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Some motivation

Consider the following questions, taken from math, physics and
other areas:
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Some motivation

Consider the following questions, taken from math, physics and
other areas:

From numerical analysis

Determine which root (if any) of a function Newton’s method
converges to, given a particular “initial guess” of the root.

(Newton’s method: xn+1 = xn − f (xn)
f ′(xn)

)
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Some motivation

Consider the following questions, taken from math, physics and
other areas:

From additive combinatorics

Prove that if you arbitrarily color the integers (using a finite set of
crayons), then there must be a monochromatic arithmetic
progression of arbitrarily long length.

An arithmetic progression is a list like 7, 11, 15, 19, 23, 27 (this pro-
gression has length 6).
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Some motivation

Consider the following questions, taken from math, physics and
other areas:

From economics

Predict the price of a stock three weeks from now.
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Some motivation

Consider the following questions, taken from math, physics and
other areas:

From population biology

Given rates of reproduction and predation, describe fluctuations in
the population of a species in a particular ecosystem as time
passes.
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Some motivation

Consider the following questions, taken from math, physics and
other areas:

From physics

Explain ferromagnetism (how materials become magnets) via a
mathematical model.
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Some motivation

Consider the following questions, taken from math, physics and
other areas:

All of these problems can be approached mathematically using tech-
niques of dynamical systems.
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Dynamical systems

Loosely speaking, a dynamical system is anything quantifiable that
changes over time. To formulate such an object mathematically,
we need two things:
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Dynamical systems

Loosely speaking, a dynamical system is anything quantifiable that
changes over time. To formulate such an object mathematically,
we need two things:

1. The phase space

The phase space X of a dynamical system is the set of all possible
“positions” or “states” of the system.

For example, if the system is keeping track of the price of a stock,
X is the set of all possible stock prices.
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Dynamical systems

Loosely speaking, a dynamical system is anything quantifiable that
changes over time. To formulate such an object mathematically,
we need two things:

2. The evolution rule

The evolution rule T of a dynamical system is a function
T : X → X that tells you, given your current state x , your state
one unit of time from now.

For example, if the system is keeping track of a stock price, if the
current price is 30, then T (30) would be the price of the stock
tomorrow (if time is measured in days).
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Dynamical systems

Loosely speaking, a dynamical system is anything quantifiable that
changes over time. To formulate such an object mathematically,
we need two things:

Definition

A (discrete) dynamical system is be a pair (X ,T ) where X is some
set and T is a function from X to itself.

(Usually one requires that X and T have some additional structure.)
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Iterates

Given a dynamical system (X ,T ) and a point x ∈ X :

x = your present state

T (x) = your state one unit of time from now

T (T (x)) = T ◦T (x) = your state two units of time from now

etc.

Definition

We define T n(x) = T ◦T ◦ · · · ◦T (x); therefore T n(x) is the state
n units of time from now if x is your current state. T n is called the
nth iterate of T .
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Major problems in dynamical systems

David McClendon A tour of dynamical systems



Major problems in dynamical systems

Prediction problems

Given a dynamical system (X ,T ) and a point x ∈ X , predict
T n(x) for large values of n.

Do the numbers x ,T (x),T 2(x),T 3(x), ... follow a pattern?

Do the numbers T n(x) have a limit as n→∞?

If x is changed slightly, do the numbers
x ,T (x),T 2(x),T 3(x), ... stay pretty much the same, or do
they become drastically different?
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Major problems in dynamical systems

Prediction problems

Frequently it is impossible to predict T n(x) for large n, in which
case the question becomes one of explaining why such prediction is
impossible (chaos theory).
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Major problems in dynamical systems

Classification problems

Given two dynamical systems, are they the same up to a
change of language (i.e. isomorphic) or different?

Are they same up to some weaker notion of equivalence?

What are their commonalities?

What are their differences?
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Major problems in dynamical systems

Classification problems

Given two dynamical systems, are they the same up to a
change of language (i.e. isomorphic) or different?

Are they same up to some weaker notion of equivalence?

What are their commonalities?

What are their differences?

To approach this question, we invent useful vocabulary to describe
various phenomena that might occur in a system.
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Major problems in dynamical systems

Applications

Math, physics, biology, computer science, economics, etc.
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Some examples

Example 1

Let X = R and let T (x) = −x .
Then T 2(x) = T (T (x)) = −(−x) = x , and similarly

T n(x) =

{
x if n is even
−x if n is odd
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Some examples

Example 1

In terms of “arrows”, we see this dynamics:

...→ x → −x → x → −x → x → −x → x → ...

where T takes each point to the right by one arrow, and moving
by n arrows corresponds to the passage of n units of time.

David McClendon A tour of dynamical systems



Some examples

Example 1

So it is easy to describe the behavior of x as time passes.
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Some examples

Example 2

Let X = R and let T (x) = 1
2x .

Then T 2(x) = 1
4x and similarly T n(x) = 1

2n x for all x and n, and
we see

lim
n→∞

T n(x) = 0

no matter what x is.

In particular, changing the value of x a little bit doesn’t affect the
values of T n(x) much (they are approaching 0).
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Some examples

Example 3

Let X = [0, 1] and let T (x) = 4x(1− x).
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Some examples

Example 3

Let X = [0, 1] and let T (x) = 4x(1− x).

Let x = .345. Then the iterates of x are...
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Some examples

Example 3

{0.345, 0.9039, 0.347459, 0.906925, 0.337648, 0.894567, 0.377268,

0.939747, 0.226489, 0.700766, 0.838772, 0.540934, 0.993298,

0.0266299, 0.103683, 0.371731, 0.934188, 0.245922, 0.741777,

0.766176, 0.716602, 0.812334, 0.60979, 0.951784, 0.183564, 0.59947,

0.960421, 0.152052, 0.515728, 0.999011, 0.00395398, 0.0157534,

0.0620209, 0.232697, 0.714197, 0.816479, 0.599364, 0.960507,

0.151732, 0.514838, 0.999119, 0.00351956, 0.0140287, 0.0553275,

0.209065, 0.661428, 0.895764, 0.373485, 0.935976, 0.2397, 0.728977,

0.790279, 0.662953, 0.893786, 0.379731, 0.942142, 0.218042, 0.682,

0.867505, 0.459761, 0.993523, 0.0257389, 0.100306, 0.360978, ...}
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Some examples

Example 3

In particular, the numbers have no discernable pattern.

What’s more, is that if you change x from .345 to something like
.346, the iterates you obtain from the new x look nothing like the
iterates you obtain from the old x .
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What can you do with dynamics?

Direct applications of the prediction problem

1 Predict prices of stocks (up to a point)

2 Predict the paths of hurricanes (up to a point)

3 Predict the outcome of Newton’s method

4 Explain ferromagnetism (via the Ising model)

5 Model sports, including American football (my former
undergraduate student K. Goldner)
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What can you do with dynamics?

Other things

1 Study tilings of the plane (related: crystals and quasicrystals)

2 Explain the recurrence of particular geometric patterns in
Islamic architecture

3 Find patterns in certain sets of numbers (like arithmetic
progressions)

4 Solve Diophantine approximation problems (Oppenheim
conjecture)

5 Draw cool pictures of fractals (Mandelbrot and Julia sets)
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What can you do with dynamics?

Solve famous math problems

The Poincaré conjecture, which states that every simply connected,
closed, 3−dimensional manifold is homeomorphic to a sphere, was
solved by Perelman (2006) by studying the properties of a
dynamical system called the Ricci flow.
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What can you do with dynamics?

Solve famous problems and make money

The Poincaré conjecture, which states that every simply connected,
closed, 3−dimensional manifold is homeomorphic to a sphere, was
solved by Perelman (2006) by studying the properties of a
dynamical system called the Ricci flow.

The Poincaré conjecture is one of the “Millenium Prize Prob-
lems”; solving the Poincaré conjecture made Perelman eligible for a
$1, 000, 000 prize.
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What can you do with dynamics?

Solve famous problems and make money

The Poincaré conjecture, which states that every simply connected,
closed, 3−dimensional manifold is homeomorphic to a sphere, was
solved by Perelman (2006) by studying the properties of a
dynamical system called the Ricci flow.

The Poincaré conjecture is one of the “Millenium Prize Prob-
lems”; solving the Poincaré conjecture made Perelman eligible for a
$1, 000, 000 prize.

Perelman turned down the prize money.
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What can you do with dynamics?

Make money

The search engine Google ranks pages using a mechanism coming
from a specific kind of dynamical system called a Markov chain.
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What can you do with dynamics?

Make money

The search engine Google ranks pages using a mechanism coming
from a specific kind of dynamical system called a Markov chain.

Sergey Brin and Larry Page, the inventors of Google, have a com-
bined personal wealth of $33 billion as of 2011.
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What do I study?

With my colleague Aimee S.A. Johnson, I am studying a modified
version of the classification problem:

Motivating question

Suppose you are given two dynamical systems. Can you modify
system number 1 into an isomorphic copy of system number 2, only
by very slightly changing the evolution rule of system number 1?

David McClendon A tour of dynamical systems



Speedups

Let (X ,T ) be a dynamical system. To each point in X , assign a
number in {1, 2, 3, 4, ...}; call that number v(x). Create a new
dynamical system (X ,S) by defining

S(x) = T v(x)(x).

Such an S is called a speedup of T :

· · · T // • T //

S

##
• T //

S

AA •
T //

S

::• T //

S

!!
• T // • T //

S

!!
• T // • T // · · ·

Notice that whenever v(x) = 1, the function S coincides with T .
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Speedups

Question

Suppose you are given two dynamical systems. Is there a speedup
of one system which is an isomorphic copy of the other?
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Two systems that are very different

Example 1: Circle rotation

Let X = S1 (a circle), where points are labeled by their angle
measure in “units”, where 1 unit corresponds to 2π radians or
360◦. (In other words, X = R/Z.)

&%
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1
4

1
2

3
4
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Two systems that are very different

Example 1: Circle rotation

Define T : X → X by T (x) = x + α where α ∈ (0, 1) is irrational.

(If α = p
q ∈ Q, then T q(x) = x + p = x for all x , so the dynamics

are “trivial”.)

&%
'$ttttT 3(x)
@@R

x

T (x)

T 2(x) α
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Two systems that are very different

Example 1: Circle rotation

Suppose we take two small arcs A,B ⊆ X . I want to describe
whether A “mixes” with B as time passes. To do this, consider the
size (arc length) of T n(A) ∩ B as n increases:
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Two systems that are very different

Example 1: Circle rotation

For the choices of α, A and B on the board, notice that

lim
n→∞

length(T n(A) ∩ B)

doesn’t exist; indeed, the numbers length(T n(A) ∩ B) are mostly
zero but are occasionally close to the length of B.
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Two systems that are very different

Example 1: Circle rotation

Because T n(A) doesn’t consistently overlap with B for large
choices of t, we say A and B are not mixed by T . In fact, circle
rotations almost never mix any two sets.
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Two systems that are very different

Example 2: Baker’s transformation

Let X = [0, 1)× [0, 1) (a square) and define T : X → X by

T (x , y) =

{
(2x , 12y) if x < 1

2
(2x − 1

2 ,
1
2y + 1

2) if x ≥ 1
2

This (X ,T ) is called the baker’s transformation.
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Two systems that are very different

Example 2: Baker’s transformation

(0, 0)

(1, 1)

t(x , y)

t(a, b)
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Two systems that are very different

Example 2: Baker’s transformation

(0, 0)

(2, 12)

t
t
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Two systems that are very different

Example 2: Baker’s transformation

t
t
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Two systems that are very different

Example 2: Baker’s transformation

(0, 0)

(1, 1)

tT (x , y)

tT (a, b)
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Two systems that are very different

Example 2: Baker’s transformation

Let’s see what happens to a set A under iteration by the baker’s
transformation.
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Two systems that are very different

Example 2: Baker’s transformation

A

B
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Two systems that are very different

Example 2: Baker’s transformation

T (A)

B
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Two systems that are very different

Example 2: Baker’s transformation

T 2(A)

B
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Two systems that are very different

Example 2: Baker’s transformation

T n(A), n large

B
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Two systems that are very different

Example 2: Baker’s transformation

In particular, given any two sets A and B, you can show that

lim
n→∞

area(T n(A) ∩ B) = area(A) · area(B).

Probabilistically, this means the probability you are eventually in B
is independent of whether or not your present state is in A.

We say the baker’s transformation is mixing.
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Two systems that are very different

Circle rotations (extremely non-mixing) and the baker’s map (ex-
tremely mixing) could not be more different.

How could you possibly speed up a rotation so that the sped-up
rotation mixes sets?
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Speedup isomorphism theorem

Theorem (AOW 1985; BBF 2011)

Given two ergodic dynamical systems, there is a speedup of one
which is isomorphic to the other.

Moreover, for any ε > 0 the function v defining the speedup can
be constructed so that it takes the value 1 except on a set of size
at most ε.

(and important but technical strengthenings)

Definition

To say a dynamical system is ergodic means it cannot be
decomposed into two pieces, each of positive size, which do not
interact with one another under iteration.
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Zd−dynamical systems

Definition

The collective action of d commuting functions on the same space
is called a Zd−dynamical system.

If we call the generators of the action T1, ...,Td , then t = (t1, ..., td)
acts on X by T t(x) = T t1

1 ◦ · · · ◦ T td
d (x).

These systems are studied in the context of tilings, the Ising model
of ferromagnetism, applications to additive combinatorics and graph
theory, simultaneous Diophantine approximation, etc.
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Zd−dynamical systems

Theorem (Johnson-M)

Given two ergodic Zd−dynamical systems, there is a speedup of
one which is isomorphic to the other.

Moreover, for any ε > 0 the function v defining the speedup can
be constructed so that it doesn’t actually “speed anything up”
except on a set of size at most ε.
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Zd−dynamical systems

Theorem (Johnson-M)

Given two ergodic Zd−dynamical systems, there is a speedup of
one which is isomorphic to the other.

Moreover, for any ε > 0 the function v defining the speedup can
be constructed so that it doesn’t actually “speed anything up”
except on a set of size at most ε.

(and similar important but technical strengthenings)
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