Orbit discontinuities of Borel semiflows on Polish spaces

David McClendon
University of Maryland
CMS Winter Meeting
December 10, 2005

Borel Semiflows

Let X be an uncountable Polish space and suppose

$$
T_{t}: X \times \mathbb{R}^{+} \rightarrow X
$$

is a Borel action which preserves a Borel probability measure μ. Call $\left(X, T_{t}\right)$ a Borel semiflow.

Question: Is there a "universal model" for such semiflows? In particular, is there one fixed Polish space $\widehat{\mathbf{X}}$ and one fixed Borel semiflow $\widehat{\mathbf{T}}_{\mathbf{t}}$ on $\widehat{\mathbf{X}}$ such that every Borel semiflow is measurably conjugate to ($\widehat{\mathbf{X}}, \widehat{\mathbf{T}}_{\mathrm{t}}$)?

Example for discrete actions

Let Ω be a countable alphabet. Then $\left(\Omega^{\mathbb{Z}}, \sigma\right)$ is a universal model for measure-preserving \mathbb{Z} actions on a standard probability space (Sinai).

Consequence: A measure-preserving system (X, \mathcal{F}, μ, T) is determined by a shift-invariant measure on $\Omega^{\mathbb{Z}}$.

This makes it possible to describe "generic" behavior for m.p. transformations using the weak*-topology on $\mathcal{M}\left(\Omega^{\mathbb{Z}}\right)$.

A candidate for the universal model: shifts on path spaces

X (with topology \mathcal{T}) is uncountable Polish, so there is a Borel isomorphism γ between X and the Cantor set $2^{\mathbb{N}} \subset[0,1]$.

Put a topology \mathcal{T}^{\prime} on X so that γ is a homeomorphism; the Borel sets in the \mathcal{T} and $\mathcal{T}^{\prime}-$ topologies are the same. We can therefore assume X is the Cantor set.

Let Y be the set of increasing, continuous functions from \mathbb{R}^{+}to $\mathbb{R}^{+} . Y$ is a Polish space under the topology of uniform convergence on compact sets.

For each $x \in X$ define $f(x) \in Y$ by

$$
f_{x}(t)=\int_{0}^{t} T_{s}(x) d s
$$

Call f_{x} the "path of x ".

The shift map on Y

Define the shift map $\Sigma_{t}: Y \rightarrow Y$ is defined for each $t \geq 0$ by

$$
\Sigma_{t}(f)(s)=f(t+s)-f(t) .
$$

Σ_{t} deletes the graph of f on $[0, t)$ and renormalizes so that f passes through the origin:

The shift map commutes with the semiflow:

$$
\begin{array}{lll}
X \xrightarrow{x \mapsto f_{x}} & Y \\
\downarrow_{t} & \Sigma_{t} \\
X \xrightarrow{x \mapsto f_{x}} & Y
\end{array}
$$

The problem : $x \mapsto f_{x}$ may not be injective

Suppose x and x^{\prime} in X are distinct points such that $T_{s}(x)=T_{s}\left(x^{\prime}\right)$ for all $s>0$. Then

$$
f_{x}(t)=\int_{0}^{t} T_{s}(x) d s=\int_{0}^{t} T_{s}\left(x^{\prime}\right) d s=f_{x^{\prime}}(t)
$$

so x and x^{\prime} have the same path.
In fact $f_{x}=f_{x^{\prime}}$ iff $T_{t}(x)=T_{t}\left(x^{\prime}\right) \forall t>0$.
We say x and x^{\prime} are instaneously discontinuously identified (IDI) by the semiflow if $T_{t}(x)=$ $T_{t}\left(x^{\prime}\right) \forall t>0$.

Define $\operatorname{IDI}\left(T_{t}\right)=\{x \in X: x$ is IDI $\}$.
Define $\operatorname{IDI}(x)=\left\{t \geq 0: T_{t}(x) \in \operatorname{IDI}\left(T_{t}\right)\right\}$.
We want to understand the structure and prevalence of the IDIs of a semiflow, because IDIs are the obstacle to representing a semiflow as a shift map on a space of continuous paths.

IDIs and time-changes

Proposition: If S_{t} is a time change of T_{t}, then $\operatorname{IDI}\left(S_{t}\right)=I D I\left(T_{t}\right)$.

Outline of Proof: To say S_{t} is a time change of T_{t} means that \exists Borel cocycle

$$
\alpha: X \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}
$$

such that $S_{t}(x)=T_{\alpha(x, t)}(x)$.
Suppose x and y are IDI by S_{t}, i.e. $S_{t}(x)=$ $S_{t}(y) \forall t>0$.

This implies $\alpha(x, t)=\alpha(y, t) \forall t$.

So $T_{t}(x)=T_{t}(y)$ for all $t>0$ and thus $I D I\left(S_{t}\right) \subseteq$ $I D I\left(T_{t}\right)$.

By symmetric argument $I D I\left(T_{t}\right) \subseteq I D I\left(S_{t}\right)$.

Prevalence of IDIs

Main Theorem: For any $x \in X, I D I(x)$ is countable.

Consequence: Suppose that the semiflow T_{t} : $X \times \mathbb{R}^{+} \rightarrow X$ is jointly measurable in x and t and preserves a Borel probability measure μ on X.

Then by applying the ergodic theorem, we have $\mu\left(I D I\left(T_{t}\right)\right)=0$.

Outline of the Proof of the Main Theorem

Step 1: Construct an induced shift

Let S be a countable, dense, subsemigroup of \mathbb{R}^{+}containing \mathbb{Q}^{+}.

Consider
$X^{S}=$ set of functions $f: S \rightarrow X$

$$
\begin{gathered}
=\text { sequences }\left\{x_{0}, \ldots, x_{1 / 2}, \ldots, x_{s}, \ldots\right\} \text { of } \\
\text { points in } X \text { indexed by } S
\end{gathered}
$$

X^{S} (with the product \mathcal{T}^{\prime}-topology) is a Cantor space.

Define, for $s \in S$, the shift $\sigma_{s}: X^{S} \rightarrow X^{S}$:

$$
\sigma_{s}(f)(t)=f(s+t)
$$

σ_{s} maps cylinders to cylinders, so it is open, closed, and uniformly continuous.

Step 1 Continued

Define $i_{T}^{S}: X \rightarrow X^{S}$ by

$$
i_{T}^{S}(x)=\left(x, \ldots, T_{2 / 5}(x), \ldots, T_{1 / 2}(x), \ldots, T_{s}(x), \ldots\right)
$$

and let

$$
X_{1}^{S}=\overline{i_{T}^{S}(X)}
$$

Notice that for each $s \in S, \sigma_{s}$ maps X_{1}^{S} to X_{1}^{S}. In fact we have the following equivariance for $s \in S$:

$$
\begin{array}{cc}
X \xrightarrow{X} \xrightarrow{i_{T}^{S}} & X_{1}^{S} \\
\downarrow^{T_{s}} & \left.\right|^{\sigma_{s}} \\
X \xrightarrow{i_{T}^{S}} & X_{1}^{S}
\end{array}
$$

(X_{1}^{S}, σ_{s}) is called an induced shift of $\left(X, T_{t}\right)$. It models the S-part of the original action by continuous maps.

Step 2: Orbit discontinuities

For any $x \in X_{1}^{S}$ and any $t \in \mathbb{R}$, define

$$
[x]_{t}=\left\{\begin{array}{cc}
\bigcap_{s \geq t, s \in S} \sigma_{-s} \sigma_{s}(x) & \text { if } t \geq 0 \\
\{x\} & \text { if } t<0
\end{array}\right.
$$

$[x]_{t}$ is the set of points in X_{1}^{S} which map to the same point as x under σ_{s} for all $s \geq t$.

For each $x,[x]_{t}$ is a sequence of closed sets which increase in t.

For a fixed $t,[x]_{t}$ partition X_{1}^{S} into closed sets.

An example of the equivalence classes $[x]_{t}$

Definition of orbit discontinuity

Recall $t \leq s \Rightarrow[x]_{t} \subseteq[x]_{s}$. Therefore $\forall x$ and t, we have

$$
\overline{\bigcup_{t<t_{0}}[x]_{t} \subseteq \bigcap_{t>t_{0}}[x]_{t}}
$$

We say that $x \in X_{1}^{S}$ has an S-orbit discontinuity at time t_{0} if

$$
\overline{\bigcup_{t<t_{0}}[x]_{t}} \neq \bigcap_{t>t_{0}}[x]_{t} .
$$

This is true iff there is some $z \in X_{1}^{S}$ for which:

- $\sigma_{s}(z)=\sigma_{s}(x)$ for all $s \in S, s>t_{0}$
- z is not the limit of any sequence z_{n} with $\sigma_{s_{n}}\left(z_{n}\right)=\sigma_{s_{n}}(x)\left(s_{n}<t_{0} \forall n\right)$

A point $x \in X$ has an S-orbit discontinuity at time t_{0} if $i_{T}^{S}(x) \in X_{1}^{S}$ has an S-orbit discontinuity at time t_{0}.

Two Examples

x has orbit discontinuity at time \mathbf{t}_{0}

$$
\begin{array}{ll}
\bigcup_{t<t_{0}}[x]_{t} & =\{x\} \\
\bigcap_{t>t_{0}}[x]_{t}=\{x, z\} & z \in \overline{\bigcup_{t<t_{0}}[x]_{t}}
\end{array}
$$

x has no orbit disc. at time t_{0}

Some results on orbit discontinuities

- If x has an \mathbb{Q}^{+}-orbit disc. at time t_{0}, then it has an S-orbit disc. at time t_{0} with respect to any S containing \mathbb{Q}^{+}.

So we say x has an orbit discontinuity at time t_{0} if it has a \mathbb{Q}^{+}-orbit discontinuity at time t_{0}.

Let $D(x)$ be the set of times where x has an orbit discontinuity.

- $x \in I D I\left(T_{t}\right) \Rightarrow 0 \in D(x)$.
- x has an orbit discontinuity at time $t_{0} \Rightarrow$ any $y \in T_{-t}(x)$ has an orbit discontinuity at time $t+t_{0}$.
- $I D I(x) \subseteq D(x)$.

Step 3: Show $D(x)$ is countable

Recall

$$
\begin{equation*}
t_{0} \in D(x) \Leftrightarrow \overline{\bigcup_{t<t_{0}}[x]_{t}} \neq \bigcap_{t>t_{0}}[x]_{t} . \tag{1}
\end{equation*}
$$

Let \mathcal{P}_{k} be a refining, generating sequence of finite partitions for X_{1}^{S} such that every atom of every \mathcal{P}_{k} is a clopen set. Such a sequence of partitions exists for any Cantor space.

The above "non-equality" (1) is satisfied only if for some \mathcal{P}_{k} and some atom $A \in \mathcal{P}_{k}$,

1. $[x]_{t} \cap A \neq \emptyset \forall t>t_{0}$, and
2. If B is any atom of \mathcal{P}_{k} with $B \cap[x]_{t} \neq \emptyset$ for some $t<t_{0}$, then $d(a, b)>1 / k$ for any $a \in A, b \in B$.

There are only countably many choices for A and k.

A picture:

Recall $t_{0} \in D(x)$ only if for some k and some atom $A \in \mathcal{P}_{k}$,

1. $[x]_{t} \cap A \neq \emptyset \forall t>t_{0}$, and
2. If B is any atom of \mathcal{P}_{k} with $B \cap[x]_{t} \neq \emptyset$ for some $t<t_{0}$, then $d(a, b)>1 / k$ for any $a \in A, b \in B$.

This is part of my Ph.D. thesis conducted under the direction of Dan Rudolph.

Preprint and slides:

http://www.math.umd.edu/~dmm

