Speedups of ergodic \mathbb{Z}^{d}-actions

Aimee S.A. Johnson
Swarthmore College
David McClendon
Ferris State University

AMS-MAA Joint Meetings
Baltimore, MD
January 18, 2014

Some history

Theorem 1 (Arnoux, Ornstein, Weiss 1985) Given any two ergodic measure-preserving transformations, there is a speedup of one which is isomorphic to the other.

This result was a consequence of a theorem in the same paper explaining how arbitrary measure-preserving systems could be represented by models arising from cutting and stacking constructions.

Some terminology

Theorem 1 Given any two ergodic measure-preserving transformations, there is a speedup of one which is isomorphic to the other.

A measure-preserving transformation (m.p.t.) is a quadruple (X, \mathcal{X}, μ, T), where (X, \mathcal{X}, μ) is a Lebesgue probability space and $T: X \rightarrow X$ is measurable $\left(T^{-1}(A) \in \mathcal{X}\right.$ for all $A \in \mathcal{X}$), measurepreserving $\left(\mu\left(T^{-1}(A)\right)=\mu(A)\right.$ for all $\left.A \in \mathcal{X}\right)$, and $1-1$.

An m.p.t. is ergodic if its invariant sets all have zero or full measure.

Two m.p.t.s (X, \mathcal{X}, μ, T) and ($X^{\prime}, \mathcal{X}^{\prime}, \mu^{\prime}, T^{\prime}$) are isomorphic if \exists an isomorphism $\phi:(X, \mathcal{X}, \mu) \rightarrow\left(X^{\prime}, \mathcal{X}^{\prime}, \mu^{\prime}\right)$ satisfying $\phi \circ T=T^{\prime} \circ \phi$ for μ-a.e. $x \in X$.

Speedups

Theorem 1 Given any two ergodic measure-preserving transformations, there is a speedup of one which is isomorphic to the other.

Given m.p.t.s (X, \mathcal{X}, μ, T) and $(X, \mathcal{X}, \mu, \bar{T})$, we say \bar{T} is a speedup of T if there exists a measurable function $v: X \rightarrow\{1,2,3, \ldots\}$ such that $\bar{T}(x)=T^{v(x)}(x)$ a.s.

Remark: by definition, speedups are (μ-a.s.) defined on the entire space, preserve μ and are 1-1.

A relative version of the AOW result

Theorem 2 (Babichev, Burton, Fieldsteel 2011) Fix a 2nd ctble, locally cpct group G. Given any two ergodic group extensions by G, there is a relative speedup of one which is relatively isomorphic to the other.

Application: Classification of n-point and certain countable extensions up to speedup equivalence.

Example of a group extension: $T: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ defined by $T(x, y)=(x+\alpha, y+x):$

What about \mathbb{Z}^{2} (or \mathbb{Z}^{d}) actions?

Two commuting m.p. transformations T_{1} and T_{2} on the same space comprise a \mathbb{Z}^{2}-action \mathbf{T}, where $\mathbf{t}=\left(t_{1}, t_{2}\right) \in \mathbb{Z}^{2}$ acts on X by

$$
\mathbf{T}_{\mathbf{t}}(x)=T_{1}^{t_{1}} T_{2}^{t_{2}}(x)
$$

Question: What is a "speedup" of such an action?

\mathbb{Z}^{2}-speedups

Definition: A cone \mathbf{C} is the intersection of $\mathbb{Z}^{2}-\{\mathbf{0}\}$ with any open, connected subset of \mathbb{R}^{2} bounded by two distinct rays emanating from the origin.

Definition: A $\mathbf{C}-$ speedup of \mathbb{Z}^{2}-system $\mathbf{T}=\left(T_{1}, T_{2}\right)$ is another \mathbb{Z}^{2}-system $\overline{\mathbf{T}}=\left(\bar{T}_{1}, \bar{T}_{2}\right)$ (defined on the same space as \mathbf{T}) such that

$$
\begin{aligned}
& \bar{T}_{1}(x)=T_{1}^{v_{11}(x)} \circ T_{2}^{v_{12}(x)}(x) \\
& \bar{T}_{2}(x)=T_{1}^{v_{21}(x)} \circ T_{2}^{v_{22}(x)}(x)
\end{aligned}
$$

for some measurable function $\mathbf{v}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\left(\left(v_{11}, v_{12}\right),\left(v_{21}, v_{22}\right)\right)$: $X \rightarrow \mathbf{C}^{2}$.

Remark: The v must be defined so that \bar{T}_{1} and \bar{T}_{2} commute (so one cannot simply speed up T_{1} and T_{2} independently to obtain a speedup of \mathbf{T}).

A picture to explain

Here, $\overline{\mathbf{T}}=\left(\bar{T}_{1}, \bar{T}_{2}\right)$ is a \mathbf{C}-speedup of $\mathbf{T}=\left(T_{1}, T_{2}\right)$. In particular, for the indicated point x, we have

$$
\mathbf{v}(x)=((3,1),(1,2)) .
$$

Group extensions of \mathbb{Z}^{d} actions

A cocycle for \mathbb{Z}^{d}-action $(X, \mathcal{X}, \mu, \mathbf{T})$ is a measurable function $\sigma: X \times \mathbb{Z}^{d} \rightarrow G$ satisfying

$$
\sigma_{\mathbf{v}}\left(\mathbf{T}_{\mathbf{w}}(x)\right) \sigma_{\mathbf{w}}(x)=\sigma_{\mathbf{v}+\mathbf{w}}(x)
$$

for all $\mathbf{v}, \mathbf{w} \in \mathbb{Z}^{2}$ and (almost) all $x \in X$.
(Here we denote $\sigma(x, \mathbf{v})$ by $\sigma_{\mathrm{v}}(x)$.)
Each cocycle σ generates a G-extension of T , i.e. a \mathbb{Z}^{d}-action ($X \times G, \mathcal{X} \times \mathcal{G}, \mu \times$ Haar, \mathbf{T}^{σ}) defined by setting

$$
\mathbf{T}_{\mathbf{V}}^{\sigma}(x, g)=\left(\mathbf{T}_{\mathbf{V}}(x), \sigma_{\mathbf{V}}(x) g\right)
$$

for each $\mathbf{v} \in \mathbb{Z}^{d}$.
(Different σ may yield different G-extensions \mathbf{T}^{σ} for the same "base action" T.)

Our main result

Theorem 3 (Johnson-M) Let G be a locally compact, second countable group. Given any two ergodic \mathbb{Z}^{d}-group extensions \mathbf{T}^{σ} and \mathbf{S}^{σ}, and given any cone $\mathbf{C} \subseteq \mathbb{Z}^{d}$, there is a relative \mathbf{C}-speedup of \mathbf{T}^{σ} which is relatively isomorphic to \mathbf{S}^{σ}.

What follows is a sketch of the proof of this theorem when $d=2$ and $G=\{e\}$ (with occasional brief remarks about what changes in the proof for more general G.)

We will refer to \mathbf{T}^{σ} as the bullet action and \mathbf{S}^{σ} as the target action. The goal will be to speed up the bullet, so that it is isomorphic to the target.

Preliminaries: Rohklin towers

A Rohklin tower τ for a m.p. \mathbb{Z}^{d}-action $(Y, \mathcal{Y}, \nu, \mathbf{S})$ is a collection of disjoint measurable sets of the form

$$
\left\{\mathbf{S}_{\left(j_{1}, j_{2}, \ldots, j_{d}\right)}(A): 0 \leq j_{i}<n_{i} \forall i\right\}
$$

for some $A \in \mathcal{Y}$ with $\nu(A)>0$. We refer to $\mathbf{n}=\left(n_{1}, \ldots, n_{d}\right)$ as the size of the Rohklin tower.

Here is a tower (in $d=2$) of height (4, 6):

-	-	-	$\mathrm{S}_{(3,5)}(A)$
-	-	-	-
$S_{2}-$	-	-	-
$\mathrm{S}_{(\overline{0,1)}}(A)$	-	-	-
\bar{A}	S_{1}	-	$\mathbf{S}_{(2,0)}(A)$

Preliminaries: Rohklin towers

Let's represent the same tower this way (each dot represents a set):

Preliminaries: Rohklin towers

Even better, let's just think of a tower as a picture like this (in reality, this rectangle is an array of sets mapped to each other by S):

Preliminaries: Castles

A castle \mathcal{C} for a m.p. \mathbb{Z}^{d}-action $(Y, \mathcal{Y}, \nu, \mathbf{S})$ is a collection of finitely many disjoint Rohklin towers:

Step 1: generate the target action via cutting and stacking of castles

Lemma 1 (essentially $A O W$) Let S be a \mathbb{Z}^{d} - action. Then there is a sequence $\left\{\mathcal{C}_{k}\right\}_{k=1}^{\infty}$ of castles for \mathbf{S} with the following properties:

1. For each k, all the towers comprising \mathcal{C}_{k} have the same height.
2. Each \mathcal{C}_{k+1} is obtained from \mathcal{C}_{k} via cutting and stacking (thus $\left.\mathcal{C}_{k} \subseteq \mathcal{C}_{k+1}\right) ;$
3. $\nu\left(\cup_{k=1}^{\infty} \mathcal{C}_{k}\right)=1$;
4. The levels of the towers of all of the \mathcal{C}_{k} generate \mathcal{Y}.
(We actually require a bit more than this if $G \neq\{e\}$.)

Step 2: choose sets in the bullet action to mimic the first castle

Start with castle \mathcal{C}_{1} for $(Y, \mathcal{Y}, \nu, \mathbf{S})$. For each level L of each tower in \mathcal{C}_{1}, choose a measurable set of X with measure equal to the measure of L. Choose these sets so that they are all disjoint, and index them in the same way the levels of \mathcal{C}_{1} are arranged.

$$
\begin{array}{ll}
\text { Given tower } & \ldots \\
\tau \in \mathcal{C}_{1} \subseteq Y \ldots & A_{\mathrm{v}} \subseteq X
\end{array}
$$

Step 3: arrange the sets so that they form orbits of a partially defined speedup of the bullet action

Lemma 2 Given disjoint, measurable subsets $\left\{A_{\left(j_{1}, j_{2}\right)}\right\}_{0 \leq j_{1}<n_{1}, 0 \leq j_{2}<n_{2}}$ of X, each having the same measure, one can build a partial speedup of T on the sets, i.e. construct measurable functions \mathbf{v}_{1} and \mathbf{v}_{2} taking values in \mathbf{C} so that:

1. $\mathbf{T}_{\mathbf{v}_{1}}\left(A_{\left(j_{1}, j_{2}\right)}\right)=A_{\left(j_{1}+1, j_{2}\right)}$ (a.s.) ;
2. $\mathbf{T}_{\mathrm{v}_{2}}\left(A_{\left(j_{1}, j_{2}\right)}\right)=A_{\left(j_{1}, j_{2}+1\right)}$ (a.s.);
3. $\mathbf{T}_{\mathbf{v}_{1}} \circ \mathbf{T}_{\mathbf{v}_{2}}=\mathbf{T}_{\mathbf{v}_{2}} \circ \mathbf{T}_{\mathbf{v}_{1}}$.
4. (Also, extra stuff if $G \neq\{e\}$.)

$$
\begin{array}{ll}
\text { Given sets } & \cdots \text { construct } \\
A_{\mathrm{v}} \subseteq X \ldots & \\
\overline{\mathbf{T}}_{1}=\left(\mathbf{T}_{\mathrm{v}_{1}}, \mathbf{T}_{\mathrm{v}_{2}}\right)
\end{array}
$$

Step 3 continued

After repeating steps 1 and 2 for each tower in \mathcal{C}_{1}, we get a partially defined speedup $\overline{\mathrm{T}}_{1}$ of \mathbf{T} which is "level-wise isomorphic" to the action of S on its castle \mathcal{C}_{1}.

Step 4: from one castle to the next

Suppose we have produced a partially defined speedup $\overline{\mathrm{T}}_{k}$ of \mathbf{T} which is isomorphic to S on the levels of the towers of some castle \mathcal{C}_{k}.

Recall that each \mathcal{C}_{k+1} is obtained from \mathcal{C}_{k} by cutting and stacking. Thus we can view \mathcal{C}_{k+1} as a collection of towers that look like this, where the green towers are towers in \mathcal{C}_{k} :

Step 4: from one castle to the next

Pick measurable sets of X (disjoint from each other and from the previously chosen sets) corresponding to the levels of these towers which were not in the previous tower (i.e. weren't green).

Step 4: from one castle to the next

Theorem 4 (Quilting Theorem) (J-M) Given the picture described on the previous slide, one can build a partial C -speedup on all the subsets of X which extends all the partial speedups already constructed on the green "patches".

This produces a partially-defined $\mathbf{C}-$ speedup $\overline{\mathbf{T}}_{k+1}$ of \mathbf{T} extending $\overline{\mathrm{T}}_{k}$, which is "level-wise isomorphic" to the action of S on its castle \mathcal{C}_{k+1}.

Step 5: repeat procedure of step 4 indefinitely

This produces a sequence of partially-defined speedups $\overline{\mathrm{T}}_{k}$ of \mathbf{T}, defined on more and more of X. Since the union of the castles \mathcal{C}_{k} has full measure, we obtain a speedup

$$
\overline{\mathbf{T}}=\lim _{k \rightarrow \infty} \overline{\mathbf{T}}_{k}
$$

which is defined a.e. on X.

Since $\overline{\mathbf{T}}_{k}$ is level-wise isomorphic to the action of \mathbf{S} on the levels of \mathcal{C}_{k}, and the levels of the castles generate the full σ-algebra \mathcal{Y}, we obtain $\overline{\mathbf{T}} \cong \mathbf{s}$.

