
Entropy of non rectangular LEGO bricks

Jon Wilson

Ferris State University

joint work with David McClendon

Ferris State University

MOVES Conference

MoMath, New York

August 7, 2017



What is a LEGO Brick?

A LEGO brick is a plastic building toy which typically has studs
on one side and holes on another side used for interlocking them.

Most LEGO bricks are rectangular prisms. Here is a picture of
a 2× 4 LEGO brick (the studs are on the top; the holes are on
the bottom):

Question: Suppose you connect n LEGO bricks of the same
size (and color) together. How many different buildings can you
make?

1



Notation

Define B to be a specific type of LEGO brick (for example, a

2× 4 brick).

Then let TB(n) be the number of buildings (counted up to rota-

tions and translations) that can be constructed out of n bricks

of type B.

Main Question: What kind of function is TB(n)? How fast

does it grow?

2



What is entropy?

Definition: The entropy of a LEGO brick of type B is the
number

hB = lim
n→∞

1

n
logTB(n)

(that this limit exists needs to be proven).

Idea: The entropy of a function captures its exponential growth
rate. If hB exists and is finite, then TB(n) ∼ 2hBn so TB grows
exponentially at rate hB.

Note: we use log base 2, but the base is not important.

Remark: By “entropy”, we mean information entropy, which is
somewhat different than the thermodynamic entropy you learn
about in chemistry.

3



History

In a paper published in 2014 by Durhuus and Eilers, the authors

showed:

1. The entropy of any rectangular LEGO brick is finite.

(Reason: superadditivity of a sequence growing at the same

rate as logTB(n).)

2. log 78 ≤ h2×4 ≤ log 192. (The methods they use could be

adapted to give bounds for any rectangular brick.)

We want to extend these results to other types of LEGO bricks.

4



L-shaped LEGO bricks

A brick in class L(B,W, b, w) is a B ×W rectangular brick, with

a b× w notch cut out of the upper-right corner (when the brick

is rotated so that the side of length B is horizontal):

The picture above is a brick in class L(6,6,3,4).

5



General results about L-shaped bricks

Lemma For any B,W, b and w,

TL(B,W,b,w)(2) = 2(2B−1)(2W−1)+2(B+W−1)2−9(B−b)(W−w).

Theorem 1 (McClendon-W) For any B,W, b and w, hL(B,W,b,w)
exists and is finite.

Theorem 2 (McClendon-W) logTL(B,W,b,w)(2) ≤ hL(B,W,b,w) ≤

log

(
(2(BW − (B − b)(W − w))− 1)BW−(B−b)(W−w)−1(BW − (B − b)(W − w))

(2(BW − (B − b)(W − w))− 2)(BW−(B−b)(W−w))−2

)
.

6



Our favorite example: L(2,2,1,1)

From the formula on the previous slide:

TL(2,2,1,1)(2) = 27⇒ hL(2,2,1,1) ≥ log 27.

7



Our favorite example: L(2,2,1,1)

Using techniques involving generating functions, we have im-

proved the lower bound to

hL(2,2,1,1)(2) ≥ log 36.

As an interesting aside, this bound shows that 2 × 2 L-shaped

brick has more entropy than a 2 × 2 square (which has entropy

at most log 34 by the techniques of Durhuus and Eilers), despite

having fewer studs.

8



Our favorite example: L(2,2,1,1)

The crude upper bound coming from our theorem is

hL(2,2,1,1) ≤ log 177

(as we will see, this can be significantly improved).

Where does this crude upper bound come from?

9



Finding the upper bound

Consider a finite string of 6(n−1) symbols taken from a “alpha-
bet” of size 13 (we use the alphabet {0,1,2, ...,13}.

Example: 0,9,0,7,0,0,0,2,0,0,6,0, ...

Start with one brick; call this “brick # 1”. This brick has three
studs on top, and three holes on the bottom. Number the studs
and holes as follows:

12

3

10



Finding the upper bound

Example: 0,9,0,7,0,0,0,2,0,0,6,0, ...

Now look at the first three symbols. These tell you, respectively,

whether or not to attach a brick to the top of stud 1, 2 and/or

3 of brick # 1 (a zero tells you not to attach a brick to that

stud; any number from 1 to 12 tell you to attach a brick... each

number corresponds to a different way to attach the new brick

to that stud).

For the example above, you would attach one new brick on top

of stud 2 of brick # 1. Call this new brick “brick # 2”.

11



Finding the upper bound

Example: 0,9,0,7,0,0,0,2,0,0,6,0, ...

Now look at the next three symbols. These tell you, respec-

tively, whether or not to attach a brick to the bottom of stud

1, 2 and/or 3 of brick # 1 (as before, a zero tells you not to

attach a brick; the numbers from 1 to 12 tell you to attach a

brick... each number corresponds to a different way to attach

the new brick to that stud).

For the example above, you would attach one new brick beneath

hole 1 of brick # 1. Call this new brick “brick # 3” (and keep

numbering the new bricks in order as they are attached).

12



Finding the upper bound

Example: 0,9,0,7,0,0,0,2,0,0,6,0, ...

The next two groups of symbols tell you how to attach new

bricks to the top and/or bottom of brick # 2, etc.

Keep going until you run through the entire (finite) sequence.

13



Finding the upper bound

Some of these sequences will lead to contradictions: for instance,

• you might be told to attach the wrong number of bricks (you

need to end up with n bricks hooked together); or

• two bricks might be forced to occupy the same space

The sequences that do not lead to a contradiction are called

allowable. Since every configuration of n bricks comes from at

least one allowable sequence, any upper bound on the number

of allowable sequences gives us an upper bound on TB(n).

14



Finding the upper bound

We compute an upper bound on the number of allowable se-

quences using methods including:

• brute-force counting of simple configurations of ≤ 4 bricks;

• computer calculations; and

• combinatorial estimates involving Stirling’s formula.

This gives the formula for the upper bound appearing in Theorem

2.
15



Improving the upper bound

In particular, the methods shown on the preceding slides show

that one can “code” a LEGO building made from n L(2,2,1,1)

bricks by a string of 6(n−1) symbols taken from an alphabet of

size 13. From this, we get

hL(2,2,1,1) ≤ log 177.

Actually, one can code these buildings much more efficiently;

with a more complicated coding that uses strings of 5n−9 sym-

bols taken from an alphabet of size 10, we get the improved

bound

hL(2,2,1,1) ≤ log 110.

We don’t know what the most efficient coding is.

16


