A universal model for Borel semiflows

David McClendon Northwestern University

dmm@math.northwestern.edu http://www.math.northwestern.edu/~dmm

Prototype semiflow: Brownian motion

Let X be the space of continuous functions from \mathbb{R}^+ to \mathbb{R} with the usual topology. Define for each $t \ge 0$ the *shift map* $\Sigma_t : X \to X$ by

$$\Sigma_t(f)(s) = f(t+s) - f(t).$$

 (X, Σ_t) is a Borel semiflow which preserves Weiner measure (and other measures).

IDIs

Given a Borel semiflow (X, T_t) , we say two distinct points x and x' are *instaneously and discontinuously identified (IDI)* by the semiflow if $T_t(x) = T_t(x') \forall t > 0.$

Define $IDI(T_t) = \{x : \exists y \neq x \text{ such that } x \text{ and } y \text{ are } IDI \}$

Define $IDI(x) = \{t \ge 0 : T_t(x) \in IDI(T_t)\}.$

Theorem (M) For any x, IDI(x) is countable.

Brownian motion has no IDIs. To build a model which accounts for possible IDIs in a semiflow, we use the action of Brownian motion on a different space of functions.

A universal model

Theorem (M) There exists a Polish space Yof left-continuous, increasing functions from \mathbb{R}^+ to \mathbb{R}^+ passing through the origin such that any Borel semiflow $(X, \mathcal{F}, \mu, T_t)$ is isomorphic to $(Y, \mathcal{B}(Y), \nu, \Sigma_t)$ for some Σ_t - invariant Borel probability measure ν .