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Some history

Theorem 1 (Arnoux, Ornstein, Weiss 1985) Given any two er-

godic measure-preserving transformations, there is a speedup of

one which is isomorphic to the other.

This result was a consequence of a theorem in the same pa-

per explaining how arbitrary measure-preserving systems could

be represented by models arising from cutting and stacking con-

structions.
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Some terminology

Theorem 1 Given any two ergodic measure-preserving transfor-
mations, there is a speedup of one which is isomorphic to the
other.

A measure-preserving transformation (m.p.t.) is a quadruple
(X,X , µ, T ), where (X,X , µ) is a Lebesgue probability space and
T : X → X is measurable (T−1(A) ∈ X for all A ∈ X ), measure-
preserving (µ(T−1(A)) = µ(A) for all A ∈ X ), and 1− 1.

An m.p.t. is ergodic if its invariant sets all have zero or full
measure.

Two m.p.t.s (X,X , µ, T ) and (X ′,X ′, µ′, T ′) are isomorphic if ∃ an
isomorphism φ : (X,X , µ) → (X ′,X ′, µ′) satisfying φ ◦ T = T ′ ◦ φ
for µ−a.e. x ∈ X.
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Speedups

Theorem 1 Given any two ergodic measure-preserving transfor-
mations, there is a speedup of one which is isomorphic to the
other.

Given m.p.t.s (X,X , µ, T ) and (X,X , µ, T ), we say T is a speedup
of T if there exists a measurable function v : X → {1,2,3, ...}
such that T (x) = T v(x)(x) a.s.

· · · T //• T //

T
%%• T //

T

@@• T //

T

88• T //

T
##• T //• T //

T
##• T //• T // · · ·

Remark: by definition, speedups are (µ−a.s.) defined on the
entire space, preserve µ and are 1− 1 .
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A relative version of the AOW result

Theorem 2 (Babichev, Burton, Fieldsteel 2011) Fix a 2nd ct-

ble, locally cpct group G. Given any two ergodic group exten-

sions by G, there is a relative speedup of one which is relatively

isomorphic to the other.

Application: Classification of n−point and certain countable

extensions up to speedup equivalence.

Example of a group extension: T : T2 → T2 defined by

T (x, y) = (x+ α, y + x):

4



T2
x x+ α

• ����
���: •T



What about Z2 (or Zd) actions?

Two commuting m.p. transformations T1 and T2 on the same
space comprise a Z2−action T, where t = (t1, t2) ∈ Z2 acts on X

by

Tt(x) = T
t1
1 T

t2
2 (x).
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Question: What is a “speedup” of such an action?



Z2−speedups

Definition: A cone C is the intersection of Z2 − {0} with any

open, connected subset of R2 bounded by two distinct rays em-

anating from the origin.

Definition: A C−speedup of Z2−system T = (T1, T2) is another

Z2−system T = (T1, T2) (defined on the same space as T) such

that

T1(x) = T
v11(x)
1 ◦ T v12(x)

2 (x)

T2(x) = T
v21(x)
1 ◦ T v22(x)

2 (x)

for some measurable function v = (v1,v2) = ((v11, v12), (v21, v22)) :

X → C2.
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Remark: The v must be defined so that T1 and T2 commute (so

one cannot simply speed up T1 and T2 independently to obtain

a speedup of T).



A picture to explain
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Here, T = (T1, T2) is a C−speedup of T = (T1, T2). In particular,

for the indicated point x, we have

v(x) = ((3,1), (1,2)).



Group extensions of Zd actions

A cocycle for Zd−action (X,X , µ,T) is a measurable function
σ : X × Zd → G satisfying

σv(Tw(x))σw(x) = σv+w(x)

for all v,w ∈ Z2 and (almost) all x ∈ X.

(Here we denote σ(x,v) by σv(x).)

Each cocycle σ generates a G−extension of T, i.e. a Zd−action
(X ×G,X × G, µ×Haar,Tσ) defined by setting

Tσv(x, g) = (Tv(x), σv(x)g)

for each v ∈ Zd.

(Different σ may yield different G−extensions Tσ for the same
“base action” T.)
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Our main result

Theorem 3 (Johnson-M) Let G be a locally compact, second

countable group. Given any two ergodic Zd−group extensions Tσ

and Sσ, and given any cone C ⊆ Zd, there is a relative C−speedup

of Tσ which is relatively isomorphic to Sσ.

What follows is a sketch of the proof of this theorem when d = 2

and G = {e} (with occasional brief remarks about what changes

in the proof for more general G.)

We will refer to Tσ as the bullet action and Sσ as the target

action . The goal will be to speed up the bullet, so that it is

isomorphic to the target.
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Preliminaries: Rohklin towers

A Rohklin tower τ for a m.p. Zd−action (Y,Y, ν,S) is a collection

of disjoint measurable sets of the form

{S(j1,j2,...,jd)
(A) : 0 ≤ ji < ni ∀i}

for some A ∈ Y with ν(A) > 0. We refer to n = (n1, ..., nd) as

the size of the Rohklin tower.

Here is a tower (in d = 2) of height (4,6):
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A S(2,0)(A)

S(0,1)(A)

S(3,5)(A)

-S1

6

S2



Preliminaries: Rohklin towers

Let’s represent the same tower this way (each dot represents a

set):
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Preliminaries: Rohklin towers

Even better, let’s just think of a tower as a picture like this (in

reality, this rectangle is an array of sets mapped to each other

by S):
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Preliminaries: Castles

A castle C for a m.p. Zd−action (Y,Y, ν,S) is a collection of

finitely many disjoint Rohklin towers:
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Step 1: generate the target action via cutting and

stacking of castles

Lemma 1 (essentially AOW) Let S be a Zd− action. Then

there is a sequence {Ck}∞k=1 of castles for S with the following

properties:

1. For each k, all the towers comprising Ck have the same height.

2. Each Ck+1 is obtained from Ck via cutting and stacking (thus

Ck ⊆ Ck+1);

3. ν
(⋃∞

k=1 Ck
)

= 1;

4. The levels of the towers of all of the Ck generate Y.

(We actually require a bit more than this if G 6= {e}.)
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Step 2: choose sets in the bullet action to mimic the first

castle

Start with castle C1 for (Y,Y, ν,S). For each level L of each tower

in C1, choose a measurable set of X with measure equal to the

measure of L. Choose these sets so that they are all disjoint,

and index them in the same way the levels of C1 are arranged.
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... choose sets
Av ⊆ X

A(0,0)

A(5,4)

Given tower
τ ∈ C1 ⊆ Y ...

τ



Step 3: arrange the sets so that they form orbits of a

partially defined speedup of the bullet action

Lemma 2 Given disjoint, measurable subsets {A(j1,j2)}0≤j1<n1,0≤j2<n2

of X, each having the same measure, one can build a partial

speedup of T on the sets, i.e. construct measurable functions

v1 and v2 taking values in C so that:

1. Tv1(A(j1,j2)) = A(j1+1,j2)(a.s.);

2. Tv2(A(j1,j2)) = A(j1,j2+1)(a.s.);

3. Tv1 ◦Tv2 = Tv2 ◦Tv1.

4. (Also, extra stuff if G 6= {e}.)
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Given sets
Av ⊆ X...
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Step 3 continued

After repeating steps 1 and 2 for each tower in C1, we get a

partially defined speedup T1 of T which is “level-wise isomorphic”

to the action of S on its castle C1.

... we get a tower
{Av} for T1

Given each
tower for S...

τ
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Step 4: from one castle to the next

Suppose we have produced a partially defined speedup Tk of T

which is isomorphic to S on the levels of the towers of some

castle Ck.

Recall that each Ck+1 is obtained from Ck by cutting and stack-

ing. Thus we can view Ck+1 as a collection of towers that look

like this, where the green towers are towers in Ck:

18





Step 4: from one castle to the next

Pick measurable sets of X (disjoint from each other and from

the previously chosen sets) corresponding to the levels of these

towers which were not in the previous tower (i.e. weren’t green).

...choose sets in X

indicated by dots
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Given this
tower in Ck+1...
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Step 4: from one castle to the next

Theorem 4 (Quilting Theorem) (J-M) Given the picture de-

scribed on the previous slide, one can build a partial C−speedup

on all the subsets of X which extends all the partial speedups

already constructed on the green “patches”.

Given this...

•
•
•
•
•
•
•

• • • • • • •

• • • • • • • • •

•
•
•

•
•
•

•
•
•

•
•
•
•
•
•
•

•
•
•

•
•
•

•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

• • • • • • •

• • • • • • • • •

•
•
•

•
•
•

•
•
•

•
•
•
•
•
•
•

•
•
•

•
•
•

•
•
•

•
•
•
•
•
•
•

...build Tk+1:

-

-

-

-

-

-

-

- - - - - - -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-- - - - - - -

6

6

6

6

6

6

6 6 6 6 6 6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

66 6 6 6 6 6 6

20



This produces a partially-defined C−speedup Tk+1 of T extend-

ing Tk, which is “level-wise isomorphic” to the action of S on its

castle Ck+1.



Step 5: repeat procedure of step 4 indefinitely

This produces a sequence of partially-defined speedups Tk of T,

defined on more and more of X. Since the union of the castles

Ck has full measure, we obtain a speedup

T = lim
k→∞

Tk

which is defined a.e. on X.

Since Tk is level-wise isomorphic to the action of S on the levels

of Ck, and the levels of the castles generate the full σ−algebra

Y, we obtain T ∼= S.
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