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Ambrose-Kakutani Theorem

Theorem (1942) Any measure-preserving flow
is measurably conjugate to a suspension flow.

For our purposes, a measure-preserving flow ,
is a system (X,F , µ, Tt) where:

I X is a compact metric space

I F is its Borel σ−algebra

I µ is a Borel probability measure on X

I Tt is an action of R by

invertible Borel maps that preserve µ

Tt is an action ⇔ Tt ◦ Ts = Tt+s for all t, s

Tt preserves µ ⇔ µ(T−t(A)) = µ(A) for every
Borel A, every t
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Ambrose-Kakutani Theorem

Theorem (1942) Any measure-preserving flow

is measurably conjugate to a suspension flow.

A suspension flow , also called a flow under

a function, looks like the picture on the next

page:
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Ambrose-Kakutani Theorem

Theorem (1942) Any measure-preserving flow

is measurably conjugate to a suspension flow.

To say that two flows are measurably conju-

gate means that there are invariant sets of full

measure in each space which can be mapped to

one another by an invertible measure-preserving

map α which commutes with the flows:

X
α−→ YyTt ySt

X
α−→ Y

(on sets of
full measure

in X, Y )
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Ambrose-Kakutani Theorem

Theorem (1942) Any measure-preserving flow

is measurably conjugate to a suspension flow.

The Ambrose-Kakutani result means that in

order to study the (measure-theoretic) proper-

ties of arbitrary flows, it is sufficient to study

flows under a function.

We say that flows under functions are “univer-

sal models” for flows.
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Main Question

Does such a “universal model” exist for measure-

preserving semiflows?

For our purposes, a measure-preserving semi-

flow is a system

(X,F , µ, Tt)

where

I X is a compact metric space

I F is its Borel σ−algebra

I µ is a Borel probability measure on X

I Tt is an action of [0,∞) by

(presumably non-invertible)

maps that preserve µ
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Candidate # 1: Suspension semiflows

If the return-time transformation in a suspen-

sion flow is not injective, then we obtain a

“suspension semiflow”:
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Problem: Suppose the given semiflow is such

that #(T−t(x)) > 1 for all t > 0, x ∈ X. Such

a flow cannot be conjugate to a suspension

semiflow because for points not at the top or

bottom of the space, #(S−t(y1, t1)) = 1 for

small t.
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Candidate # 2: Shifts on path spaces

Suppose X = [0,1] (every (X,F , µ) is “the
same as” [0,1] with Lebesgue measure). De-
fine for each x ∈ X a function fx : [0,∞) → R
by

fx(t) =
∫ t

0
Ts(x) ds

For all x ∈ X:

• fx(0) = 0 and 0 ≤ fx(t) ≤ t

• fx is increasing and continuous

• fx is differentiable for Lebesgue- a.e. t

We say fx is the “path” of x. Let Y be the set
of paths coming from (X,Tt).
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The shift map on Y

Given a function fx ∈ Y , the shift map Σt is

defined for each t ≥ 0 by

Σt(fx)(s) = fx(t+ s)− fx(t).

Σt deletes the graph of f on [0, t) and renor-

malizes so that f passes through the origin:

The shift map commutes with the semiflow:

Σt ◦ (x 7→ fx) = (x 7→ fx) ◦ Tt
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The problem : x 7→ fx may not be injective

Suppose x and x′ in X are distinct points such

that Ts(x) = Ts(x′) for all s > 0. Then

fx(t) =
∫ t

0
Ts(x) ds =

∫ t

0
Ts(x

′) ds = fx′(t)

so x and x′ have the same path.

In fact fx = fx′ iff Tt(x) = Tt(x′) ∀ t > 0.

In this case we say x and x′ are discontinuously

identified at time 0.

Discontinuous identifications are an obstacle

to representing semiflows as shift maps on path

spaces. We want to understand the prevalence

of such behavior.
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The Equivalence Classes [x]t

Simplifying Assumption (unnecessary in gen-

eral): Suppose there is a countable, dense sub-

semigroup S of [0,∞) such that for every s ∈ S,

Ts is continuous.

For each x ∈ X define

[x]t =


⋂

T−sTs(x) if t ≥ 0
s≥t,s∈S

{x} if t < 0

These sets are closed and increase in t for a

fixed x.

[x]t is the set of points whose forward orbits

under Tt coincide with the forward orbit of x

for all rational times greater than or equal to

t.

12



An Example
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Orbit Discontinuities

Notice t ≤ s⇒ [x]t ⊆ [x]s

Therefore for any x ∈ X, any t0 ∈ [0,∞):⋃
t<t0

[x]t ⊆
⋂
t>t0

[x]t.

We say that x ∈ X has an orbit discontinuity

at time t0 if ⋃
t<t0

[x]t 6=
⋂
t>t0

[x]t.

This is true iff there is some z ∈ X for which:

I Tt(z) = Tt(x)for all t > t0

I z is not the limit any sequence zn

with Ttn(zn) = Ttn(x) (tn < t0 ∀n)
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Two Examples

⋃
t<t0

[x]t = {x} z ∈
⋃
t<t0

[x]t

⋂
t>t0

[x]t = {x, z}
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Some results

• The set of times t where any x has an orbit

discontinuity is countable.

• x 7→ fx is not injective at x ⇔ x is discon-

tinuously identified with x′ at time 0 ⇒ x

has orbit discontinuity at time 0.

• The set of points which are discontinuously

identified at time 0 has measure zero with

respect to any measure preserved by the

semiflow.
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