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What is a LEGO Brick?

A LEGO brick is a plastic building toy which typically has studs
on one side and holes on another side used for interlocking them.

Most LEGO bricks are rectangular prisms. Here is a picture of
a 2× 4 LEGO brick (the studs are on the top; the holes are on
the bottom):

Question: Suppose you connect n LEGO bricks of the same
size (and color) together. How many different buildings can you
make?
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Notation

Define B to be a specific type of LEGO brick (for example, a

2× 4 brick).

Then let TB(n) be the number of buildings (counted up to rota-

tions and translations) that can be constructed out of n bricks

of type B.

Main Question: What kind of function is TB(n)? How fast

does it grow?
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What is entropy?

Definition: The entropy of a LEGO brick of type B is the
number

hB = lim
n→∞

1

n
logTB(n)

(that this limit exists needs to be proven).

Idea: The entropy of a function captures its exponential growth
rate. If hB exists and is finite, then TB(n) ∼ 2hBn so TB grows
exponentially at rate hB.

Note: we use log base 2, but the base is not important.

Remark: By “entropy”, we mean information entropy, which is
somewhat different than the thermodynamic entropy you learn
about in chemistry.
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History

In a paper published in 2014 by Durhuus and Eilers, the authors

showed:

1. The entropy of any rectangular LEGO brick is finite.

(Reason: superadditivity of a sequence growing at the same

rate as logTB(n).)

2. log 78 ≤ h2×4 ≤ log 192. (The methods they use could be

adapted to give bounds for any rectangular brick.)

We want to extend these results to other types of LEGO bricks.
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L-shaped LEGO bricks

A brick in class L(B,W, b, w) is a B ×W rectangular brick, with

a b× w notch cut out of the upper-right corner (when the brick

is rotated so that the side of length B is horizontal):

The picture above is a brick in class L(6,6,3,4).
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General results about L-shaped bricks

Lemma For any B,W, b and w,

TL(B,W,b,w)(2) = 2(2B−1)(2W−1)+2(B+W−1)2−9(B−b)(W−w).

Theorem 1 (McClendon-W) For any B,W, b and w, hL(B,W,b,w)
exists and is finite.

Theorem 2 (McClendon-W) logTL(B,W,b,w)(2) ≤ hL(B,W,b,w) ≤

log

(
(2(BW − (B − b)(W − w))− 1)BW−(B−b)(W−w)−1(BW − (B − b)(W − w))

(2(BW − (B − b)(W − w))− 2)(BW−(B−b)(W−w))−2

)
.
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Our favorite example: L(2,2,1,1)

From the formula on the previous slide:

TL(2,2,1,1)(2) = 27⇒ hL(2,2,1,1) ≥ log 27.
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Our favorite example: L(2,2,1,1)

Using techniques involving generating functions, we have im-

proved the lower bound to

hL(2,2,1,1)(2) ≥ log 36.

As an interesting aside, this bound shows that 2 × 2 L-shaped

brick has more entropy than a 2 × 2 square (which has entropy

at most log 34 by the techniques of Durhuus and Eilers), despite

having fewer studs.
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Our favorite example: L(2,2,1,1)

The crude upper bound coming from our theorem is

hL(2,2,1,1) ≤ log 177

(as we will see, this can be significantly improved).

Where does this crude upper bound come from?
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Finding the upper bound

Consider a finite string of 6(n−1) symbols taken from a “alpha-
bet” of size 13 (we use the alphabet {0,1,2, ...,13}.

Example: 0,9,0,7,0,0,0,2,0,0,6,0, ...

Start with one brick; call this “brick # 1”. This brick has three
studs on top, and three holes on the bottom. Number the studs
and holes as follows:

12

3
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Finding the upper bound

Example: 0,9,0,7,0,0,0,2,0,0,6,0, ...

Now look at the first three symbols. These tell you, respectively,

whether or not to attach a brick to the top of stud 1, 2 and/or

3 of brick # 1 (a zero tells you not to attach a brick to that

stud; any number from 1 to 12 tell you to attach a brick... each

number corresponds to a different way to attach the new brick

to that stud).

For the example above, you would attach one new brick on top

of stud 2 of brick # 1. Call this new brick “brick # 2”.

11



Finding the upper bound

Example: 0,9,0,7,0,0,0,2,0,0,6,0, ...

Now look at the next three symbols. These tell you, respec-

tively, whether or not to attach a brick to the bottom of stud

1, 2 and/or 3 of brick # 1 (as before, a zero tells you not to

attach a brick; the numbers from 1 to 12 tell you to attach a

brick... each number corresponds to a different way to attach

the new brick to that stud).

For the example above, you would attach one new brick beneath

hole 1 of brick # 1. Call this new brick “brick # 3” (and keep

numbering the new bricks in order as they are attached).
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Finding the upper bound

Example: 0,9,0,7,0,0,0,2,0,0,6,0, ...

The next two groups of symbols tell you how to attach new

bricks to the top and/or bottom of brick # 2, etc.

Keep going until you run through the entire (finite) sequence.
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Finding the upper bound

Some of these sequences will lead to contradictions: for instance,

• you might be told to attach the wrong number of bricks (you

need to end up with n bricks hooked together); or

• two bricks might be forced to occupy the same space

The sequences that do not lead to a contradiction are called

allowable. Since every configuration of n bricks comes from at

least one allowable sequence, any upper bound on the number

of allowable sequences gives us an upper bound on TB(n).
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Finding the upper bound

We compute an upper bound on the number of allowable se-

quences using methods including:

• brute-force counting of simple configurations of ≤ 4 bricks;

• computer calculations; and

• combinatorial estimates involving Stirling’s formula.

This gives the formula for the upper bound appearing in Theorem

2.
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Improving the upper bound

In particular, the methods shown on the preceding slides show

that one can “code” a LEGO building made from n L(2,2,1,1)

bricks by a string of 6(n−1) symbols taken from an alphabet of

size 13. From this, we get

hL(2,2,1,1) ≤ log 177.

Actually, one can code these buildings much more efficiently;

with a more complicated coding that uses strings of 5n−9 sym-

bols taken from an alphabet of size 10, we get the improved

bound

hL(2,2,1,1) ≤ log 110.

We don’t know what the most efficient coding is.
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