Orbit discontinuities of Borel semiflows on Polish spaces

David McClendon University of Maryland CMS Winter Meeting December 10, 2005

Borel Semiflows

Let \boldsymbol{X} be an uncountable Polish space and suppose

$$T_t: X \times \mathbb{R}^+ \to X$$

is a Borel action which preserves a Borel probability measure μ . Call (X, T_t) a *Borel semiflow*.

Question: Is there a "universal model" for such semiflows? In particular, is there one fixed Polish space $\widehat{\mathbf{X}}$ and one fixed Borel semiflow $\widehat{\mathbf{T}}_t$ on $\widehat{\mathbf{X}}$ such that every Borel semiflow is measurably conjugate to $(\widehat{\mathbf{X}},\widehat{\mathbf{T}}_t)$?

Example for discrete actions

Let Ω be a countable alphabet. Then $(\Omega^{\mathbb{Z}}, \sigma)$ is a universal model for measure-preserving \mathbb{Z} -actions on a standard probability space (Sinai).

Consequence: A measure-preserving system (X, \mathcal{F}, μ, T) is determined by a shift-invariant measure on $\Omega^{\mathbb{Z}}$.

This makes it possible to describe "generic" behavior for m.p. transformations using the weak^{*}-topology on $\mathcal{M}(\Omega^{\mathbb{Z}})$.

A candidate for the universal model: shifts on path spaces

X (with topology \mathcal{T}) is uncountable Polish, so there is a Borel isomorphism γ between X and the Cantor set $2^{\mathbb{N}} \subset [0, 1]$.

Put a topology \mathcal{T}' on X so that γ is a homeomorphism; the Borel sets in the \mathcal{T} and \mathcal{T}' topologies are the same. We can therefore assume X is the Cantor set.

Let Y be the set of increasing, continuous functions from \mathbb{R}^+ to \mathbb{R}^+ . Y is a Polish space under the topology of uniform convergence on compact sets.

For each $x \in X$ define $f(x) \in Y$ by

$$f_x(t) = \int_0^t T_s(x) \, ds.$$

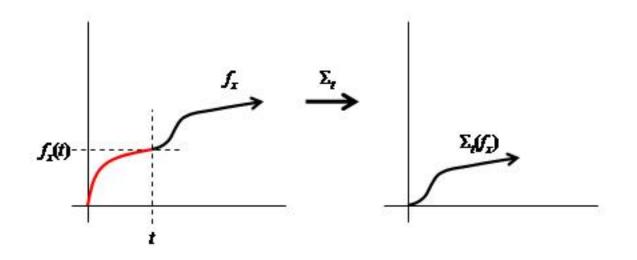
Call f_x the "path of x".

The shift map on Y

Define the *shift map* $\Sigma_t : Y \to Y$ is defined for each $t \ge 0$ by

$$\Sigma_t(f)(s) = f(t+s) - f(t).$$

 Σ_t deletes the graph of f on [0, t) and renormalizes so that f passes through the origin:



The shift map commutes with the semiflow:

$$\begin{array}{cccc} X & \xrightarrow{x \mapsto f_x} & Y \\ & \downarrow^{T_t} & \downarrow^{\Sigma_t} \\ X & \xrightarrow{x \mapsto f_x} & Y \end{array}$$

The problem : $x \mapsto f_x$ may not be injective

Suppose x and x' in X are distinct points such that $T_s(x) = T_s(x')$ for all s > 0. Then

$$f_x(t) = \int_0^t T_s(x) \, ds = \int_0^t T_s(x') \, ds = f_{x'}(t)$$

so x and x' have the same path.

In fact
$$f_x = f_{x'}$$
 iff $T_t(x) = T_t(x') \ \forall t > 0$.

We say x and x' are *instaneously discontinu*ously identified (IDI) by the semiflow if $T_t(x) = T_t(x') \forall t > 0$.

Define $IDI(T_t) = \{x \in X : x \text{ is IDI}\}.$

Define $IDI(x) = \{t \ge 0 : T_t(x) \in IDI(T_t)\}.$

We want to understand the structure and prevalence of the IDIs of a semiflow, because IDIs are the obstacle to representing a semiflow as a shift map on a space of continuous paths.

IDIs and time-changes

Proposition: If S_t is a time change of T_t , then $IDI(S_t) = IDI(T_t)$.

Outline of Proof: To say S_t is a time change of T_t means that \exists Borel cocycle

$$\alpha: X \times \mathbb{R}^+ \to \mathbb{R}^+$$

such that $S_t(x) = T_{\alpha(x,t)}(x)$.

Suppose x and y are IDI by S_t , i.e. $S_t(x) = S_t(y) \forall t > 0$.

This implies $\alpha(x,t) = \alpha(y,t) \forall t$.

So $T_t(x) = T_t(y)$ for all t > 0 and thus $IDI(S_t) \subseteq IDI(T_t)$.

By symmetric argument $IDI(T_t) \subseteq IDI(S_t)$.

Prevalence of IDIs

Main Theorem: For any $x \in X$, IDI(x) is countable.

Consequence: Suppose that the semiflow T_t : $X \times \mathbb{R}^+ \to X$ is jointly measurable in x and tand preserves a Borel probability measure μ on X.

Then by applying the ergodic theorem, we have $\mu(IDI(T_t)) = 0.$

Outline of the Proof of the Main Theorem

Step 1: Construct an induced shift

Let S be a countable, dense, subsemigroup of \mathbb{R}^+ containing \mathbb{Q}^+ .

Consider

 X^S (with the product $\mathcal{T}'-\text{topology})$ is a Cantor space.

Define, for $s \in S$, the shift $\sigma_s : X^S \to X^S$:

$$\sigma_s(f)(t) = f(s+t).$$

 σ_s maps cylinders to cylinders, so it is open, closed, and uniformly continuous.

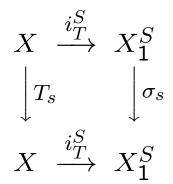
8

Step 1 Continued

Define $i_T^S : X \to X^S$ by $i_T^S(x) = (x, ..., T_{2/5}(x), ..., T_{1/2}(x), ..., T_s(x), ...)$ and let

$$X_1^S = \overline{i_T^S(X)}.$$

Notice that for each $s \in S$, σ_s maps X_1^S to X_1^S . In fact we have the following equivariance for $s \in S$:



 (X_1^S, σ_s) is called an *induced shift* of (X, T_t) . It models the *S*-part of the original action by continuous maps.

9

Step 2: Orbit discontinuities

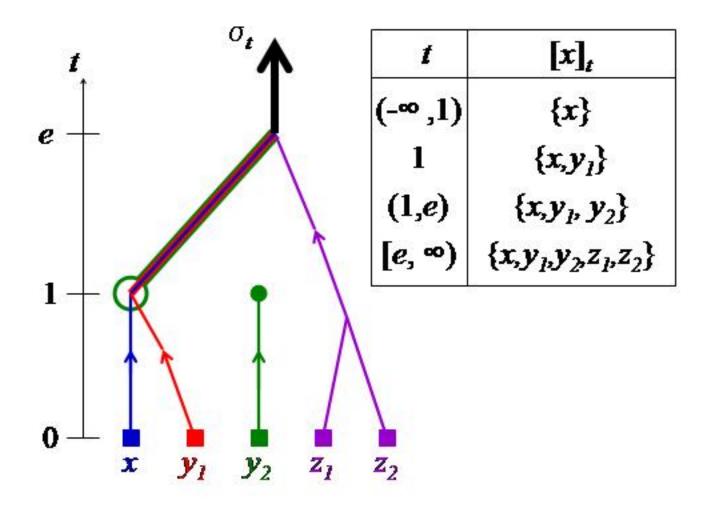
For any $x \in X_1^S$ and any $t \in \mathbb{R}$, define $[x]_t = \begin{cases} \bigcap_{s \ge t, s \in S} \sigma_{-s} \sigma_s(x) & \text{if } t \ge 0 \\ & \{x\} & \text{if } t < 0 \end{cases}$

 $[x]_t$ is the set of points in X_1^S which map to the same point as x under σ_s for all $s \ge t$.

For each x, $[x]_t$ is a sequence of closed sets which increase in t.

For a fixed t, $[x]_t$ partition X_1^S into closed sets.

An example of the equivalence classes $[x]_t$



Definition of orbit discontinuity

Recall $t \leq s \Rightarrow [x]_t \subseteq [x]_s$. Therefore $\forall x$ and t, we have

$$\overline{\bigcup_{t < t_0} [x]_t} \subseteq \bigcap_{t > t_0} [x]_t.$$

We say that $x \in X_1^S$ has an *S*-orbit discontinuity at time t_0 if

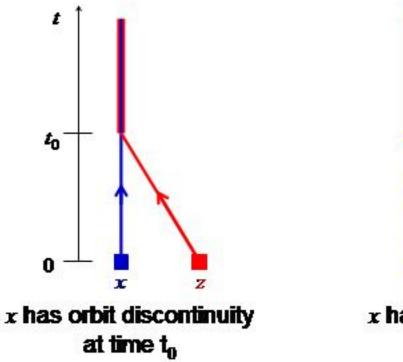
$$\overline{\bigcup_{t < t_0} [x]_t} \neq \bigcap_{t > t_0} [x]_t.$$

This is true iff there is some $z \in X_1^S$ for which:

- $\sigma_s(z) = \sigma_s(x)$ for all $s \in S, s > t_0$
- ► z is not the limit of any sequence z_n with $\sigma_{s_n}(z_n) = \sigma_{s_n}(x)$ $(s_n < t_0 \forall n)$

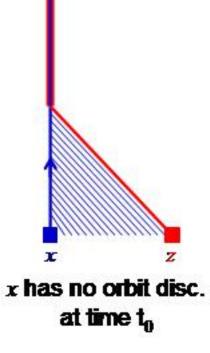
A point $x \in X$ has an *S*-orbit discontinuity at time t_0 if $i_T^S(x) \in X_1^S$ has an *S*-orbit discontinuity at time t_0 .

Two Examples



$$\overline{\bigcup_{t < t_0} [x]_t} = \{x\}$$

 $\bigcap_{t>t_0} [x]_t = \{x, z\}$



$$z \in \overline{\bigcup_{t < t_0} [x]_t}$$

13

Some results on orbit discontinuities

• If x has an \mathbb{Q}^+ -orbit disc. at time t_0 , then it has an S-orbit disc. at time t_0 with respect to any S containing \mathbb{Q}^+ .

So we say x has an orbit discontinuity at time t_0 if it has a \mathbb{Q}^+ -orbit discontinuity at time t_0 .

Let D(x) be the set of times where x has an orbit discontinuity.

- $x \in IDI(T_t) \Rightarrow 0 \in D(x).$
- x has an orbit discontinuity at time $t_0 \Rightarrow$ any $y \in T_{-t}(x)$ has an orbit discontinuity at time $t + t_0$.
- $IDI(x) \subseteq D(x)$.

Step 3: Show D(x) is countable

Recall

$$t_0 \in D(x) \Leftrightarrow \overline{\bigcup_{t < t_0} [x]_t} \neq \bigcap_{t > t_0} [x]_t.$$
(1)

Let \mathcal{P}_k be a refining, generating sequence of finite partitions for X_1^S such that every atom of every \mathcal{P}_k is a clopen set. Such a sequence of partitions exists for any Cantor space.

The above "non-equality" (1) is satisfied only if for some \mathcal{P}_k and some atom $A \in \mathcal{P}_k$,

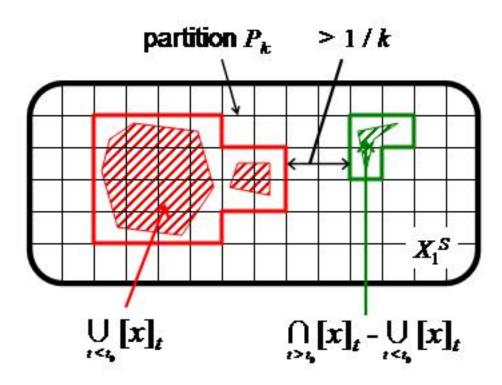
- 1. $[x]_t \cap A \neq \emptyset \forall t > t_0$, and
- 2. If B is any atom of \mathcal{P}_k with $B \cap [x]_t \neq \emptyset$ for some $t < t_0$, then d(a,b) > 1/k for any $a \in A, b \in B$.

There are only countably many choices for A and k.

A picture:

Recall $t_0 \in D(x)$ only if for some k and some atom $A \in \mathcal{P}_k$,

- 1. $[x]_t \cap A \neq \emptyset \forall t > t_0$, and
- 2. If *B* is any atom of \mathcal{P}_k with $B \cap [x]_t \neq \emptyset$ for some $t < t_0$, then d(a,b) > 1/k for any $a \in A, b \in B$.



This is part of my Ph.D. thesis conducted under the direction of Dan Rudolph.

Preprint and slides:

http://www.math.umd.edu/~dmm