Maximally continuous factors of measurable semiflows

David M. McClendon

Northwestern University Evanston, IL, USA

Joint Meeting of the KMS and AMS December 17, 2009

A *Polish space* X is a separable topological space whose topology can be induced by a complete metric.

A Polish (semi-)group G is a set which is a (semi-)group together with a Polish topology which makes the (semi-)group actions continuous.

We think of an action of a Polish (semi-)group G on a Polish space X as a map between the Polish spaces $G \times X$ and X given by $(g, x) \mapsto gx$.

An action is called *Borel measurable* if given any Borel $A \subseteq X$, the set $\{(g, x) \in G \times X : gx \in A\}$ is a Borel subset of $G \times X$.

Definition

An action is called *continuous* with respect to some topology on X if given any open $A \subseteq X$, the set $\{(g, x) \in G \times X : gx \in A\}$ is open in $G \times X$.

An action is called *Borel measurable* if given any Borel $A \subseteq X$, the set $\{(g, x) \in G \times X : gx \in A\}$ is a Borel subset of $G \times X$.

Definition

An action is called *continuous* with respect to some topology on X if given any open $A \subseteq X$, the set $\{(g, x) \in G \times X : gx \in A\}$ is open in $G \times X$.

Observation 1

If an action is continuous, then for each fixed $g \in G$, the map $x \mapsto gx$ is a continuous function $X \to X$.

伺 ト イ ヨ ト イ ヨ

An action is called *Borel measurable* if given any Borel $A \subseteq X$, the set $\{(g, x) \in G \times X : gx \in A\}$ is a Borel subset of $G \times X$.

Definition

An action is called *continuous* with respect to some topology on X if given any open $A \subseteq X$, the set $\{(g, x) \in G \times X : gx \in A\}$ is open in $G \times X$.

Observation 2

If an action is continuous, then for each fixed $x \in X$, whenever $g_n \to g$ in G, then $g_n(x) \to g(x)$ in X.

伺 ト イ ヨ ト イ ヨ

An action is called *Borel measurable* if given any Borel $A \subseteq X$, the set $\{(g, x) \in G \times X : gx \in A\}$ is a Borel subset of $G \times X$.

Definition

An action is called *continuous* with respect to some topology on X if given any open $A \subseteq X$, the set $\{(g, x) \in G \times X : gx \in A\}$ is open in $G \times X$.

Motivating question from descriptive set theory

What difference, if any, in set-theoretic complexity, is there between continuous actions and measurable actions?

伺 ト イ ヨ ト イ ヨ

Theorem (Becker-Kechris, 1990)

Given a Polish space X (with topology T) and a Borel measurable action of a Polish group G on X, there is a topology T' on X such that

- **1** (X, T') is a Polish space;
- The Borel sets generated by the T'-topology coincide with the Borel sets generated by the T-topology; and
- The action of G is continuous with respect to the T'-topology.

We call \mathcal{T}' a *nice topology* for the action.

Theorem (Becker-Kechris, 1990)

Given a Polish space X (with topology T) and a Borel measurable action of a Polish group G on X, there is a topology T' on X such that

- **1** (X, T') is a Polish space;
- The Borel sets generated by the T'-topology coincide with the Borel sets generated by the T-topology; and
- The action of G is continuous with respect to the T'-topology.

Equivalently, this result says that every Borel measurable group action is Borel isomorphic to a continuous one.

Theorem (Becker-Kechris, 1990)

Given a Polish space X (with topology T) and a Borel measurable action of a Polish group G on X, there is a topology T' on X such that

- **1** (X, T') is a Polish space;
- The Borel sets generated by the T'-topology coincide with the Borel sets generated by the T-topology; and
- The action of G is continuous with respect to the T'-topology.

In other words, one can assume that a Borel measurable group action is continuous without affecting any of the measurable structure (i.e. ergodic theory) of the action. Special cases of the B-K theorem were known previously; many of these proofs incorporate ideas from dynamical systems.

- Countable groups: classical (written down by Weiss)
- $G = \mathbb{R}$: Wagh (1988) (following Ambrose-Kakutani (1941))

The proof for arbitrary Polish G by Becker and Kechris is not dynamical in nature.

Question

What happens if G is only assumed to be a Polish semigroup, rather than a group?

- Countable semi-groups: no problem (same proof as groups)
- $G = \mathbb{R}^+ = [0,\infty)$ (and other semigroups): known proofs don't work

Question

What happens if G is only assumed to be a Polish semigroup, rather than a group?

- Countable semi-groups: no problem (same proof as groups)
- $G = \mathbb{R}^+ = [0, \infty)$ (and other semigroups): known proofs don't work

Fact

One reason the proof breaks down for $G = \mathbb{R}^+$ is that the Becker-Kechris result is false for actions of this semigroup.

伺 ト イヨト イヨ

A Borel semiflow is a Polish space X together with a Borel measurable action of $[0, \infty)$ on X; we denote the action of $t \ge 0$ on $x \in X$ by $T_t(x)$.

Note

Given a Borel semiflow, a point $x \in X$ and a $t \ge 0$, we set $T_{-t}(x) = \{y \in X : T_t(y) = x\}$. This is a set, not a point.

Let $X = S^1 \times (0,1]$; define $\widehat{T} : S^1 \to S^1$ by $\widehat{T}(x) = 2x \mod 1$ and define

$$T_t(x,s) = \begin{cases} (x,s+t) & \text{if } s+t \leq 1\\ (\widehat{T}(x),s+t-1) & \text{if } s+t \in (1,2]\\ (\widehat{T}^2(x),s+t-2) & \text{if } s+t \in (2,3]\\ & \text{etc.} \end{cases}$$

This semiflow takes points in X, flows them upward at unit speed, and upon reaching the "top" of X, points return to the base, flowing upward over $\hat{T}(x)$.

Here's a picture of (X, T_t) :

Here's a picture of (X, T_t) :

Consider the two points $z_1 = (\frac{1}{4}, 1)$ and $z_2 = (\frac{3}{4}, 1)$ in X. Notice that although $z_1 \neq z_2$, $T_t(z_1) = T_t(z_2)$ for all t > 0.

Given a Borel semiflow (X, T_t) , we say that a point x_1 instantaneously and discontinuously identified (IDI) by the semiflow if there is x_2 different from x_1 such that $T_t(x_1) = T_t(x_2)$ for all t > 0.

We view IDIs three different ways:

• As a subset of X:

$$IDI(T_t) = \{x \in X : x \text{ is } IDI\}$$

2 As a (Borel) equivalence relation on X:

$$\mathsf{IDI} = \{ (x, y) \in X^2 : T_t(x) = T_t(y) \, \forall \, t > 0 \}$$

• For each point $x \in X$, as a collection of times:

$$IDI(x) = \{t \ge 0 : T_t(x) \in IDI(T_t)\}$$

Instantaneous and discontinuous identifications

Proposition

No semiflow with IDIs has a nice topology.

∃ >

Proposition

No semiflow with IDIs has a nice topology.

Proof: Suppose a semiflow has a nice topology. Then by previous observation, for all $x \in X$,

$$\lim_{t\to 0^+} T_t(x) = T_0(x) = x,$$

in other words, x is uniquely determined by $\{T_t(x) : t > 0\}$. But points which are IDI cannot be uniquely determined by their forward orbits.

Conjecture

If a Borel semiflow has no IDIs, then it has a nice topology (i.e. a Becker-Kechris type result holds.)

Reason to believe the conjecture

Every Borel semiflow with no IDIs can be embedded in a jointly continuous action on a Polish space (M).

Revised question

Given a Borel semiflow, how close is it to a semiflow which has no IDIs?

Recall

$$\mathsf{IDI} = \{(x, y) \in X^2 : T_t(x) = T_t(y) \text{ for all } t > 0\}$$

is a Borel equivalence relation on X. Consider the quotient X/IDI, consisting of the set of IDI-equivalence classes in X. This quotient can be given a Polish topology, and we obtain a factor

of the semiflow with no IDIs.

Theorem (M)

Given a Borel semiflow (X, T_t) , X/IDI is the maximal factor of the semiflow which has no IDIs (and is therefore the maximal factor which can be embedded in a continuous action); this factor is unique up to Borel isomorphism.

Theorem (M)

Given a Borel semiflow (X, T_t) , X/IDI is the maximal factor of the semiflow which has no IDIs (and is therefore the maximal factor which can be embedded in a continuous action); this factor is unique up to Borel isomorphism.

Revised question

Given a Borel semiflow, how close is it to its factor X/IDI?

In the example under consideration, the factor map $X \rightarrow X/IDI$ is 1-1 except on the points at the top of X.

These points occur discretely along T_t -orbits, and have measure zero with respect to any Borel probability measure preserved by T_t .

So we say X/IDI is an *almost* 1-1 factor of the original semiflow.

Maybe, this happens in general. Unfortunately, things don't work so nicely.

Let X be the disjoint union of $X_1 = S^1$ and $X_2 = S^1 \times [0, \infty)$. Define a semiflow on X as follows:

- Restricted to X_1 , the semiflow is a rotation on X_1 .
- On X_2 , points flow downward at unit speed.
- A point (x, 0) on the "bottom" of X_2 is IDI with the point $x \in X_1$.

If we repeat the same fix as above, we obtain

$$X/\mathsf{IDI} = S^1 \times [0,\infty)$$

and the factor semiflow on this space sends points downward at unit speed until they hit the bottom, and then rotates points on the bottom of this space.

Another counterexample

Unfortunately, the original semiflow preserves a Borel probability measure on X, namely Lebesgue measure on X_1 . With respect to this measure, the factor map is 1-1 only on a set of measure zero.

On the other hand, the original semiflow is isomorphic (in the measure-preserving sense) to the rotation on X_1 , since X_1 is a (forward-)invariant set of full measure.

It turns out that IDIs for Borel measurable semiflows which preserve a Borel probability measure, all IDIs arise in similar fashion to these counterexamples. They are either:

- occurring countably many times along every forward orbit, and thus comprising a set of measure zero (like the first counterexample), or
- generated by somehow "adding extra backward orbits" to the semiflow which have measure zero.

More precisely,

Theorem (M)

Suppose (X, T_t) is a Borel semiflow preserving a Borel probability measure μ on X (i.e. $\mu(A) = \mu(T_{-t}A)$ for all Borel A, all $t \ge 0$). As stated earlier, X/**IDI** is the maximal factor of X with no IDIs; let $\pi : X \to X/$ **IDI** be the factor map.

Then there is a forward invariant set X_0 of full measure in X such that for $\pi^*(\mu)$ -almost every $z \in X/IDI$, $\pi^{-1}(z) \cap X_0$ consists of at most one point.

Restated, this result says that measure-preserving Borel semiflows have "almost 1-1" factors which have no IDIs (and can therefore be embedded inside continuous actions).

伺 ト イヨト イヨト

(All maps are measurable and equivariant with T_t)

In the first counterexample:

$$\begin{array}{c} S^1 \times (0,1] \xleftarrow[id]{} S^1 \times (0,1] \\ \downarrow \\ S^1 \times [0,1) \\ \end{array} \begin{array}{c} S^1 \times [0,1) \\ S^1 \times [0,1) \end{array}$$

(E)

-

(All maps are measurable and equivariant with T_t)

In the second counterexample:

Some ideas in the proof (warning: lies)

- Define a topology on X for which T_q is a continuous map from X to itself for every q ∈ Q ∩ [0,∞).
- Por each x ∈ X, construct a family of measures µ_{x,t} which give, for a fixed x and t, a distribution on the set {y ∈ X : T_t(y) = T_t(x)}.
- Ollect all the supports of all the measures μ_{x,t} and call this set X₀. Show X₀ is measurable and forward-invariant.
- On X₀, show that every IDI arises as a "measurable" discontinuity, i.e. if x ∈ X₀ and s ∈ IDI(x), then x ↦ µ_{x,t} is weak*-discontinuous in t at t = s.
- Show that the "measurable" discontinuities are a set of measure zero (in fact, they occur countably often along forward orbits (M, 2009)).

伺 ト イ ヨ ト イ ヨ ト

- Resolving the conjecture stated earlier (does the absence of IDIs ensure a nice topology for semiflows?)
- Other semigroups
- Appropriate equivalence theory for semiflows and endomorphisms
 - (measure-theoretic) isomorphism theory for "Bernoulli" semiflows
 - classification of Borel semiflows up to Borel time-change (measure-preserving case: Lin-Rudolph '04)
 - classification of Borel endomorphisms up to "descriptive Kakutani equivalence" (begun by Miller-Rosendal)

• • = • • = •