "speedupability"

Speedups of finite extensions

Bad news: In general, the full extension may not have such a simple ergodic decomposition.

Good news: Any full extension is relatively isomorphic to another S_{n}-extension which has $X \times G$ as one of its ergodic components, where G is some subgroup of S_{n}.

The set of possible Gs that can be obtained in this fashion form a conjugacy class of subgroups of S_{n}, and this class completely characterizes "speedupability".

Lemma ($d=1$ Gerber 1987; $d>1$ Johnson-M)

Let \mathbf{T} be an ergodic \mathbb{Z}^{d}-action and let $\widetilde{\mathbf{T}}^{\sigma}$ be an n-point extension of \mathbf{T}. Then there is a conjugacy class $g p\left(\widetilde{\mathbf{T}}^{\sigma}\right)$ of subgroups of S_{n} such that TFAE:
(1) $G \in g p\left(\widetilde{\mathbf{T}}^{\sigma}\right)$;
(2) $\tilde{\mathbf{T}}^{\sigma}$ is rel. isomorphic to some other n-point extension $\tilde{\mathbf{T}}^{\sigma^{\prime}}$ of \mathbf{T} such that $X \times G$ is an ergodic component of the full extension of $\widetilde{\mathbf{T}}^{\sigma^{\prime}}$.
$g p\left(\widetilde{\mathbf{T}}^{\sigma}\right)$ is called the interchange class of $\widetilde{\mathbf{T}}^{\sigma}$.
(There is a third equivalent condition akin to what Gerber called the " G-interchange property".)

Theorem 2 ($d=1$ Babichev, Burton \& Fieldsteel 2013; $d>1$ Johnson-M)

Let $\widetilde{\mathbf{T}}^{\sigma}$ and $\widetilde{\mathbf{S}}^{\sigma}$ be n-point extensions of ergodic \mathbb{Z}^{d}-actions \mathbf{T} and \mathbf{S}, respectively. Then TFAE:
(1) $\widetilde{\mathbf{T}}^{\sigma} \underset{\text { rel }}{\mathrm{C}} \widetilde{\mathbf{S}}^{\sigma}$;
(2) For every $G_{\mathbf{T}} \in g p\left(\widetilde{\mathbf{T}}^{\sigma}\right)$, there is $G_{\mathbf{S}} \in g p\left(\widetilde{\mathbf{S}}^{\sigma}\right)$ such that $G_{S} \subseteq G_{\mathbf{T}}$;
(3) For some $G_{\mathbf{T}} \in g p\left(\widetilde{\mathbf{T}}^{\sigma}\right)$, there is $G_{\mathbf{S}} \in g p\left(\widetilde{\mathbf{S}}^{\sigma}\right)$ such that $G_{\mathbf{S}} \subseteq G_{\mathbf{T}}$.

Idea of proof (of $3 \Rightarrow 1$): Suppose $G_{\mathbf{T}} \in g p\left(\widetilde{\mathbf{T}}^{\sigma}\right) ; G_{\mathbf{S}} \in g p\left(\widetilde{\mathbf{S}}^{\sigma}\right)$; $G_{S} \subseteq G_{T}$.

WLOG the full extension of $\widetilde{\mathbf{T}}^{\sigma}$ has ergodic component $X \times G_{\mathrm{T}}$.
Construct a relative speedup on this ergodic component so that $X \times G_{\mathrm{S}}$ is an ergodic component of the speedup (easy when $d=1$: take first return map to $X \times G_{\mathrm{s}}$; not so easy when $d>1$).

Use Theorem 1 to speed up this speedup (restricted to its ergodic component $X \times G_{\mathrm{S}}$) to obtain a isomorphic copy of the restriction of the full extension of $\widetilde{\mathbf{S}}^{\sigma}$ to $Y \times G_{\mathbf{S}}$. Mimic this construction (performed on the full extensions) on the finite extensions to prove the result.

Relative orbit equivalence

Definition

Let $(X, \mathcal{X}, \mu, \mathbf{T})$ and $(Y, \mathcal{Y}, \nu, \mathbf{S})$ be two m.p. systems. An orbit equivalence is a measurable (invertible) function $\phi: X \rightarrow Y$ which preserves the measures (i.e. $\mu\left(\phi^{-1}(A)\right)=\nu(A)$ for any measurable $A \subseteq Y$) and preserves orbits (i.e. x_{2} and x_{1} lie on the same \mathbf{T}-orbit if and only if $\phi\left(x_{1}\right)$ and $\phi\left(x_{2}\right)$ lie on the same \mathbf{S}-orbit).

Definition

A relative orbit equivalence between two G-extensions (or two n-point extensions) is an orbit equivalence which is measurable with respect to the base factors.

History (orbit equivalence)

Theorem (Dye 1959)

If $d=1$, then any two ergodic actions of \mathbb{Z} are orbit equivalent.

Theorem (Connes, Feldman \& Weiss 1981)

If Γ is an amenable group (this includes $\Gamma=\mathbb{Z}^{d}$), then any ergodic action of Γ is orbit equivalent to an ergodic action of \mathbb{Z}.

Theorem (Fieldsteel 1981)

If G is compact and metrizable, then any two ergodic G-extensions $(d=1)$ are relatively orbit equivalent.

Relative orbit equivalence of finite extensions

Theorem (Gerber 1987)

Let \widetilde{T}^{σ} and \widetilde{S}^{σ} be n-point extensions of ergodic transformations T and S, respectively. Then \widetilde{T}^{σ} and \widetilde{S}^{σ} are relatively orbit equivalent if and only if $g p\left(\widetilde{T}^{\sigma}\right)=g p\left(\widetilde{S}^{\sigma}\right)$.

Theorem (Johnson-M)
Let $\widetilde{T} \sigma$ be an n-point extension of ergodic $\mathbb{Z}^{d_{1}}$-action T and let $\widetilde{\mathbf{S}^{\sigma}}$ be an n-point extension of ergodic $\mathbb{Z}^{d_{2}}$-action \mathbf{S}. Then \mathbb{T}^{σ} and \mathbf{S}^{σ} are relatively orbit equivalent if and only if $g p\left(\widetilde{\mathbf{T}}^{\sigma}\right)=g p\left(\widetilde{\mathbf{S}}^{\sigma}\right)$.

Relative orbit equivalence of finite extensions

Theorem (Gerber 1987)

Let \widetilde{T}^{σ} and \widetilde{S}^{σ} be n-point extensions of ergodic transformations T and S, respectively. Then \widetilde{T}^{σ} and \widetilde{S}^{σ} are relatively orbit equivalent if and only if $g p\left(\widetilde{T}^{\sigma}\right)=g p\left(\widetilde{S}^{\sigma}\right)$.

Theorem (Johnson-M)

Let $\widetilde{\mathbf{T}}^{\sigma}$ be an n-point extension of ergodic $\mathbb{Z}^{d_{1}}$-action \mathbf{T} and let $\widetilde{\mathbf{S}}^{\sigma}$ be an n-point extension of ergodic $\mathbb{Z}^{d_{2}}$-action \mathbf{S}. Then $\widetilde{\mathbf{T}}^{\sigma}$ and $\widetilde{\mathbf{S}}^{\sigma}$ are relatively orbit equivalent if and only if $g p\left(\widetilde{\mathbf{T}}^{\sigma}\right)=g p\left(\widetilde{\mathbf{S}}^{\sigma}\right)$.

Relative orbit equivalence of finite extensions

The key ingredient of the proof of the (\Leftarrow) direction of this theorem is the following relative version of Connes-Feldman-Weiss:

Theorem (Johnson-M)

Let $\widetilde{\mathbf{T}}^{\sigma}$ be an n-point extension of ergodic \mathbb{Z}^{d}-action \mathbf{T}. Then, for any ergodic \mathbb{Z}-action \widehat{T}, there is an n-point extension $\widetilde{\widehat{T}}^{\sigma}$ such that:
(1) $\widetilde{\mathbf{T}}^{\sigma}$ and $\widetilde{\widehat{T}}^{\sigma}$ are relatively orbit equivalent, and
(2) $g p\left(\widetilde{\mathbf{T}}^{\sigma}\right)=g p\left(\widetilde{\widetilde{T}}^{\sigma}\right)$.

