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Overall Question

Overall question

How many ways can you connect n LEGO bricks of the same size
and color together?

Example

How many different ways do you think there are to connect eight
4× 2 standard LEGO bricks?

Answer

8, 274, 075, 616, 387 ways
(computed by Durhuus and Eilers in 2010).
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Who cares?

1 Me (duh)

2 Dr. McClendon (duh)

3 You (otherwise, why are you here?)

4 Recreational mathematicians

5 Computer scientists

Why mathematicians care

Developing new techniques to count any type of structure might
be useful in other contexts.

Why computer scientists care

To count the structures well, we have to divide them into types
and count each type (and each type is usually counted recursively).
This is kind of like writing a program that has a lot of IFs and
loops in it.
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Why is this difficult?

1 The number of connections gets quite large quite fast.

2 Non-Markovian.

Example: 4× 2 bricks

n # of buildings made from n 4× 2 bricks

1 1
2 24
3 1, 560
4 119, 580
5 10, 116, 403
6 915, 103, 765
7 85, 747, 377, 755
8 8, 274, 075, 616, 387
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Some Notation

Our counting function TB

First, we define a function TB(n) to be the number of ways we can
connect n bricks of type B together.

Main mathematical question

What type of function is TB(n)? Linear? Exponential?
Superexponential? If exponential, what is the base?

Remark

For now, we do not count the same building twice if it has just
been translated and/or rotated.
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History

1 Durhuus-Eilers (2014) studied growth rate of Tb×w (n) for
b × w rectangular LEGO bricks (lots of specifics in the special
case 2× 4; their work carries over to any standard rectangular
brick)

2 McClendon-W (2017) adapted the Durhuus-Eilers work to
study TL(n) for L-shaped LEGO bricks
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This talk is about jumper plates

What is a jumper plate?

Here are two pictures of a jumper plate, which we call class J :

The bottom (left) and top (right) of a LEGO jumper plate. We
assume throughout that any building is rotated so that the studs
of the jumper plates point up.

Parents and children

When two jumper plates are connected, we call the plate on the
top the parent and the plate on the bottom the child.
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Main question

Let TJ (n) be the number of buildings made from n jumper plates.
What is the behavior of TJ (n)?

Remark

Since a jumper plate has only one stud on its top, in any building
made from jumper plates there must be a unique plate in the
top-most layer of the building. This plate is called the root of the
building.
To be precise, we count the number of buildings where the root
occupies a fixed position. This identifies buildings up to
translation, but not rotation.
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Small values of n

TJ (2) = 6:
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Small values of n, continued

TJ (3) = 37:
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Less small values of n

Values of TJ (n) for n ≤ 14

n TJ (n)

4 234
5 1489
6 9534
7 61169
8 393314 ← up to here, we did these by hand
9 2, 531, 777 ← from here on, Søren Eilers found these via

computer and shared his counts with us
10 16, 316, 262
11 105, 237, 737
12 679, 336, 650
13 2, 194, 159, 545
14 14, 183, 197, 852 ← after this, known computer programs

take too long

Jon Wilson LEGO and math



A graph of TJ

To get an idea of what kind of function TJ is, let’s graph the points
and see what we get:

Jon Wilson LEGO and math



A graph of TJ

To get an idea of what kind of function TJ is, let’s graph the points
and see what we get:

Jon Wilson LEGO and math



A graph of TJ

To get an idea of what kind of function TJ is, let’s graph the points
and see what we get:

Question

What kind of a function does this look like? Linear? Polynomial?
Exponential? Superexponential?
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A graph of TJ

To get an idea of what kind of function TJ is, let’s graph the points
and see what we get:

Conjecture

It looks exponential (or perhaps superexponential).
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A graph on a log scale

To distinguish between exponential and superexponential behavior,
we graph logTJ (n) against n (by the way, log means base e):

2 4 6 8 10 12 14
n

5

10

15

20

log TJ (n)

Since this is appears to be roughly linear, this suggests that

logTJ (n) is linear ⇒ TJ (n) is exponential.
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More notation

Recall that TJ (n) is the number of ways to connect n jumper
plates together.

Definition of entropy

Define the entropy of a jumper plate as follows:

hJ := lim
n→∞

1

n
TJ (n)

What does entropy mean?

If the entropy of a brick is h, then for n large, TJ (n) ≈ Cehn, so
the entropy h gives the exponential growth rate of TJ .
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Existence of the entropy

We defined:

hJ := lim
n→∞

1

n
TJ (n)

Problem

Just because you write down a limit does not mean that limit
exists (Math 220).
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Existence of the entropy

We defined:

hJ := lim
n→∞

1

n
TJ (n)

Solution

Rigorously prove that the limit must exist!
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Existence of the entropy

We defined:

hJ := lim
n→∞

1

n
TJ (n)

How to prove this limit exists

1 Write down another sequence {an}.
2 Use something called “Fekete’s lemma” to show that

limn→∞ log an
n exists.

3 Show that the limit in Step 2 is the entropy hJ .
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Existence of the entropy

We defined:

hJ := lim
n→∞

1

n
TJ (n)

Lemma (Fekete 1923)

If {xn} is a superadditive sequence, i.e. the sequence satisfies
xm+n ≥ xm + xn for all m and n, then

lim
n→∞

xn
n

exists.

Dr. McClendon says that if/when I take Math 430, I’ll be able to
understand the proof of this lemma.
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Existence of the entropy

We defined:

hJ := lim
n→∞

1

n
TJ (n)

Technicality

When we say this limit “exists”, we are including the possibility
that the limit has value ∞.
What we are really ruling out is the possibility that this limit DNE
due to oscillation (like limx→∞ sin x).
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Lower bound on hJ

At this point we know hJ exists (in [0,∞]). Now we turn to esti-
mating its value. First, a lower bound:
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Lower bound on hJ

Recall that there were 6 ways to connect 2 bricks together.
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Lower bound on hJ

Recall that there were 6 ways to connect 2 bricks together.

Therefore there are 6n−1 buildings of height n made from n jumper
plates, so

TJ (n) ≥ 6n−1

and therefore

hJ ≥ lim
n→∞

1

n
6n−1 = log 6.
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Lower bound on hJ

But we can do better than this trivial lower bound:

Theorem (McClendon-W)

hJ ≥ log 6.44947
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How we prove that hJ ≥ log 6.44947

Definition

A bottlenecked construction is a building that has a layer (other
then the top or bottom) with only one brick in it.

Example with two bottlenecks
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How we prove that hJ ≥ log 6.44947

Definition

A bottlenecked construction is a building that has a layer (other
then the top or bottom) with only one brick in it.

Example with no bottlenecks
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How we prove that hJ ≥ log 6.44947

Definition

A bottlenecked construction is a building that has a layer (other
then the top or bottom) with only one brick in it.

Now, for each n, let cn be the number of contiguous buildings made
from n + 1 jumper plates such that:

the building has no bottlenecks; and

the building has only one jumper plate on its bottom level.
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How we prove that hJ ≥ log 6.44947

Definition

A bottlenecked construction is a building that has a layer (other
then the top or bottom) with only one brick in it.

Using something called a “generating function” (which is a power
series where the coefficient on xn is cn), we can show

∞∑
n=1

cn(ehJ )−n ≤ 1.

We can count c1, c2, ..., c8 directly (see the next slide); substituting
these numbers into the above inequality gives our lower bound.
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How we prove that hJ ≥ log 6.44947

Small values of cn

cn = # buildings with lower bound on hJ
n no bottlenecks using c-values up to this cn
1 6 log 6
2 0 log 6
3 12 log 6.30214
4 0 log 6.30214
5 156 log 6.38779
6 0 log 6.38779
7 2652 log 6.42072
8 144 ← up to here, log 6.42009

cn computed by hand
9 59100 ← need computer log 6.43793

10 18192 log 6.43872
11 1615740 log 6.44947
12 computer takes too long
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Upper bound on hJ

Theorem (McClendon-W

hJ ≤ log(6 +
√

2)

To prove the lower bound (previous slides), we borrowed heavily
from previous work of Durhuus and Eilers.

To prove this upper bound, we came up with entirely new stuff.
The best upper bound obtainable from previously known methods
is log 8.
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How we prove that hJ ≤ log(6 +
√

2)

The first thing we need to talk about is trees
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How we prove that hJ ≤ log(6 +
√

2)

Math trees
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How we prove that hJ ≤ log(6 +
√

2)

Definition

A graph is a collection of points called nodes; some of the nodes
are connected to one another by edges. We consider directed
graphs, which means that the edges are like arrows as opposed to
line segments. We only allow at most one arrow from one node to
another, and we require that our graphs are connected.

Example (of a graph)
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How we prove that hJ ≤ log(6 +
√

2)

Definition

In math, a tree is a graph that has no loops (when defining a
“loop”, ignore the direction of the arrows).

Example (of a graph that isn’t a tree)
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How we prove that hJ ≤ log(6 +
√

2)

Definition

In math, a tree is a graph that has no loops (when defining a
“loop”, ignore the direction of the arrows).

Example (of a tree)
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How we prove that hJ ≤ log(6 +
√

2)

Definition

In math, a tree is a graph that has no loops (when defining a
“loop”, ignore the direction of the arrows).

Definition

A binary tree is a tree such that every node in the tree has at
most two children. (One node is a child of another if there is an
edge pointing from the parent to the child.)
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How we prove that hJ ≤ log(6 +
√

2)

Our awesome idea

Binary trees can be used as directions to build buildings made from
jumper plates:

Example

−→
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How we prove that hJ ≤ log(6 +
√

2)

There are two potential problems with this:

Problem # 1

A tree can go with more than one building.

Example

−→
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How we prove that hJ ≤ log(6 +
√

2)

There are two potential problems with this:

Problem # 2

Some binary trees lead to no buildings. Call a binary tree
allowable if at least one building can be made from it (using
jumper plates) in the physical world.

Example of a nonallowable tree

−→
nothing you can build

with jumper plates
(visualize or try it)
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How we prove that hJ ≤ log(6 +
√

2)

There are two potential problems with this:
To fix these problems, we ...

1 ... find an upper bound on the number of buildings that can
be made from each allowable tree (accounts for Problem #
1), and ...

2 ... find an upper bound on the number of allowable binary
trees (accounting for Problem # 2).
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How we prove that hJ ≤ log(6 +
√

2)

Fixing Problem # 1

To count an upper bound on the number of buildings that can be
made from each allowable tree, count the number of branchings
in the tree:

This tree has 16 nodes
and 2 branchings

(at the red nodes).
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How we prove that hJ ≤ log(6 +
√

2)

Fixing Problem # 1

To count an upper bound on the number of buildings that can be
made from each allowable tree, count the number of branchings
in the tree:

This tree has 16 nodes
and 2 branchings

(at the red nodes).

So it can be turned into
(at most)

616−1−2(2) = 611 buildings.
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How we prove that hJ ≤ log(6 +
√

2)

Definition

Let Q(n, k) as the number of allowable binary trees with exactly n
nodes and exactly k branchings.

Each tree with n nodes and k branchings can be turned into at
most 6n−1−2k buildings, so:

What we know at this point

TJ (n) ≤
b n−1

2 c∑
k=0

6n−1−2kQ(n, k).

(
⌊
n−1
2

⌋
is the maximum number of branchings a binary tree with n

nodes can have.)
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How we prove that hJ ≤ log(6 +
√

2)

What we know at this point

TJ (n) ≤
b n−1

2 c∑
k=0

6n−1−2kQ(n, k).

What we need to do now

Find an upper bound on Q(n, k) (this will fix Problem # 2).
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How we prove that hJ ≤ log(6 +
√

2)

Remember that our goal is to find an upper bound on Q(n, k), the
number of allowable binary trees with n nodes and k branchings.
To do this, we prove a lot of crap about Q(n, k):

Lemma (Properties of Q(n, k))

Let Q(n, k) be defined as above. Then:

1 If n < 2k + 1, then Q(n, k) = 0.

2 For any n ∈ {1, 2, 3, ...}, Q(n, 0) = 1.

3 For any k ∈ {1, 2, ...}, Q(2k + 1, k) = 2k−1.
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How we prove that hJ ≤ log(6 +
√

2)

Remember that our goal is to find an upper bound on Q(n, k), the
number of allowable binary trees with n nodes and k branchings.
To do this, we prove a lot of crap about Q(n, k):

Lemma (Recursive upper bound for Q(n, k))

For any n ∈ {1, 2, 3, ...} and any k ∈ {0, 1, 2, ...},

Q(n, k) ≤ Q(n − 1, k) +
n−1∑
j=0

k−1∑
s=0

Q(j , s)Q(n − j − 1, k − s − 1).
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How we prove that hJ ≤ log(6 +
√

2)

Aside: combinations

If we have n objects and wish to choose k of them (where the
order in which they’re picked doesn’t matter), the number of ways
to do this is (

n

k

)
=

n!

(n − k)!k!
.

We pronounce this number as “n choose k”. In Math 414, you
learn lots of stuff about these numbers.
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How we prove that hJ ≤ log(6 +
√

2)

Putting our lemmas together, we can prove this:

Lemma (Upper bound on Q(n, k))

Let Q(n, k) be defined as above. Then

Q(n, k) ≤
(
n − 1

2k

)
2k−1.

The proof is by induction (the base case uses the first lemma I
wrote down; the induction step uses the recursive upper bound).
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How we prove that hJ ≤ log(6 +
√

2)

We’re almost there, I promise!

Next up:

Lemma

For any r ∈ (0, 1),

∞∑
k=0

(
n − 1

2k

)
rk =

(1 +
√
r)n−1 + (1−

√
r)n−1

2
.

To prove this, expand the right-hand side with the Binomial
Theorem, which says

(1 + r)n =
∞∑
k=0

(
n

k

)
rk ,

and manipulate the resulting stuff to get the left-hand side.
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How we prove that hJ ≤ log(6 +
√

2)

Wrapping up the proof that hJ ≤ log(6 +
√

2)

x
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Review

Main question

How many ways can you connect n LEGO jumper plates of the
same size and color together?

Answer

Let TJ (n) be the number of ways to connect n bricks together.
From our work, we know TJ has exponential growth rate, and this
rate is between

e6.44947 and e(6+
√
2) ≈ e7.41421.
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Back to the big picture

This gives us a window of something like this:
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Now for the hard stuff

No, I’m not joking.
(roof tiles)
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What did we need to get these results?

1 Combinatorics: binomial theorem, combinations (MATH 328,
414, 251)

2 Analysis of recursive formulas (CPSC 300)

3 Calculus: infinite series, generating functions (MATH 230)

4 Real Analysis: Fekete’s lemma (MATH 430)

5 Graph theory: binary trees (CPSC 300)

6 Induction proofs (MATH 324, 328)

7 Complex numbers (not at FSU
..
_)

8 Time (priceless)

9 The internet (to look up others’ research)

10 A little help from Mathematica (MATH 220, 230, 322)
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Anyone in?
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