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Actions on Polish spaces

Definition

A Polish space X is a separable topological space whose topology
can be induced by a complete metric.
A Polish (semi-)group G is a set which is a (semi-)group together
with a Polish topology which makes the (semi-)group actions
continuous.

We think of an action of a Polish (semi-)group G on a Polish
space X as a map between the Polish spaces G × X and X given
by (g , x) 7→ gx .
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Measurable and continuous actions

Definition

An action is called Borel measurable if given any Borel A ⊆ X , the
set {(g , x) ∈ G × X : gx ∈ A} is a Borel subset of G × X .

Definition

An action is called continuous with respect to some topology on X
if given any open A ⊆ X , the set {(g , x) ∈ G × X : gx ∈ A} is
open in G × X .
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Measurable and continuous actions

Definition

An action is called Borel measurable if given any Borel A ⊆ X , the
set {(g , x) ∈ G × X : gx ∈ A} is a Borel subset of G × X .

Definition

An action is called continuous with respect to some topology on X
if given any open A ⊆ X , the set {(g , x) ∈ G × X : gx ∈ A} is
open in G × X .

Observation 1

If an action is continuous, then for each fixed g ∈ G , the map
x 7→ gx is a continuous function X → X .
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Measurable and continuous actions

Definition

An action is called Borel measurable if given any Borel A ⊆ X , the
set {(g , x) ∈ G × X : gx ∈ A} is a Borel subset of G × X .

Definition

An action is called continuous with respect to some topology on X
if given any open A ⊆ X , the set {(g , x) ∈ G × X : gx ∈ A} is
open in G × X .

Observation 2

If an action is continuous, then for each fixed x ∈ X , whenever
gn → g in G , then gn(x) → g(x) in X .
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Measurable and continuous actions

Definition

An action is called Borel measurable if given any Borel A ⊆ X , the
set {(g , x) ∈ G × X : gx ∈ A} is a Borel subset of G × X .

Definition

An action is called continuous with respect to some topology on X
if given any open A ⊆ X , the set {(g , x) ∈ G × X : gx ∈ A} is
open in G × X .

Motivating question from descriptive set theory

What difference, if any, in set-theoretic complexity, is there
between continuous actions and measurable actions?
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Becker-Kechris Theorem

Theorem (Becker-Kechris, 1990)

Given a Polish space X (with topology T ) and a Borel measurable
action of a Polish group G on X , there is a topology T ′ on X such
that

1 (X , T ′) is a Polish space;

2 The Borel sets generated by the T ′−topology coincide with
the Borel sets generated by the T −topology; and

3 The action of G is continuous with respect to the
T ′−topology.

We call T ′ a nice topology for the action.
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Becker-Kechris Theorem

Theorem (Becker-Kechris, 1990)

Given a Polish space X (with topology T ) and a Borel measurable
action of a Polish group G on X , there is a topology T ′ on X such
that

1 (X , T ′) is a Polish space;

2 The Borel sets generated by the T ′−topology coincide with
the Borel sets generated by the T −topology; and

3 The action of G is continuous with respect to the
T ′−topology.

Equivalently, this result says that every Borel measurable group ac-
tion is Borel isomorphic to a continuous one.
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Becker-Kechris Theorem

Theorem (Becker-Kechris, 1990)

Given a Polish space X (with topology T ) and a Borel measurable
action of a Polish group G on X , there is a topology T ′ on X such
that

1 (X , T ′) is a Polish space;

2 The Borel sets generated by the T ′−topology coincide with
the Borel sets generated by the T −topology; and

3 The action of G is continuous with respect to the
T ′−topology.

In other words, one can assume that a Borel measurable group action
is continuous without affecting any of the measurable structure (i.e.
ergodic theory) of the action.
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History

Special cases of the B-K theorem were known previously; many of
these proofs incorporate ideas from dynamical systems.

Countable groups: classical (written down by Weiss)

G = R: Wagh (1988) (following Ambrose-Kakutani (1941))

The proof for arbitrary Polish G by Becker and Kechris is not
dynamical in nature.
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Our question

Question

What happens if G is only assumed to be a Polish semigroup,
rather than a group?

Countable semi-groups: no problem (same proof as groups)

G = R+ = [0,∞) (and other semigroups): known proofs
don’t work
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Our question

Question

What happens if G is only assumed to be a Polish semigroup,
rather than a group?

Countable semi-groups: no problem (same proof as groups)

G = R+ = [0,∞) (and other semigroups): known proofs
don’t work

Fact

One reason the proof breaks down for G = R+ is that the
Becker-Kechris result is false for actions of this semigroup.
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The context

Definition

A Borel semiflow is a Polish space X together with a Borel
measurable action of [0,∞) on X ; we denote the action of t ≥ 0
on x ∈ X by Tt(x).

Note

Given a Borel semiflow, a point x ∈ X and a t ≥ 0, we set
T−t(x) = {y ∈ X : Tt(y) = x}. This is a set, not a point.
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A semiflow counterexample to Becker-Kechris

Let X = S1 × (0, 1]; define T̂ : S1 → S1 by T̂ (x) = 2x mod 1
and define

Tt(x , s) =


(x , s + t) if s + t ≤ 1

(T̂ (x), s + t − 1) if s + t ∈ (1, 2]

(T̂ 2(x), s + t − 2) if s + t ∈ (2, 3]
etc.

This semiflow takes points in X , flows them upward at unit speed,
and upon reaching the “top” of X , points return to the base,
flowing upward over T̂ (x).
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A semiflow counterexample to Becker-Kechris

Here’s a picture of (X ,Tt):

X

0

1

s
(x , s) Tt(x , s)

6

6

d

A
A

A
A

A
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x T̂ (x)

d
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A semiflow counterexample to Becker-Kechris

Here’s a picture of (X ,Tt):

X

0

1

Tt(z1) = Tt(z2)
6

t t
z1 z2

1
4

3
4

1
2

d
Consider the two points z1 = (1

4 , 1) and z2 = (3
4 , 1) in X . Notice

that although z1 6= z2, Tt(z1) = Tt(z2) for all t > 0.
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Instantaneous and discontinuous identifications

Definition

Given a Borel semiflow (X ,Tt), we say that a point x1

instantaneously and discontinuously identified (IDI) by the
semiflow if there is x2 different from x1 such that Tt(x1) = Tt(x2)
for all t > 0.

t

t

x2

x1

Tt(x1) = Tt(x2)
d -
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Instantaneous and discontinuous identifications

Definition

We view IDIs three different ways:

1 As a subset of X :

IDI (Tt) = {x ∈ X : x is IDI}

2 As a (Borel) equivalence relation on X :

IDI = {(x , y) ∈ X 2 : Tt(x) = Tt(y)∀ t > 0}

3 For each point x ∈ X , as a collection of times:

IDI (x) = {t ≥ 0 : Tt(x) ∈ IDI (Tt)}
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Instantaneous and discontinuous identifications

Proposition

No semiflow with IDIs has a nice topology.
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Instantaneous and discontinuous identifications

Proposition

No semiflow with IDIs has a nice topology.

Proof: Suppose a semiflow has a nice topology. Then by previous
observation, for all x ∈ X ,

lim
t→0+

Tt(x) = T0(x) = x ,

in other words, x is uniquely determined by {Tt(x) : t > 0}. But
points which are IDI cannot be uniquely determined by their forward
orbits.
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Instantaneous and discontinuous identifications

Conjecture

If a Borel semiflow has no IDIs, then it has a nice topology (i.e. a
Becker-Kechris type result holds.)

Reason to believe the conjecture

Every Borel semiflow with no IDIs can be embedded in a jointly
continuous action on a Polish space (M).

Revised question

Given a Borel semiflow, how close is it to a semiflow which has no
IDIs?
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Fixing the counterexample

Recall

IDI = {(x , y) ∈ X 2 : Tt(x) = Tt(y) for all t > 0}

is a Borel equivalence relation on X . Consider the quotient X/IDI,
consisting of the set of IDI-equivalence classes in X . This quotient
can be given a Polish topology, and we obtain a factor

X

π
��

Tt // X

π
��

X/IDI
Tt // X/IDI

of the semiflow with no IDIs.
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Maximal continuous factors

Theorem (M)

Given a Borel semiflow (X ,Tt), X/IDI is the maximal factor of
the semiflow which has no IDIs (and is therefore the maximal
factor which can be embedded in a continuous action); this factor
is unique up to Borel isomorphism.
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Maximal continuous factors

Theorem (M)

Given a Borel semiflow (X ,Tt), X/IDI is the maximal factor of
the semiflow which has no IDIs (and is therefore the maximal
factor which can be embedded in a continuous action); this factor
is unique up to Borel isomorphism.

Revised question

Given a Borel semiflow, how close is it to its factor X/IDI?
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Fixing the counterexample

In the example under consideration, the factor map X → X/IDI is
1− 1 except on the points at the top of X .

These points occur discretely along Tt−orbits, and have measure
zero with respect to any Borel probability measure preserved by Tt .

So we say X/IDI is an almost 1− 1 factor of the original semiflow.

Maybe, this happens in general. Unfortunately, things don’t work
so nicely.
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Another counterexample

Let X be the disjoint union of X1 = S1 and X2 = S1 × [0,∞).
Define a semiflow on X as follows:

Restricted to X1, the semiflow is a rotation on X1.

On X2, points flow downward at unit speed.

A point (x , 0) on the “bottom” of X2 is IDI with the point
x ∈ X1.

6 6

0

1

2
X2

X1 tt
(1
3 , 0)1

3

Tt(
1
3) = Tt(

1
3 , 0)

-

t
?
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Another counterexample

If we repeat the same fix as above, we obtain

X/IDI = S1 × [0,∞)

and the factor semiflow on this space sends points downward at
unit speed until they hit the bottom, and then rotates points on the
bottom of this space.

6 6

0

1

2
X/IDIt
-Tt
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Another counterexample

6 6

0

1

2
X2

X1 tt
(1
3 , 0)1

3

Tt(
1
3) = Tt(

1
3 , 0)

-

t
?

Unfortunately, the original semiflow preserves a Borel probability
measure on X , namely Lebesgue measure on X1. With respect
to this measure, the factor map is 1−1 only on a set of measure zero.

On the other hand, the original semiflow is isomorphic (in the
measure-preserving sense) to the rotation on X1, since X1 is a
(forward-)invariant set of full measure.
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The general situation

It turns out that IDIs for Borel measurable semiflows which
preserve a Borel probability measure, all IDIs arise in similar fashion
to these counterexamples. They are either:

1 occurring countably many times along every forward orbit,
and thus comprising a set of measure zero (like the first
counterexample), or

2 generated by somehow “adding extra backward orbits” to the
semiflow which have measure zero.

More precisely,
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Main theorem

Theorem (M)

Suppose (X ,Tt) is a Borel semiflow preserving a Borel probability
measure µ on X (i.e. µ(A) = µ(T−tA) for all Borel A, all t ≥ 0).
As stated earlier, X/IDI is the maximal factor of X with no IDIs;
let π : X → X/IDI be the factor map.

Then there is a forward invariant set X0 of full measure in X such
that for π∗(µ)−almost every z ∈ X/IDI, π−1(z) ∩ X0 consists of
at most one point.

Restated, this result says that measure-preserving Borel semiflows
have “almost 1-1” factors which have no IDIs (and can therefore
be embedded inside continuous actions).
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Commutative diagrams

(All maps are measurable and equivariant with Tt)

X

π
��

X0
? _oo

π|X0 a.s. 1− 1
��

X/IDI X/IDI

In the first counterexample:

S1 × (0, 1]

��

S1 × (0, 1]? _

id
oo

��
S1 × [0, 1) S1 × [0, 1)
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Commutative diagrams

(All maps are measurable and equivariant with Tt)

X

π
��

X0
? _oo

π|X0 a.s. 1− 1
��

X/IDI X/IDI

In the second counterexample:

S1 ] (S1 × [0,∞))

��

S1? _oo

id

��
S1 × [0,∞) S1? _oo
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Some ideas in the proof (warning: lies)

1 Define a topology on X for which Tq is a continuous map
from X to itself for every q ∈ Q ∩ [0,∞).

2 For each x ∈ X , construct a family of measures µx ,t which
give, for a fixed x and t, a distribution on the set
{y ∈ X : Tt(y) = Tt(x)}.

3 Collect all the supports of all the measures µx ,t and call this
set X0. Show X0 is measurable and forward-invariant.

4 On X0, show that every IDI arises as a “measurable”
discontinuity, i.e. if x ∈ X0 and s ∈ IDI (x), then x 7→ µx ,t is
weak∗−discontinuous in t at t = s.

5 Show that the “measurable” discontinuities are a set of
measure zero (in fact, they occur countably often along
forward orbits (M, 2009)).
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Further directions for study

1 Resolving the conjecture stated earlier (does the absence of
IDIs ensure a nice topology for semiflows?)

2 Other semigroups
3 Appropriate equivalence theory for semiflows and

endomorphisms

(measure-theoretic) isomorphism theory for “Bernoulli”
semiflows
classification of Borel semiflows up to Borel time-change
(measure-preserving case: Lin-Rudolph ’04)
classification of Borel endomorphisms up to “descriptive
Kakutani equivalence” (begun by Miller-Rosendal)
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