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Some history

Theorem 1 (Arnoux, Ornstein, Weiss 1985)

Given any two ergodic measure-preserving trans-

formations, there is a speedup of one which is

isomorphic to the other.

This result was a consequence of a theorem in

the same paper explaining how arbitrary measure-

preserving systems could be represented by mod-

els arising from cutting and stacking construc-

tions.
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Some terminology

Theorem 1 Given any two ergodic measure-

preserving transformations, there is a speedup

of one which is isomorphic to the other.

A measure-preserving transformation (m.p.t.)

is a quadruple (X,X , µ, T ), where (X,X , µ) is

a Lebesgue probability space and T : X → X

is measurable (T−1(A) ∈ X for all A ∈ X ),

measure-preserving (µ(T−1(A)) = µ(A) for all

A ∈ X ), and 1− 1.

An m.p.t. is ergodic if its invariant sets all

have zero or full measure.

Two m.p.t.s (X,X , µ, T ) and (X ′,X ′, µ′, T ′) are

isomorphic if ∃ an isomorphism φ : (X,X , µ)→
(X ′,X ′, µ′) satisfying φ ◦ T = T ′ ◦ φ for µ−a.e.

x ∈ X.
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Speedups

Theorem 1 Given any two ergodic measure-

preserving transformations, there is a speedup

of one which is isomorphic to the other.

Given m.p.t.s (X,X , µ, T ) and (X,X , µ, T ), we

say T is a speedup of T if there exists a mea-

surable function v : X → {1,2,3, ...} such that

T (x) = T v(x)(x) a.s.

· · · T //• T //

T
%%• T //

T

@@• T //

T

88• T //

T
##• T //• T //

T
##• T //• T // · · ·

Remark: by definition, speedups are defined

on the entire space, preserve µ and are 1− 1.
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A relative version of the AOW result

Theorem 2 (Babichev, Burton, Fieldsteel 2011)
Fix a 2nd ctble, locally cpct group G. Given
any two ergodic group extensions by G, there
is a relative speedup of one which is relatively
isomorphic to the other.

Application: Classification of n−point and cer-
tain countable extensions up to speedup equiv-
alence.

Example of a group extension: T : T2 → T2

defined by T (x, y) = (x+ α, y + x):

T2
x x+ α

• ����
��

�: •T
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What about Z2 (or Zd) actions?

Two commuting m.p. transformations T1 and

T2 on the same space comprise a Z2−action T,

where t = (t1, t2) ∈ Z2 acts on X by

Tt(x) = T
t1
1 T

t2
2 (x).

... ... ... ...

· · · //• //

OO

•

OO

//•

OO

//•

OOOO

// · · ·

· · · //• //

T2

OO

•

OO

//•

OO

//• //

OO

· · ·

· · · //•
T1

//

T2

OO

•
T1

//

OO

•
T1

//

OO

• //

OO

· · ·

...

OO

...

OO

...

OO

...

OO

Question: What is a “speedup” of such an

action?
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Z2−speedups

Definition: A cone C is the intersection of

Z2−{0} with any open, connected subset of R2

bounded by two distinct rays emanating from

the origin.

Definition: A C−speedup of Z2−system T =

(T1, T2) is another Z2−system T = (T1, T2)

(defined on the same space as T) such that

T1(x) = T
v11(x)
1 ◦ T v12(x)

2 (x)

T2(x) = T
v21(x)
1 ◦ T v22(x)

2 (x)

for some measurable function v = (v1,v2) =

((v11, v12), (v21, v22)) : X → C2.

Remark: The v must be defined so that T1

and T2 commute (so one cannot simply speed

up T1 and T2 independently to obtain a speedup

of T).
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A picture to explain
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Here, T = (T1, T2) is a C−speedup of T =
(T1, T2). In particular, for the indicated point
x, we have

v(x) = ((3,1), (1,2)).
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Group extensions of Zd actions

A cocycle for Zd−action (X,X , µ,T) is a mea-

surable function σ : X × Zd → G satisfying

σv(Tw(x))σw(x) = σv+w(x)

for all v,w ∈ Z2 and (almost) all x ∈ X.

(Here we denote σ(x,v) by σv(x).)

Each cocycle σ generates a G−extension of T,

i.e. a Zd−action (X × G,X × G, µ × Haar,Tσ)

defined by setting

Tσv(x, g) = (Tv(x), σv(x)g)

for each v ∈ Zd.

(Different σ may yield different G−extensions

Tσ for the same “base action” T.)
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Our main result

Theorem 3 (Johnson-M) Let G be a locally

compact, second countable group. Given any

two ergodic Zd−group extensions Tσ and Sσ,

and given any cone C ⊆ Zd, there is a relative

C−speedup of Tσ which is relatively isomorphic

to Sσ.

What follows is a sketch of the proof of this

theorem when d = 2 and G = {e} (with occa-

sional brief remarks about what changes in the

proof for more general G.)

We will refer to Tσ as the bullet action and

Sσ as the target action . The goal will be to

speed up the bullet, so that it is isomorphic

to the target.
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Preliminaries: Rohklin towers

A Rohklin tower τ for a m.p. Zd−action (Y,Y, ν,S)
is a collection of disjoint measurable sets of the
form

{S(j1,j2,...,jd)
(A) : 0 ≤ ji < ni ∀i}

for some A ∈ Y with ν(A) > 0. We refer to
n = (n1, ..., nd) as the size of the Rohklin tower.

Here is a tower (in d = 2) of height (4,6):

A S(2,0)(A)

S(0,1)(A)

S(3,5)(A)

-S1

6

S2
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Preliminaries: Rohklin towers

Let’s represent the same tower this way (each

dot represents a set):
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Preliminaries: Rohklin towers

Even better, let’s just think of a tower as a

picture like this (in reality, this rectangle is an

array of sets mapped to each other by S):

τ
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Preliminaries: Castles

A castle C for a m.p. Zd−action (Y,Y, ν,S) is

a collection of finitely many disjoint Rohklin

towers:

τ1

τ3

τ2

τ4
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Step 1: generate the target action via

cutting and stacking of castles

Lemma 1 (essentially AOW) Let S be a Zd−
action. Then there is a sequence {Ck}∞k=1 of

castles for S with the following properties:

1. For each k, all the towers comprising Ck
have the same height.

2. Each Ck+1 is obtained from Ck via cutting

and stacking (thus Ck ⊆ Ck+1);

3. ν
(⋃∞

k=1 Ck
)

= 1;

4. The levels of the towers of all of the Ck
generate Y.

(We actually require a bit more than this if

G 6= {e}.)
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Step 2: choose sets in the bullet action

to mimic the first castle

Start with castle C1 for (Y,Y, ν,S). For each

level L of each tower in C1, choose a measur-

able set of X with measure equal to the mea-

sure of L. Choose these sets so that they are

all disjoint, and index them in the same way

the levels of C1 are arranged.

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

... choose sets
Av ⊆ X

A(0,0)

A(5,4)

Given tower
τ ∈ C1 ⊆ Y ...

τ
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Step 3: arrange the sets so that they
form orbits of a partially defined speedup

of the bullet action

Lemma 2 Given disjoint, measurable subsets
{A(j1,j2)}0≤j1<n1,0≤j2<n2

of X, each having the
same measure, one can build a partial speedup
of T on the sets, i.e. construct measurable
functions v1 and v2 taking values in C so that:

1. Tv1(A(j1,j2)) = A(j1+1,j2)(a.s.);
2. Tv2(A(j1,j2)) = A(j1,j2+1)(a.s.);
3. Tv1 ◦Tv2 = Tv2 ◦Tv1.
4. (Also, extra stuff if G 6= {e}.)

Given sets
Av ⊆ X...
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•
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T1 = (Tv1,Tv2)
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Step 3 continued

After repeating steps 1 and 2 for each tower in

C1, we get a partially defined speedup T1 of T

which is “level-wise isomorphic” to the action

of S on its castle C1.

... we get a tower
{Av} for T1

Given each
tower for S...

τ
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Step 4: from one castle to the next

Suppose we have produced a partially defined

speedup Tk of T which is isomorphic to S on

the levels of the towers of some castle Ck.

Recall that each Ck+1 is obtained from Ck by

cutting and stacking. Thus we can view Ck+1

as a collection of towers that look like this,

where the green towers are towers in Ck:
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Step 4: from one castle to the next

Pick measurable sets of X (disjoint from each

other and from the previously chosen sets) cor-

responding to the levels of these towers which

were not in the previous tower (i.e. weren’t

green).

...choose sets in X

indicated by dots

•
•
•
•
•
•
•

• • • • • • •

• • • • • • • • •

•
•
•

•
•
•

•
•
•

•
•
•
•
•
•
•

•
•
•

•
•
•

•
•
•

•
•
•
•
•
•
•

Given this
tower in Ck+1...
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Step 4: from one castle to the next

Theorem 4 (Quilting Theorem) (J-M) Given

the picture described on the previous slide, one

can build a partial C−speedup on all the sub-

sets of X which extends all the partial speedups

already constructed on the green “patches”.

Given this...
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...build Tk+1:
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This produces a partially-defined C−speedup

Tk+1 of T extending Tk, which is “level-wise

isomorphic” to the action of S on its castle

Ck+1.
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Step 5: repeat procedure of step 4

indefinitely

This produces a sequence of partially-defined

speedups Tk of T, defined on more and more

of X. Since the union of the castles Ck has full

measure, we obtain a speedup

T = lim
k→∞

Tk

which is defined a.e. on X.

Since Tk is level-wise isomorphic to the action

of S on the levels of Ck, and the levels of the

castles generate the full σ−algebra Y, we ob-

tain T ∼= S.
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