Speedups of ergodic \mathbb{Z}^d -actions

Aimee S.A. Johnson Swarthmore College

David McClendon Ferris State University

AMS-MAA Joint Meetings Baltimore, MD January 18, 2014

Some history

Theorem 1 (Arnoux, Ornstein, Weiss 1985) Given any two ergodic measure-preserving transformations, there is a speedup of one which is isomorphic to the other.

This result was a consequence of a theorem in the same paper explaining how arbitrary measure-preserving systems could be represented by models arising from cutting and stacking constructions.

Some terminology

Theorem 1 Given any two ergodic measure-preserving transformations, there is a speedup of one which is isomorphic to the other.

A measure-preserving transformation (m.p.t.) is a quadruple (X, \mathcal{X}, μ, T) , where (X, \mathcal{X}, μ) is a Lebesgue probability space and $T: X \to X$ is measurable $(T^{-1}(A) \in \mathcal{X})$ for all $A \in \mathcal{X}$, measure-preserving $(\mu(T^{-1}(A)) = \mu(A))$ for all $A \in \mathcal{X}$, and $A \in \mathcal{X}$, and $A \in \mathcal{X}$.

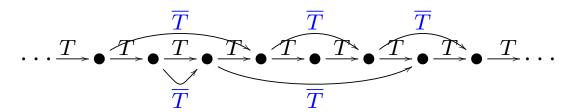
An m.p.t. is *ergodic* if its invariant sets all have zero or full measure.

Two m.p.t.s (X, \mathcal{X}, μ, T) and $(X', \mathcal{X}', \mu', T')$ are *isomorphic* if \exists an isomorphism $\phi: (X, \mathcal{X}, \mu) \to (X', \mathcal{X}', \mu')$ satisfying $\phi \circ T = T' \circ \phi$ for μ -a.e. $x \in X$.

Speedups

Theorem 1 Given any two ergodic measure-preserving transformations, there is a speedup of one which is isomorphic to the other.

Given m.p.t.s (X, \mathcal{X}, μ, T) and $(X, \mathcal{X}, \mu, \overline{T})$, we say \overline{T} is a *speedup* of T if there exists a measurable function $v: X \to \{1, 2, 3, ...\}$ such that $\overline{T}(x) = T^{v(x)}(x)$ a.s.



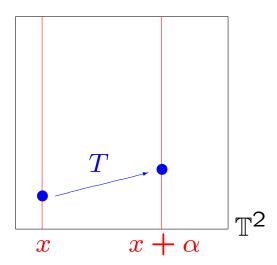
Remark: by definition, speedups are $(\mu$ -a.s.) defined on the entire space, preserve μ and are 1-1.

A relative version of the AOW result

Theorem 2 (Babichev, Burton, Fieldsteel 2011) Fix a 2nd ctble, locally cpct group G. Given any two ergodic group extensions by G, there is a relative speedup of one which is relatively isomorphic to the other.

Application: Classification of n-point and certain countable extensions up to speedup equivalence.

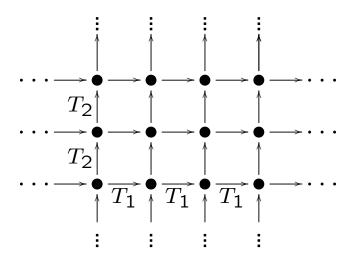
Example of a group extension: $T: \mathbb{T}^2 \to \mathbb{T}^2$ defined by $T(x,y)=(x+\alpha,y+x)$:



What about \mathbb{Z}^2 (or \mathbb{Z}^d) actions?

Two commuting m.p. transformations T_1 and T_2 on the same space comprise a \mathbb{Z}^2 -action T, where $\mathbf{t}=(t_1,t_2)\in\mathbb{Z}^2$ acts on X by

$$T_{\mathbf{t}}(x) = T_1^{t_1} T_2^{t_2}(x).$$



Question: What is a "speedup" of such an action?

\mathbb{Z}^2 -speedups

Definition: A *cone* C is the intersection of $\mathbb{Z}^2 - \{0\}$ with any open, connected subset of \mathbb{R}^2 bounded by two distinct rays emanating from the origin.

Definition: A C-speedup of \mathbb{Z}^2 -system $\mathbf{T}=(T_1,T_2)$ is another \mathbb{Z}^2 -system $\overline{\mathbf{T}}=(\overline{T}_1,\overline{T}_2)$ (defined on the same space as \mathbf{T}) such that

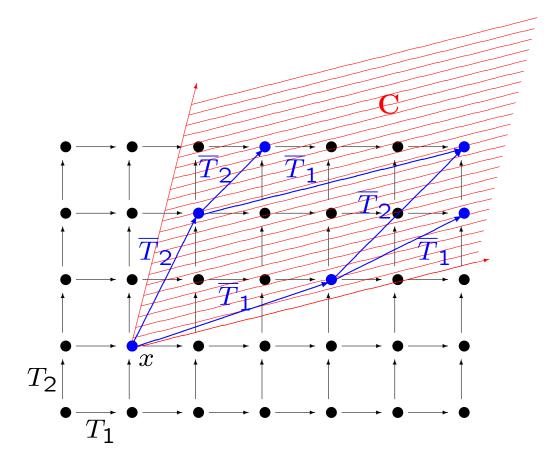
$$\overline{T}_1(x) = T_1^{v_{11}(x)} \circ T_2^{v_{12}(x)}(x)$$

$$\overline{T}_2(x) = T_1^{v_{21}(x)} \circ T_2^{v_{22}(x)}(x)$$

for some measurable function ${\bf v}=({\bf v}_1,{\bf v}_2)=((v_{11},v_{12}),(v_{21},v_{22}))$: $X\to {\bf C}^2.$

Remark: The v must be defined so that \overline{T}_1 and \overline{T}_2 commute (so one cannot simply speed up T_1 and T_2 independently to obtain a speedup of T).

A picture to explain



Here, $\overline{\mathbf{T}} = (\overline{T}_1, \overline{T}_2)$ is a C-speedup of $\mathbf{T} = (T_1, T_2)$. In particular, for the indicated point x, we have

$$\mathbf{v}(x) = ((3,1),(1,2)).$$

Group extensions of \mathbb{Z}^d actions

A *cocycle* for \mathbb{Z}^d -action $(X, \mathcal{X}, \mu, \mathbf{T})$ is a measurable function $\sigma: X \times \mathbb{Z}^d \to G$ satisfying

$$\sigma_{\mathbf{v}}(\mathbf{T}_{\mathbf{w}}(x)) \, \sigma_{\mathbf{w}}(x) = \sigma_{\mathbf{v}+\mathbf{w}}(x)$$

for all $\mathbf{v}, \mathbf{w} \in \mathbb{Z}^2$ and (almost) all $x \in X$.

(Here we denote $\sigma(x, \mathbf{v})$ by $\sigma_{\mathbf{v}}(x)$.)

Each cocycle σ generates a G-extension of T, i.e. a \mathbb{Z}^d -action $(X \times G, \mathcal{X} \times \mathcal{G}, \mu \times Haar, \mathbf{T}^{\sigma})$ defined by setting

$$\mathbf{T}_{\mathbf{v}}^{\sigma}(x,g) = (\mathbf{T}_{\mathbf{v}}(x), \sigma_{\mathbf{v}}(x)g)$$

for each $\mathbf{v} \in \mathbb{Z}^d$.

(Different σ may yield different G-extensions \mathbf{T}^{σ} for the same "base action" \mathbf{T} .)

Our main result

Theorem 3 (Johnson-M) Let G be a locally compact, second countable group. Given any two ergodic \mathbb{Z}^d -group extensions \mathbf{T}^{σ} and \mathbf{S}^{σ} , and given any cone $\mathbf{C} \subseteq \mathbb{Z}^d$, there is a relative \mathbf{C} -speedup of \mathbf{T}^{σ} which is relatively isomorphic to \mathbf{S}^{σ} .

What follows is a sketch of the proof of this theorem when d=2 and $G=\{e\}$ (with occasional brief remarks about what changes in the proof for more general G.)

We will refer to \mathbf{T}^{σ} as the **bullet action** and \mathbf{S}^{σ} as the **target** action. The goal will be **to speed up the bullet, so that it is isomorphic to the target**.

Preliminaries: Rohklin towers

A Rohklin tower τ for a m.p. \mathbb{Z}^d —action $(Y, \mathcal{Y}, \nu, \mathbf{S})$ is a collection of disjoint measurable sets of the form

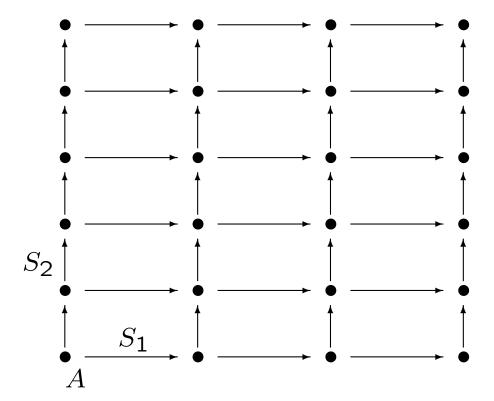
$$\{\mathbf{S}_{(j_1,j_2,...,j_d)}(A) : 0 \le j_i < n_i \, \forall i\}$$

for some $A \in \mathcal{Y}$ with $\nu(A) > 0$. We refer to $\mathbf{n} = (n_1, ..., n_d)$ as the *size* of the Rohklin tower.

Here is a tower (in d = 2) of height (4,6):

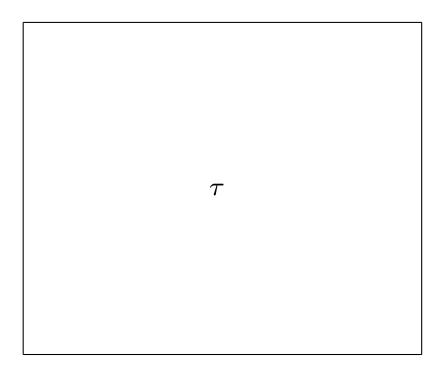
Preliminaries: Rohklin towers

Let's represent the same tower this way (each dot represents a set):



Preliminaries: Rohklin towers

Even better, let's just think of a tower as a picture like this (in reality, this rectangle is an array of sets mapped to each other by \mathbf{S}):



Preliminaries: Castles

A *castle* \mathcal{C} for a m.p. \mathbb{Z}^d -action $(Y, \mathcal{Y}, \nu, \mathbf{S})$ is a collection of finitely many disjoint Rohklin towers:

 au_3

 au_1 au_2

Step 1: generate the target action via cutting and stacking of castles

Lemma 1 (essentially AOW) Let S be a \mathbb{Z}^d- action. Then there is a sequence $\{\mathcal{C}_k\}_{k=1}^{\infty}$ of castles for S with the following properties:

- 1. For each k, all the towers comprising C_k have the same height.
- 2. Each C_{k+1} is obtained from C_k via cutting and stacking (thus $C_k \subseteq C_{k+1}$);
- 3. $\nu\left(\bigcup_{k=1}^{\infty} C_k\right) = 1$;
- 4. The levels of the towers of all of the C_k generate \mathcal{Y} .

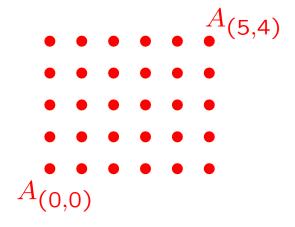
(We actually require a bit more than this if $G \neq \{e\}$.)

Step 2: choose sets in the bullet action to mimic the first castle

Start with castle C_1 for $(Y, \mathcal{Y}, \nu, \mathbf{S})$. For each level L of each tower in C_1 , choose a measurable set of X with measure equal to the measure of L. Choose these sets so that they are all disjoint, and index them in the same way the levels of C_1 are arranged.

Given tower ... choose sets $\tau \in \mathcal{C}_1 \subseteq Y \dots \qquad A_{\mathbf{v}} \subseteq X$

au



Step 3: arrange the sets so that they form orbits of a partially defined speedup of the bullet action

Lemma 2 Given disjoint, measurable subsets $\{A_{(j_1,j_2)}\}_{0 \le j_1 < n_1, 0 \le j_2 < n_2}$ of X, each having the same measure, one can build a partial speedup of \mathbf{T} on the sets, i.e. construct measurable functions \mathbf{v}_1 and \mathbf{v}_2 taking values in \mathbf{C} so that:

1.
$$T_{v_1}(A_{(j_1,j_2)}) = A_{(j_1+1,j_2)}(a.s.);$$

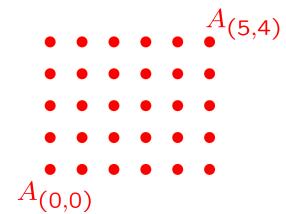
2.
$$T_{v_2}(A_{(j_1,j_2)}) = A_{(j_1,j_2+1)}(a.s.);$$

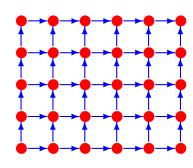
3.
$$T_{v_1} \circ T_{v_2} = T_{v_2} \circ T_{v_1}$$
.

4. (Also, extra stuff if $G \neq \{e\}$.)

Given sets
$$A_{\mathbf{v}} \subseteq X...$$

Given sets ... construct
$$A_{\mathbf{v}} \subseteq X$$
... $\overline{\mathbf{T}}_1 = (\mathbf{T}_{\mathbf{v}_1}, \mathbf{T}_{\mathbf{v}_2})$





Step 3 continued

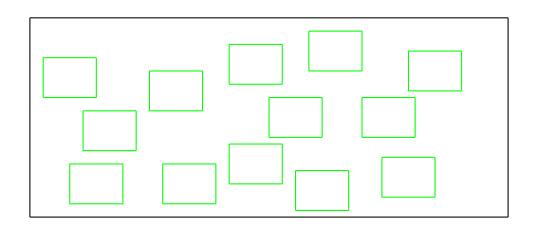
After repeating steps 1 and 2 for each tower in \mathcal{C}_1 , we get a partially defined speedup \overline{T}_1 of T which is "level-wise isomorphic" to the action of S on its castle \mathcal{C}_1 .

Given each ... we get a tower tower for S... $\{A_v\}$ for \overline{T}_1

Step 4: from one castle to the next

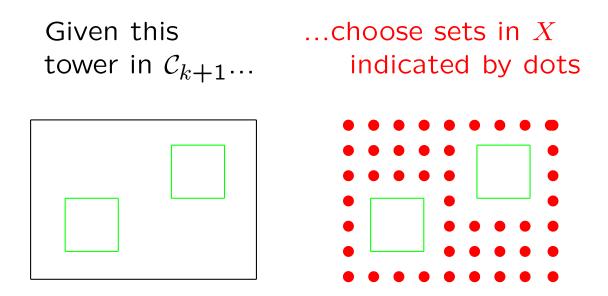
Suppose we have produced a partially defined speedup $\overline{\mathbf{T}}_k$ of \mathbf{T} which is isomorphic to \mathbf{S} on the levels of the towers of some castle \mathcal{C}_k .

Recall that each \mathcal{C}_{k+1} is obtained from \mathcal{C}_k by cutting and stacking. Thus we can view \mathcal{C}_{k+1} as a collection of towers that look like this, where the green towers are towers in \mathcal{C}_k :



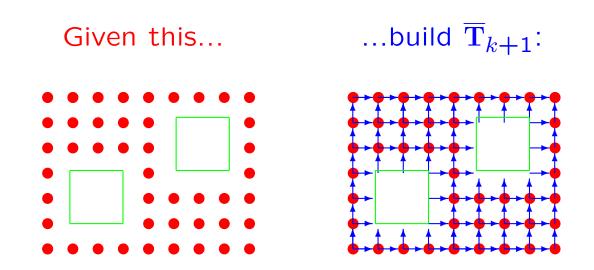
Step 4: from one castle to the next

Pick measurable sets of X (disjoint from each other and from the previously chosen sets) corresponding to the levels of these towers which were not in the previous tower (i.e. weren't green).



Step 4: from one castle to the next

Theorem 4 (Quilting Theorem) (J-M) Given the picture described on the previous slide, one can build a partial C—speedup on all the subsets of X which extends all the partial speedups already constructed on the green "patches".



This produces a partially-defined C-speedup $\overline{\mathbf{T}}_{k+1}$ of \mathbf{T} extending $\overline{\mathbf{T}}_k$, which is "level-wise isomorphic" to the action of \mathbf{S} on its castle \mathcal{C}_{k+1} .

Step 5: repeat procedure of step 4 indefinitely

This produces a sequence of partially-defined speedups $\overline{\mathbf{T}}_k$ of \mathbf{T} , defined on more and more of X. Since the union of the castles \mathcal{C}_k has full measure, we obtain a speedup

$$\overline{\mathbf{T}} = \lim_{k \to \infty} \overline{\mathbf{T}}_k$$

which is defined a.e. on X.

Since $\overline{\mathbf{T}}_k$ is level-wise isomorphic to the action of \mathbf{S} on the levels of \mathcal{C}_k , and the levels of the castles generate the full σ -algebra \mathcal{Y} , we obtain $\overline{\mathbf{T}} \cong \mathbf{S}$.